Semi-analytical approach to magnetized temperature autocorrelations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-10-18

AUTHORS

Massimo Giovannini

ABSTRACT

The cosmic microwave background (CMB) temperature autocorrelations, induced by a magnetized adiabatic mode of curvature inhomogeneities, are computed with semi-analytical methods. As suggested by the latest CMB data, a nearly scale-invariant spectrum for the adiabatic mode is consistently assumed. In this situation, the effects of a fully inhomogeneous magnetic field are scrutinized and constrained with particular attention to harmonics which are relevant for the region of Doppler oscillations. Depending on the parameters of the stochastic magnetic field a hump may replace the second peak of the angular power spectrum. Detectable effects on the Doppler region are then expected only if the magnetic power spectra have quasi-flat slopes and typical amplitude (smoothed over a comoving scale of Mpc size and redshifted to the epoch of gravitational collapse of the protogalaxy) exceeding 0.1 nG. If the magnetic energy spectra are bluer (i.e. steeper in frequency) the allowed value of the smoothed amplitude becomes, comparatively, larger (in the range of 20 nG). The implications of this investigation for the origin of large-scale magnetic fields in the Universe are discussed. Connections with forthcoming experimental observations of CMB temperature fluctuations are also suggested and partially explored. More... »

PAGES

5

References to SciGraph publications

  • 2004-03. “CMB-Slow” or How to Determine Cosmological Parameters by Hand? in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1754-0410-1-5

    DOI

    http://dx.doi.org/10.1186/1754-0410-1-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009405511


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, Theory Division, CERN, 1211, Geneva 23, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "Centro \"Enrico Fermi\", Via Panisperna 89/A, 00184, Rome, Italy", 
                "Department of Physics, Theory Division, CERN, 1211, Geneva 23, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giovannini", 
            "givenName": "Massimo", 
            "id": "sg:person.07512604737.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512604737.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/b:ijtp.0000048168.90282.db", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036996532", 
              "https://doi.org/10.1023/b:ijtp.0000048168.90282.db"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-10-18", 
        "datePublishedReg": "2007-10-18", 
        "description": "The cosmic microwave background (CMB) temperature autocorrelations, induced by a magnetized adiabatic mode of curvature inhomogeneities, are computed with semi-analytical methods. As suggested by the latest CMB data, a nearly scale-invariant spectrum for the adiabatic mode is consistently assumed. In this situation, the effects of a fully inhomogeneous magnetic field are scrutinized and constrained with particular attention to harmonics which are relevant for the region of Doppler oscillations. Depending on the parameters of the stochastic magnetic field a hump may replace the second peak of the angular power spectrum. Detectable effects on the Doppler region are then expected only if the magnetic power spectra have quasi-flat slopes and typical amplitude (smoothed over a comoving scale of Mpc size and redshifted to the epoch of gravitational collapse of the protogalaxy) exceeding 0.1 nG. If the magnetic energy spectra are bluer (i.e. steeper in frequency) the allowed value of the smoothed amplitude becomes, comparatively, larger (in the range of 20 nG). The implications of this investigation for the origin of large-scale magnetic fields in the Universe are discussed. Connections with forthcoming experimental observations of CMB temperature fluctuations are also suggested and partially explored.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1754-0410-1-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1155174", 
            "issn": [
              "1754-0410"
            ], 
            "name": "PMC Physics A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "1"
          }
        ], 
        "keywords": [
          "magnetic field", 
          "large-scale magnetic field", 
          "magnetic power spectrum", 
          "inhomogeneous magnetic field", 
          "stochastic magnetic field", 
          "magnetic energy spectrum", 
          "scale-invariant spectrum", 
          "angular power spectrum", 
          "temperature autocorrelations", 
          "power spectrum", 
          "latest CMB data", 
          "CMB temperature fluctuations", 
          "Doppler oscillations", 
          "energy spectrum", 
          "adiabatic mode", 
          "CMB data", 
          "curvature inhomogeneities", 
          "typical amplitude", 
          "experimental observations", 
          "spectra", 
          "field", 
          "Doppler region", 
          "universe", 
          "amplitude", 
          "temperature fluctuations", 
          "mode", 
          "inhomogeneity", 
          "harmonics", 
          "oscillations", 
          "second peak", 
          "semi-analytical approach", 
          "fluctuations", 
          "hump", 
          "peak", 
          "region", 
          "particular attention", 
          "semi-analytical method", 
          "effect", 
          "parameters", 
          "origin", 
          "investigation", 
          "autocorrelation", 
          "values", 
          "slope", 
          "method", 
          "connection", 
          "data", 
          "approach", 
          "detectable effect", 
          "attention", 
          "situation", 
          "implications", 
          "observations", 
          "cosmic microwave background (CMB) temperature autocorrelations", 
          "microwave background (CMB) temperature autocorrelations", 
          "background (CMB) temperature autocorrelations", 
          "magnetized adiabatic mode", 
          "quasi-flat slopes", 
          "smoothed amplitude", 
          "forthcoming experimental observations", 
          "magnetized temperature autocorrelations"
        ], 
        "name": "Semi-analytical approach to magnetized temperature autocorrelations", 
        "pagination": "5", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009405511"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1754-0410-1-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1754-0410-1-5", 
          "https://app.dimensions.ai/details/publication/pub.1009405511"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_440.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1754-0410-1-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1754-0410-1-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1754-0410-1-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1754-0410-1-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1754-0410-1-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    123 TRIPLES      22 PREDICATES      87 URIs      78 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1754-0410-1-5 schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 schema:author Nc864459eb6534e4abb881bdd7621fee2
    4 schema:citation sg:pub.10.1023/b:ijtp.0000048168.90282.db
    5 schema:datePublished 2007-10-18
    6 schema:datePublishedReg 2007-10-18
    7 schema:description The cosmic microwave background (CMB) temperature autocorrelations, induced by a magnetized adiabatic mode of curvature inhomogeneities, are computed with semi-analytical methods. As suggested by the latest CMB data, a nearly scale-invariant spectrum for the adiabatic mode is consistently assumed. In this situation, the effects of a fully inhomogeneous magnetic field are scrutinized and constrained with particular attention to harmonics which are relevant for the region of Doppler oscillations. Depending on the parameters of the stochastic magnetic field a hump may replace the second peak of the angular power spectrum. Detectable effects on the Doppler region are then expected only if the magnetic power spectra have quasi-flat slopes and typical amplitude (smoothed over a comoving scale of Mpc size and redshifted to the epoch of gravitational collapse of the protogalaxy) exceeding 0.1 nG. If the magnetic energy spectra are bluer (i.e. steeper in frequency) the allowed value of the smoothed amplitude becomes, comparatively, larger (in the range of 20 nG). The implications of this investigation for the origin of large-scale magnetic fields in the Universe are discussed. Connections with forthcoming experimental observations of CMB temperature fluctuations are also suggested and partially explored.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree true
    11 schema:isPartOf N1395b512e11f45828cfc224dfb0bb6e5
    12 Neaa03b73653e4684a3fd08d2664e3290
    13 sg:journal.1155174
    14 schema:keywords CMB data
    15 CMB temperature fluctuations
    16 Doppler oscillations
    17 Doppler region
    18 adiabatic mode
    19 amplitude
    20 angular power spectrum
    21 approach
    22 attention
    23 autocorrelation
    24 background (CMB) temperature autocorrelations
    25 connection
    26 cosmic microwave background (CMB) temperature autocorrelations
    27 curvature inhomogeneities
    28 data
    29 detectable effect
    30 effect
    31 energy spectrum
    32 experimental observations
    33 field
    34 fluctuations
    35 forthcoming experimental observations
    36 harmonics
    37 hump
    38 implications
    39 inhomogeneity
    40 inhomogeneous magnetic field
    41 investigation
    42 large-scale magnetic field
    43 latest CMB data
    44 magnetic energy spectrum
    45 magnetic field
    46 magnetic power spectrum
    47 magnetized adiabatic mode
    48 magnetized temperature autocorrelations
    49 method
    50 microwave background (CMB) temperature autocorrelations
    51 mode
    52 observations
    53 origin
    54 oscillations
    55 parameters
    56 particular attention
    57 peak
    58 power spectrum
    59 quasi-flat slopes
    60 region
    61 scale-invariant spectrum
    62 second peak
    63 semi-analytical approach
    64 semi-analytical method
    65 situation
    66 slope
    67 smoothed amplitude
    68 spectra
    69 stochastic magnetic field
    70 temperature autocorrelations
    71 temperature fluctuations
    72 typical amplitude
    73 universe
    74 values
    75 schema:name Semi-analytical approach to magnetized temperature autocorrelations
    76 schema:pagination 5
    77 schema:productId N2a2c833555904b33b586e69d7f434c9e
    78 Nd81e248510ec4f2b97864793df8c7d50
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009405511
    80 https://doi.org/10.1186/1754-0410-1-5
    81 schema:sdDatePublished 2022-01-01T18:17
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher N2a8ca9e3f2bd4bd4b2b98f79ae8d5e49
    84 schema:url https://doi.org/10.1186/1754-0410-1-5
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N1395b512e11f45828cfc224dfb0bb6e5 schema:issueNumber 1
    89 rdf:type schema:PublicationIssue
    90 N2a2c833555904b33b586e69d7f434c9e schema:name dimensions_id
    91 schema:value pub.1009405511
    92 rdf:type schema:PropertyValue
    93 N2a8ca9e3f2bd4bd4b2b98f79ae8d5e49 schema:name Springer Nature - SN SciGraph project
    94 rdf:type schema:Organization
    95 Nc864459eb6534e4abb881bdd7621fee2 rdf:first sg:person.07512604737.77
    96 rdf:rest rdf:nil
    97 Nd81e248510ec4f2b97864793df8c7d50 schema:name doi
    98 schema:value 10.1186/1754-0410-1-5
    99 rdf:type schema:PropertyValue
    100 Neaa03b73653e4684a3fd08d2664e3290 schema:volumeNumber 1
    101 rdf:type schema:PublicationVolume
    102 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Physical Sciences
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Astronomical and Space Sciences
    107 rdf:type schema:DefinedTerm
    108 sg:journal.1155174 schema:issn 1754-0410
    109 schema:name PMC Physics A
    110 schema:publisher Springer Nature
    111 rdf:type schema:Periodical
    112 sg:person.07512604737.77 schema:affiliation grid-institutes:grid.9132.9
    113 schema:familyName Giovannini
    114 schema:givenName Massimo
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512604737.77
    116 rdf:type schema:Person
    117 sg:pub.10.1023/b:ijtp.0000048168.90282.db schema:sameAs https://app.dimensions.ai/details/publication/pub.1036996532
    118 https://doi.org/10.1023/b:ijtp.0000048168.90282.db
    119 rdf:type schema:CreativeWork
    120 grid-institutes:grid.9132.9 schema:alternateName Department of Physics, Theory Division, CERN, 1211, Geneva 23, Switzerland
    121 schema:name Centro "Enrico Fermi", Via Panisperna 89/A, 00184, Rome, Italy
    122 Department of Physics, Theory Division, CERN, 1211, Geneva 23, Switzerland
    123 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...