Machine learning techniques to identify putative genes involved in nitrogen catabolite repression in the yeast Saccharomyces cerevisiae View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12-17

AUTHORS

Kevin Kontos, Patrice Godard, Bruno André, Jacques van Helden, Gianluca Bontempi

ABSTRACT

BACKGROUND: Nitrogen is an essential nutrient for all life forms. Like most unicellular organisms, the yeast Saccharomyces cerevisiae transports and catabolizes good nitrogen sources in preference to poor ones. Nitrogen catabolite repression (NCR) refers to this selection mechanism. All known nitrogen catabolite pathways are regulated by four regulators. The ultimate goal is to infer the complete nitrogen catabolite pathways. Bioinformatics approaches offer the possibility to identify putative NCR genes and to discard uninteresting genes. RESULTS: We present a machine learning approach where the identification of putative NCR genes in the yeast Saccharomyces cerevisiae is formulated as a supervised two-class classification problem. Classifiers predict whether genes are NCR-sensitive or not from a large number of variables related to the GATA motif in the upstream non-coding sequences of the genes. The positive and negative training sets are composed of annotated NCR genes and manually-selected genes known to be insensitive to NCR, respectively. Different classifiers and variable selection methods are compared. We show that all classifiers make significant and biologically valid predictions by comparing these predictions to annotated and putative NCR genes, and by performing several negative controls. In particular, the inferred NCR genes significantly overlap with putative NCR genes identified in three genome-wide experimental and bioinformatics studies. CONCLUSION: These results suggest that our approach can successfully identify potential NCR genes. Hence, the dimensionality of the problem of identifying all genes involved in NCR is drastically reduced. More... »

PAGES

s5-s5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1753-6561-2-s4-s5

DOI

http://dx.doi.org/10.1186/1753-6561-2-s4-s5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014963916

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19091052


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Machine Learning Group, D\u00e9partement d'Informatique, Facult\u00e9 des Sciences, Universit\u00e9 Libre de Bruxelles (ULB), Boulevard du Triomphe CP 212, 1050 Brussels, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "Machine Learning Group, D\u00e9partement d'Informatique, Facult\u00e9 des Sciences, Universit\u00e9 Libre de Bruxelles (ULB), Boulevard du Triomphe CP 212, 1050 Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kontos", 
        "givenName": "Kevin", 
        "id": "sg:person.014273324077.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014273324077.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unit\u00e9 de Recherche en Biologie Cellulaire, D\u00e9partement de Biologie, Facult\u00e9 des Sciences, Facult\u00e9s Universitaires Notre-Dame de la Paix Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.6520.1", 
          "name": [
            "Physiologie Mol\u00e9culaire de la Cellule, IBMM, Facult\u00e9 des Sciences, ULB, Rue des Pr. Jeener et Brachet 12, 6041 Gosselies, Belgium", 
            "Unit\u00e9 de Recherche en Biologie Cellulaire, D\u00e9partement de Biologie, Facult\u00e9 des Sciences, Facult\u00e9s Universitaires Notre-Dame de la Paix Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Godard", 
        "givenName": "Patrice", 
        "id": "sg:person.0777266367.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777266367.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physiologie Mol\u00e9culaire de la Cellule, IBMM, Facult\u00e9 des Sciences, ULB, Rue des Pr. Jeener et Brachet 12, 6041 Gosselies, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "Physiologie Mol\u00e9culaire de la Cellule, IBMM, Facult\u00e9 des Sciences, ULB, Rue des Pr. Jeener et Brachet 12, 6041 Gosselies, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andr\u00e9", 
        "givenName": "Bruno", 
        "id": "sg:person.01323402214.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323402214.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Bioinformatique des G\u00e9nomes et des R\u00e9seaux, Facult\u00e9 des Sciences, ULB, Boulevard du Triomphe CP 263, 1050 Brussels, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "Laboratoire de Bioinformatique des G\u00e9nomes et des R\u00e9seaux, Facult\u00e9 des Sciences, ULB, Boulevard du Triomphe CP 263, 1050 Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Helden", 
        "givenName": "Jacques", 
        "id": "sg:person.0626672543.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626672543.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Machine Learning Group, D\u00e9partement d'Informatique, Facult\u00e9 des Sciences, Universit\u00e9 Libre de Bruxelles (ULB), Boulevard du Triomphe CP 212, 1050 Brussels, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "Machine Learning Group, D\u00e9partement d'Informatique, Facult\u00e9 des Sciences, Universit\u00e9 Libre de Bruxelles (ULB), Boulevard du Triomphe CP 212, 1050 Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bontempi", 
        "givenName": "Gianluca", 
        "id": "sg:person.01030314607.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030314607.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-0-387-21606-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022356842", 
          "https://doi.org/10.1007/978-0-387-21606-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051056710", 
          "https://doi.org/10.1038/nbt890"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12-17", 
    "datePublishedReg": "2008-12-17", 
    "description": "BACKGROUND: Nitrogen is an essential nutrient for all life forms. Like most unicellular organisms, the yeast Saccharomyces cerevisiae transports and catabolizes good nitrogen sources in preference to poor ones. Nitrogen catabolite repression (NCR) refers to this selection mechanism. All known nitrogen catabolite pathways are regulated by four regulators. The ultimate goal is to infer the complete nitrogen catabolite pathways. Bioinformatics approaches offer the possibility to identify putative NCR genes and to discard uninteresting genes.\nRESULTS: We present a machine learning approach where the identification of putative NCR genes in the yeast Saccharomyces cerevisiae is formulated as a supervised two-class classification problem. Classifiers predict whether genes are NCR-sensitive or not from a large number of variables related to the GATA motif in the upstream non-coding sequences of the genes. The positive and negative training sets are composed of annotated NCR genes and manually-selected genes known to be insensitive to NCR, respectively. Different classifiers and variable selection methods are compared. We show that all classifiers make significant and biologically valid predictions by comparing these predictions to annotated and putative NCR genes, and by performing several negative controls. In particular, the inferred NCR genes significantly overlap with putative NCR genes identified in three genome-wide experimental and bioinformatics studies.\nCONCLUSION: These results suggest that our approach can successfully identify potential NCR genes. Hence, the dimensionality of the problem of identifying all genes involved in NCR is drastically reduced.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1753-6561-2-s4-s5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039047", 
        "issn": [
          "1753-6561"
        ], 
        "name": "BMC Proceedings", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "nitrogen catabolite repression", 
      "NCR genes", 
      "catabolite repression", 
      "upstream non-coding sequences", 
      "most unicellular organisms", 
      "yeast Saccharomyces cerevisiae", 
      "non-coding sequences", 
      "putative genes", 
      "unicellular organisms", 
      "yeast Saccharomyces", 
      "GATA motif", 
      "bioinformatics approach", 
      "Saccharomyces cerevisiae", 
      "bioinformatics studies", 
      "life forms", 
      "genes", 
      "essential nutrients", 
      "best nitrogen source", 
      "repression", 
      "nitrogen source", 
      "pathway", 
      "Saccharomyces", 
      "cerevisiae", 
      "organisms", 
      "negative control", 
      "regulator", 
      "motif", 
      "negative training sets", 
      "nutrients", 
      "sequence", 
      "large number", 
      "selection mechanism", 
      "identification", 
      "mechanism", 
      "nitrogen", 
      "transport", 
      "ultimate goal", 
      "selection method", 
      "preferences", 
      "poor ones", 
      "form", 
      "number", 
      "prediction", 
      "approach", 
      "control", 
      "source", 
      "valid predictions", 
      "study", 
      "possibility", 
      "results", 
      "set", 
      "variable selection methods", 
      "training set", 
      "one", 
      "goal", 
      "method", 
      "technique", 
      "variables", 
      "machine learning techniques", 
      "classifier", 
      "problem", 
      "machine", 
      "dimensionality", 
      "different classifiers", 
      "two-class classification problem", 
      "learning techniques", 
      "classification problem", 
      "yeast Saccharomyces cerevisiae transports", 
      "Saccharomyces cerevisiae transports", 
      "cerevisiae transports", 
      "nitrogen catabolite pathways", 
      "catabolite pathways", 
      "complete nitrogen catabolite pathways", 
      "putative NCR genes", 
      "uninteresting genes", 
      "inferred NCR genes", 
      "potential NCR genes"
    ], 
    "name": "Machine learning techniques to identify putative genes involved in nitrogen catabolite repression in the yeast Saccharomyces cerevisiae", 
    "pagination": "s5-s5", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014963916"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1753-6561-2-s4-s5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19091052"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1753-6561-2-s4-s5", 
      "https://app.dimensions.ai/details/publication/pub.1014963916"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_461.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1753-6561-2-s4-s5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1753-6561-2-s4-s5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1753-6561-2-s4-s5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1753-6561-2-s4-s5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1753-6561-2-s4-s5'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      22 PREDICATES      105 URIs      95 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1753-6561-2-s4-s5 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nb372ed53ab504f5cb3a08a8d7eb012e3
4 schema:citation sg:pub.10.1007/978-0-387-21606-5
5 sg:pub.10.1038/nbt890
6 schema:datePublished 2008-12-17
7 schema:datePublishedReg 2008-12-17
8 schema:description BACKGROUND: Nitrogen is an essential nutrient for all life forms. Like most unicellular organisms, the yeast Saccharomyces cerevisiae transports and catabolizes good nitrogen sources in preference to poor ones. Nitrogen catabolite repression (NCR) refers to this selection mechanism. All known nitrogen catabolite pathways are regulated by four regulators. The ultimate goal is to infer the complete nitrogen catabolite pathways. Bioinformatics approaches offer the possibility to identify putative NCR genes and to discard uninteresting genes. RESULTS: We present a machine learning approach where the identification of putative NCR genes in the yeast Saccharomyces cerevisiae is formulated as a supervised two-class classification problem. Classifiers predict whether genes are NCR-sensitive or not from a large number of variables related to the GATA motif in the upstream non-coding sequences of the genes. The positive and negative training sets are composed of annotated NCR genes and manually-selected genes known to be insensitive to NCR, respectively. Different classifiers and variable selection methods are compared. We show that all classifiers make significant and biologically valid predictions by comparing these predictions to annotated and putative NCR genes, and by performing several negative controls. In particular, the inferred NCR genes significantly overlap with putative NCR genes identified in three genome-wide experimental and bioinformatics studies. CONCLUSION: These results suggest that our approach can successfully identify potential NCR genes. Hence, the dimensionality of the problem of identifying all genes involved in NCR is drastically reduced.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N2e5b2018f96845988fe8432676bbc88e
13 N6025dbc2225b415d921f8f2257b6a83d
14 sg:journal.1039047
15 schema:keywords GATA motif
16 NCR genes
17 Saccharomyces
18 Saccharomyces cerevisiae
19 Saccharomyces cerevisiae transports
20 approach
21 best nitrogen source
22 bioinformatics approach
23 bioinformatics studies
24 catabolite pathways
25 catabolite repression
26 cerevisiae
27 cerevisiae transports
28 classification problem
29 classifier
30 complete nitrogen catabolite pathways
31 control
32 different classifiers
33 dimensionality
34 essential nutrients
35 form
36 genes
37 goal
38 identification
39 inferred NCR genes
40 large number
41 learning techniques
42 life forms
43 machine
44 machine learning techniques
45 mechanism
46 method
47 most unicellular organisms
48 motif
49 negative control
50 negative training sets
51 nitrogen
52 nitrogen catabolite pathways
53 nitrogen catabolite repression
54 nitrogen source
55 non-coding sequences
56 number
57 nutrients
58 one
59 organisms
60 pathway
61 poor ones
62 possibility
63 potential NCR genes
64 prediction
65 preferences
66 problem
67 putative NCR genes
68 putative genes
69 regulator
70 repression
71 results
72 selection mechanism
73 selection method
74 sequence
75 set
76 source
77 study
78 technique
79 training set
80 transport
81 two-class classification problem
82 ultimate goal
83 unicellular organisms
84 uninteresting genes
85 upstream non-coding sequences
86 valid predictions
87 variable selection methods
88 variables
89 yeast Saccharomyces
90 yeast Saccharomyces cerevisiae
91 yeast Saccharomyces cerevisiae transports
92 schema:name Machine learning techniques to identify putative genes involved in nitrogen catabolite repression in the yeast Saccharomyces cerevisiae
93 schema:pagination s5-s5
94 schema:productId N6a04556ad84c46539ad3c609bfbfe26e
95 Neb0882609c924839a6f29875e94b6868
96 Nee2d549ca5884b39aad68fba58ecab38
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014963916
98 https://doi.org/10.1186/1753-6561-2-s4-s5
99 schema:sdDatePublished 2022-01-01T18:18
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N0624e5be6e8f4ed1b6760f370a6127cf
102 schema:url https://doi.org/10.1186/1753-6561-2-s4-s5
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N0624e5be6e8f4ed1b6760f370a6127cf schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N1df9a2df36834bcdafca7d8d816501a9 rdf:first sg:person.01030314607.42
109 rdf:rest rdf:nil
110 N24dfba59cb274cc3a65c99c153942682 rdf:first sg:person.0626672543.46
111 rdf:rest N1df9a2df36834bcdafca7d8d816501a9
112 N2e5b2018f96845988fe8432676bbc88e schema:issueNumber Suppl 4
113 rdf:type schema:PublicationIssue
114 N6025dbc2225b415d921f8f2257b6a83d schema:volumeNumber 2
115 rdf:type schema:PublicationVolume
116 N6a04556ad84c46539ad3c609bfbfe26e schema:name dimensions_id
117 schema:value pub.1014963916
118 rdf:type schema:PropertyValue
119 N99df6fcad3164ff5873a5930f51fdaf4 rdf:first sg:person.01323402214.18
120 rdf:rest N24dfba59cb274cc3a65c99c153942682
121 Naab7d9b8223e49949f00a0fa996700e6 rdf:first sg:person.0777266367.22
122 rdf:rest N99df6fcad3164ff5873a5930f51fdaf4
123 Nb372ed53ab504f5cb3a08a8d7eb012e3 rdf:first sg:person.014273324077.45
124 rdf:rest Naab7d9b8223e49949f00a0fa996700e6
125 Neb0882609c924839a6f29875e94b6868 schema:name pubmed_id
126 schema:value 19091052
127 rdf:type schema:PropertyValue
128 Nee2d549ca5884b39aad68fba58ecab38 schema:name doi
129 schema:value 10.1186/1753-6561-2-s4-s5
130 rdf:type schema:PropertyValue
131 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
132 schema:name Biological Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
135 schema:name Biochemistry and Cell Biology
136 rdf:type schema:DefinedTerm
137 sg:journal.1039047 schema:issn 1753-6561
138 schema:name BMC Proceedings
139 schema:publisher Springer Nature
140 rdf:type schema:Periodical
141 sg:person.01030314607.42 schema:affiliation grid-institutes:grid.4989.c
142 schema:familyName Bontempi
143 schema:givenName Gianluca
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030314607.42
145 rdf:type schema:Person
146 sg:person.01323402214.18 schema:affiliation grid-institutes:grid.4989.c
147 schema:familyName André
148 schema:givenName Bruno
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323402214.18
150 rdf:type schema:Person
151 sg:person.014273324077.45 schema:affiliation grid-institutes:grid.4989.c
152 schema:familyName Kontos
153 schema:givenName Kevin
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014273324077.45
155 rdf:type schema:Person
156 sg:person.0626672543.46 schema:affiliation grid-institutes:grid.4989.c
157 schema:familyName van Helden
158 schema:givenName Jacques
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626672543.46
160 rdf:type schema:Person
161 sg:person.0777266367.22 schema:affiliation grid-institutes:grid.6520.1
162 schema:familyName Godard
163 schema:givenName Patrice
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777266367.22
165 rdf:type schema:Person
166 sg:pub.10.1007/978-0-387-21606-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022356842
167 https://doi.org/10.1007/978-0-387-21606-5
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nbt890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051056710
170 https://doi.org/10.1038/nbt890
171 rdf:type schema:CreativeWork
172 grid-institutes:grid.4989.c schema:alternateName Laboratoire de Bioinformatique des Génomes et des Réseaux, Faculté des Sciences, ULB, Boulevard du Triomphe CP 263, 1050 Brussels, Belgium
173 Machine Learning Group, Département d'Informatique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 212, 1050 Brussels, Belgium
174 Physiologie Moléculaire de la Cellule, IBMM, Faculté des Sciences, ULB, Rue des Pr. Jeener et Brachet 12, 6041 Gosselies, Belgium
175 schema:name Laboratoire de Bioinformatique des Génomes et des Réseaux, Faculté des Sciences, ULB, Boulevard du Triomphe CP 263, 1050 Brussels, Belgium
176 Machine Learning Group, Département d'Informatique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 212, 1050 Brussels, Belgium
177 Physiologie Moléculaire de la Cellule, IBMM, Faculté des Sciences, ULB, Rue des Pr. Jeener et Brachet 12, 6041 Gosselies, Belgium
178 rdf:type schema:Organization
179 grid-institutes:grid.6520.1 schema:alternateName Unité de Recherche en Biologie Cellulaire, Département de Biologie, Faculté des Sciences, Facultés Universitaires Notre-Dame de la Paix Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur, Belgium
180 schema:name Physiologie Moléculaire de la Cellule, IBMM, Faculté des Sciences, ULB, Rue des Pr. Jeener et Brachet 12, 6041 Gosselies, Belgium
181 Unité de Recherche en Biologie Cellulaire, Département de Biologie, Faculté des Sciences, Facultés Universitaires Notre-Dame de la Paix Namur (FUNDP), Rue de Bruxelles 61, 5000 Namur, Belgium
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...