Machine learning techniques to identify putative genes involved in nitrogen catabolite repression in the yeast Saccharomyces cerevisiae View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12-17

AUTHORS

Kevin Kontos, Patrice Godard, Bruno André, Jacques van Helden, Gianluca Bontempi

ABSTRACT

BackgroundNitrogen is an essential nutrient for all life forms. Like most unicellular organisms, the yeast Saccharomyces cerevisiae transports and catabolizes good nitrogen sources in preference to poor ones. Nitrogen catabolite repression (NCR) refers to this selection mechanism. All known nitrogen catabolite pathways are regulated by four regulators. The ultimate goal is to infer the complete nitrogen catabolite pathways. Bioinformatics approaches offer the possibility to identify putative NCR genes and to discard uninteresting genes.ResultsWe present a machine learning approach where the identification of putative NCR genes in the yeast Saccharomyces cerevisiae is formulated as a supervised two-class classification problem. Classifiers predict whether genes are NCR-sensitive or not from a large number of variables related to the GATA motif in the upstream non-coding sequences of the genes. The positive and negative training sets are composed of annotated NCR genes and manually-selected genes known to be insensitive to NCR, respectively. Different classifiers and variable selection methods are compared. We show that all classifiers make significant and biologically valid predictions by comparing these predictions to annotated and putative NCR genes, and by performing several negative controls. In particular, the inferred NCR genes significantly overlap with putative NCR genes identified in three genome-wide experimental and bioinformatics studies.ConclusionThese results suggest that our approach can successfully identify potential NCR genes. Hence, the dimensionality of the problem of identifying all genes involved in NCR is drastically reduced. More... »

PAGES

s5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1753-6561-2-s4-s5

DOI

http://dx.doi.org/10.1186/1753-6561-2-s4-s5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014963916

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19091052


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Machine Learning Group, D\u00e9partement d'Informatique, Facult\u00e9 des Sciences, Universit\u00e9 Libre de Bruxelles (ULB), Boulevard du Triomphe CP 212, 1050, Brussels, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "Machine Learning Group, D\u00e9partement d'Informatique, Facult\u00e9 des Sciences, Universit\u00e9 Libre de Bruxelles (ULB), Boulevard du Triomphe CP 212, 1050, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kontos", 
        "givenName": "Kevin", 
        "id": "sg:person.014273324077.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014273324077.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unit\u00e9 de Recherche en Biologie Cellulaire, D\u00e9partement de Biologie, Facult\u00e9 des Sciences, Universitaires Notre-Dame de la Paix Namur (FUNDP), Rue de Bruxelles 61, 5000, Namur, Belgium", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Physiologie Mol\u00e9culaire de la Cellule, IBMM, Facult\u00e9 des Sciences, ULB, Rue des Pr. Jeener et Brachet 12, 6041, Gosselies, Belgium", 
            "Unit\u00e9 de Recherche en Biologie Cellulaire, D\u00e9partement de Biologie, Facult\u00e9 des Sciences, Universitaires Notre-Dame de la Paix Namur (FUNDP), Rue de Bruxelles 61, 5000, Namur, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Godard", 
        "givenName": "Patrice", 
        "id": "sg:person.0777266367.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777266367.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physiologie Mol\u00e9culaire de la Cellule, IBMM, Facult\u00e9 des Sciences, ULB, Rue des Pr. Jeener et Brachet 12, 6041, Gosselies, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "Physiologie Mol\u00e9culaire de la Cellule, IBMM, Facult\u00e9 des Sciences, ULB, Rue des Pr. Jeener et Brachet 12, 6041, Gosselies, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andr\u00e9", 
        "givenName": "Bruno", 
        "id": "sg:person.01323402214.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323402214.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Bioinformatique des G\u00e9nomes et des R\u00e9seaux, Facult\u00e9 des Sciences, ULB, Boulevard du Triomphe CP 263, 1050, Brussels, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "Laboratoire de Bioinformatique des G\u00e9nomes et des R\u00e9seaux, Facult\u00e9 des Sciences, ULB, Boulevard du Triomphe CP 263, 1050, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Helden", 
        "givenName": "Jacques", 
        "id": "sg:person.0626672543.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626672543.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Machine Learning Group, D\u00e9partement d'Informatique, Facult\u00e9 des Sciences, Universit\u00e9 Libre de Bruxelles (ULB), Boulevard du Triomphe CP 212, 1050, Brussels, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "Machine Learning Group, D\u00e9partement d'Informatique, Facult\u00e9 des Sciences, Universit\u00e9 Libre de Bruxelles (ULB), Boulevard du Triomphe CP 212, 1050, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bontempi", 
        "givenName": "Gianluca", 
        "id": "sg:person.01030314607.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030314607.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nbt890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051056710", 
          "https://doi.org/10.1038/nbt890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21606-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022356842", 
          "https://doi.org/10.1007/978-0-387-21606-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12-17", 
    "datePublishedReg": "2008-12-17", 
    "description": "BackgroundNitrogen is an essential nutrient for all life forms. Like most unicellular organisms, the yeast Saccharomyces cerevisiae transports and catabolizes good nitrogen sources in preference to poor ones. Nitrogen catabolite repression (NCR) refers to this selection mechanism. All known nitrogen catabolite pathways are regulated by four regulators. The ultimate goal is to infer the complete nitrogen catabolite pathways. Bioinformatics approaches offer the possibility to identify putative NCR genes and to discard uninteresting genes.ResultsWe present a machine learning approach where the identification of putative NCR genes in the yeast Saccharomyces cerevisiae is formulated as a supervised two-class classification problem. Classifiers predict whether genes are NCR-sensitive or not from a large number of variables related to the GATA motif in the upstream non-coding sequences of the genes. The positive and negative training sets are composed of annotated NCR genes and manually-selected genes known to be insensitive to NCR, respectively. Different classifiers and variable selection methods are compared. We show that all classifiers make significant and biologically valid predictions by comparing these predictions to annotated and putative NCR genes, and by performing several negative controls. In particular, the inferred NCR genes significantly overlap with putative NCR genes identified in three genome-wide experimental and bioinformatics studies.ConclusionThese results suggest that our approach can successfully identify potential NCR genes. Hence, the dimensionality of the problem of identifying all genes involved in NCR is drastically reduced.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1753-6561-2-s4-s5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1039047", 
        "issn": [
          "1753-6561"
        ], 
        "name": "BMC Proceedings", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "nitrogen catabolite repression", 
      "NCR genes", 
      "catabolite repression", 
      "upstream non-coding sequences", 
      "most unicellular organisms", 
      "yeast Saccharomyces cerevisiae", 
      "non-coding sequences", 
      "unicellular organisms", 
      "putative genes", 
      "GATA motif", 
      "yeast Saccharomyces", 
      "bioinformatics approach", 
      "Saccharomyces cerevisiae", 
      "bioinformatics studies", 
      "life forms", 
      "genes", 
      "essential nutrients", 
      "best nitrogen source", 
      "repression", 
      "nitrogen source", 
      "pathway", 
      "cerevisiae", 
      "Saccharomyces", 
      "BackgroundNitrogen", 
      "organisms", 
      "negative control", 
      "regulator", 
      "negative training set", 
      "motif", 
      "nutrients", 
      "sequence", 
      "large number", 
      "selection mechanism", 
      "identification", 
      "mechanism", 
      "transport", 
      "ConclusionThese results", 
      "ultimate goal", 
      "selection method", 
      "preferences", 
      "poor ones", 
      "number", 
      "form", 
      "ResultsWe", 
      "prediction", 
      "control", 
      "approach", 
      "source", 
      "study", 
      "valid predictions", 
      "possibility", 
      "set", 
      "results", 
      "variable selection methods", 
      "training set", 
      "one", 
      "goal", 
      "method", 
      "technique", 
      "variables", 
      "machine learning techniques", 
      "classifier", 
      "problem", 
      "machine", 
      "dimensionality", 
      "different classifiers", 
      "two-class classification problem", 
      "learning techniques", 
      "classification problem"
    ], 
    "name": "Machine learning techniques to identify putative genes involved in nitrogen catabolite repression in the yeast Saccharomyces cerevisiae", 
    "pagination": "s5", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014963916"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1753-6561-2-s4-s5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19091052"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1753-6561-2-s4-s5", 
      "https://app.dimensions.ai/details/publication/pub.1014963916"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_466.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1753-6561-2-s4-s5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1753-6561-2-s4-s5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1753-6561-2-s4-s5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1753-6561-2-s4-s5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1753-6561-2-s4-s5'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      22 PREDICATES      98 URIs      87 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1753-6561-2-s4-s5 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 anzsrc-for:0604
4 schema:author N1a09fe877a184bb0962afb067e683e71
5 schema:citation sg:pub.10.1007/978-0-387-21606-5
6 sg:pub.10.1038/nbt890
7 schema:datePublished 2008-12-17
8 schema:datePublishedReg 2008-12-17
9 schema:description BackgroundNitrogen is an essential nutrient for all life forms. Like most unicellular organisms, the yeast Saccharomyces cerevisiae transports and catabolizes good nitrogen sources in preference to poor ones. Nitrogen catabolite repression (NCR) refers to this selection mechanism. All known nitrogen catabolite pathways are regulated by four regulators. The ultimate goal is to infer the complete nitrogen catabolite pathways. Bioinformatics approaches offer the possibility to identify putative NCR genes and to discard uninteresting genes.ResultsWe present a machine learning approach where the identification of putative NCR genes in the yeast Saccharomyces cerevisiae is formulated as a supervised two-class classification problem. Classifiers predict whether genes are NCR-sensitive or not from a large number of variables related to the GATA motif in the upstream non-coding sequences of the genes. The positive and negative training sets are composed of annotated NCR genes and manually-selected genes known to be insensitive to NCR, respectively. Different classifiers and variable selection methods are compared. We show that all classifiers make significant and biologically valid predictions by comparing these predictions to annotated and putative NCR genes, and by performing several negative controls. In particular, the inferred NCR genes significantly overlap with putative NCR genes identified in three genome-wide experimental and bioinformatics studies.ConclusionThese results suggest that our approach can successfully identify potential NCR genes. Hence, the dimensionality of the problem of identifying all genes involved in NCR is drastically reduced.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N48abf98a1bde4008b291b70d14e84435
14 N4c6d4c5468f9416db05956d15ed0ab55
15 sg:journal.1039047
16 schema:keywords BackgroundNitrogen
17 ConclusionThese results
18 GATA motif
19 NCR genes
20 ResultsWe
21 Saccharomyces
22 Saccharomyces cerevisiae
23 approach
24 best nitrogen source
25 bioinformatics approach
26 bioinformatics studies
27 catabolite repression
28 cerevisiae
29 classification problem
30 classifier
31 control
32 different classifiers
33 dimensionality
34 essential nutrients
35 form
36 genes
37 goal
38 identification
39 large number
40 learning techniques
41 life forms
42 machine
43 machine learning techniques
44 mechanism
45 method
46 most unicellular organisms
47 motif
48 negative control
49 negative training set
50 nitrogen catabolite repression
51 nitrogen source
52 non-coding sequences
53 number
54 nutrients
55 one
56 organisms
57 pathway
58 poor ones
59 possibility
60 prediction
61 preferences
62 problem
63 putative genes
64 regulator
65 repression
66 results
67 selection mechanism
68 selection method
69 sequence
70 set
71 source
72 study
73 technique
74 training set
75 transport
76 two-class classification problem
77 ultimate goal
78 unicellular organisms
79 upstream non-coding sequences
80 valid predictions
81 variable selection methods
82 variables
83 yeast Saccharomyces
84 yeast Saccharomyces cerevisiae
85 schema:name Machine learning techniques to identify putative genes involved in nitrogen catabolite repression in the yeast Saccharomyces cerevisiae
86 schema:pagination s5
87 schema:productId N7d4cc30967374bb1ab245ea9651cce7d
88 N9c66cc8237444bbcb33576b3cbc08490
89 Nc55847c1de4c4ad088e34243afbddd60
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014963916
91 https://doi.org/10.1186/1753-6561-2-s4-s5
92 schema:sdDatePublished 2022-05-10T09:57
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher N317a139807404430870dcb84a00aec45
95 schema:url https://doi.org/10.1186/1753-6561-2-s4-s5
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N1a09fe877a184bb0962afb067e683e71 rdf:first sg:person.014273324077.45
100 rdf:rest N5199d3823bcd4b51882c7fb56dda6f10
101 N317a139807404430870dcb84a00aec45 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N48abf98a1bde4008b291b70d14e84435 schema:volumeNumber 2
104 rdf:type schema:PublicationVolume
105 N4c6d4c5468f9416db05956d15ed0ab55 schema:issueNumber Suppl 4
106 rdf:type schema:PublicationIssue
107 N5199d3823bcd4b51882c7fb56dda6f10 rdf:first sg:person.0777266367.22
108 rdf:rest Nf153f5bd8bc54cd7a586c993cecb8dc0
109 N7d154def5499450dad7ea1307506195a rdf:first sg:person.01030314607.42
110 rdf:rest rdf:nil
111 N7d4cc30967374bb1ab245ea9651cce7d schema:name doi
112 schema:value 10.1186/1753-6561-2-s4-s5
113 rdf:type schema:PropertyValue
114 N9c66cc8237444bbcb33576b3cbc08490 schema:name pubmed_id
115 schema:value 19091052
116 rdf:type schema:PropertyValue
117 Nc55847c1de4c4ad088e34243afbddd60 schema:name dimensions_id
118 schema:value pub.1014963916
119 rdf:type schema:PropertyValue
120 Nd7b59fe0fbe64a85b0e1b6262cc4a80b rdf:first sg:person.0626672543.46
121 rdf:rest N7d154def5499450dad7ea1307506195a
122 Nf153f5bd8bc54cd7a586c993cecb8dc0 rdf:first sg:person.01323402214.18
123 rdf:rest Nd7b59fe0fbe64a85b0e1b6262cc4a80b
124 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
125 schema:name Biological Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
128 schema:name Biochemistry and Cell Biology
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
131 schema:name Genetics
132 rdf:type schema:DefinedTerm
133 sg:journal.1039047 schema:issn 1753-6561
134 schema:name BMC Proceedings
135 schema:publisher Springer Nature
136 rdf:type schema:Periodical
137 sg:person.01030314607.42 schema:affiliation grid-institutes:grid.4989.c
138 schema:familyName Bontempi
139 schema:givenName Gianluca
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030314607.42
141 rdf:type schema:Person
142 sg:person.01323402214.18 schema:affiliation grid-institutes:grid.4989.c
143 schema:familyName André
144 schema:givenName Bruno
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323402214.18
146 rdf:type schema:Person
147 sg:person.014273324077.45 schema:affiliation grid-institutes:grid.4989.c
148 schema:familyName Kontos
149 schema:givenName Kevin
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014273324077.45
151 rdf:type schema:Person
152 sg:person.0626672543.46 schema:affiliation grid-institutes:grid.4989.c
153 schema:familyName van Helden
154 schema:givenName Jacques
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626672543.46
156 rdf:type schema:Person
157 sg:person.0777266367.22 schema:affiliation grid-institutes:None
158 schema:familyName Godard
159 schema:givenName Patrice
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777266367.22
161 rdf:type schema:Person
162 sg:pub.10.1007/978-0-387-21606-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022356842
163 https://doi.org/10.1007/978-0-387-21606-5
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nbt890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051056710
166 https://doi.org/10.1038/nbt890
167 rdf:type schema:CreativeWork
168 grid-institutes:None schema:alternateName Unité de Recherche en Biologie Cellulaire, Département de Biologie, Faculté des Sciences, Universitaires Notre-Dame de la Paix Namur (FUNDP), Rue de Bruxelles 61, 5000, Namur, Belgium
169 schema:name Physiologie Moléculaire de la Cellule, IBMM, Faculté des Sciences, ULB, Rue des Pr. Jeener et Brachet 12, 6041, Gosselies, Belgium
170 Unité de Recherche en Biologie Cellulaire, Département de Biologie, Faculté des Sciences, Universitaires Notre-Dame de la Paix Namur (FUNDP), Rue de Bruxelles 61, 5000, Namur, Belgium
171 rdf:type schema:Organization
172 grid-institutes:grid.4989.c schema:alternateName Laboratoire de Bioinformatique des Génomes et des Réseaux, Faculté des Sciences, ULB, Boulevard du Triomphe CP 263, 1050, Brussels, Belgium
173 Machine Learning Group, Département d'Informatique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 212, 1050, Brussels, Belgium
174 Physiologie Moléculaire de la Cellule, IBMM, Faculté des Sciences, ULB, Rue des Pr. Jeener et Brachet 12, 6041, Gosselies, Belgium
175 schema:name Laboratoire de Bioinformatique des Génomes et des Réseaux, Faculté des Sciences, ULB, Boulevard du Triomphe CP 263, 1050, Brussels, Belgium
176 Machine Learning Group, Département d'Informatique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 212, 1050, Brussels, Belgium
177 Physiologie Moléculaire de la Cellule, IBMM, Faculté des Sciences, ULB, Rue des Pr. Jeener et Brachet 12, 6041, Gosselies, Belgium
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...