A graph-theoretical approach in brain functional networks. Possible implications in EEG studies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-06

AUTHORS

Fabrizio De Vico Fallani, Luciano da Fontoura Costa, Francisco Aparecido Rodriguez, Laura Astolfi, Giovanni Vecchiato, Jlenia Toppi, Gianluca Borghini, Febo Cincotti, Donatella Mattia, Serenella Salinari, Roberto Isabella, Fabio Babiloni

ABSTRACT

BACKGROUND: Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical representation of a network, which is essentially reduced to nodes and connections between them. METHODS: We used high-resolution EEG technology to enhance the poor spatial information of the EEG activity on the scalp and it gives a measure of the electrical activity on the cortical surface. Afterwards, we used the Directed Transfer Function (DTF) that is a multivariate spectral measure for the estimation of the directional influences between any given pair of channels in a multivariate dataset. Finally, a graph theoretical approach was used to model the brain networks as graphs. These methods were used to analyze the structure of cortical connectivity during the attempt to move a paralyzed limb in a group (N=5) of spinal cord injured patients and during the movement execution in a group (N=5) of healthy subjects. RESULTS: Analysis performed on the cortical networks estimated from the group of normal and SCI patients revealed that both groups present few nodes with a high out-degree value (i.e. outgoing links). This property is valid in the networks estimated for all the frequency bands investigated. In particular, cingulate motor areas (CMAs) ROIs act as ''hubs'' for the out fl ow of information in both groups, SCI and healthy. Results also suggest that spinal cord injuries affect the functional architecture of the cortical network sub-serving the volition of motor acts mainly in its local feature property.In particular, a higher local efficiency El can be observed in the SCI patients for three frequency bands, theta (3-6 Hz), alpha (7-12 Hz) and beta (13-29 Hz).By taking into account all the possible pathways between different ROI couples, we were able to separate clearly the network properties of the SCI group from the CTRL group. In particular, we report a sort of compensatory mechanism in the SCI patients for the Theta (3-6 Hz) frequency band, indicating a higher level of "activation" Omega within the cortical network during the motor task. The activation index is directly related to diffusion, a type of dynamics that underlies several biological systems including possible spreading of neuronal activation across several cortical regions. CONCLUSIONS: The present study aims at demonstrating the possible applications of graph theoretical approaches in the analyses of brain functional connectivity from EEG signals. In particular, the methodological aspects of the i) cortical activity from scalp EEG signals, ii) functional connectivity estimations iii) graph theoretical indexes are emphasized in the present paper to show their impact in a real application. More... »

PAGES

s8

References to SciGraph publications

  • 2001-04. Plasticity of motor systems after incomplete spinal cord injury in NATURE REVIEWS NEUROSCIENCE
  • 1999-07. Fault tolerance in the cardiac ganglion of the lobster in BIOLOGICAL CYBERNETICS
  • 2007-03. Extracting Information from Cortical Connectivity Patterns Estimated from High Resolution EEG Recordings: A Theoretical Graph Approach in BRAIN TOPOGRAPHY
  • 2007-03. Estimate of Causality Between Independent Cortical Spatial Patterns During Movement Volition in Spinal Cord Injured Patients in BRAIN TOPOGRAPHY
  • 2007-12. Graph theoretical analysis of complex networks in the brain in EPJ NONLINEAR BIOMEDICAL PHYSICS
  • 2001-05. Partial directed coherence: a new concept in neural structure determination in BIOLOGICAL CYBERNETICS
  • 2003-03. Influence of the supplementary motor area on primary motor cortex excitability during movements triggered by neutral or emotionally unpleasant visual cues in EXPERIMENTAL BRAIN RESEARCH
  • 2001-08. Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance in BIOLOGICAL CYBERNETICS
  • 2008-03. Cortical Network Dynamics during Foot Movements in NEUROINFORMATICS
  • 2004-06. The small world of the cerebral cortex in NEUROINFORMATICS
  • 2000-09. High-resolution electro-encephalogram: source estimates of Laplacian-transformed somatosensory-evoked potentials using a realistic subject head model constructed from magnetic resonance images in MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • 2009-03. Complex brain networks: graph theoretical analysis of structural and functional systems in NATURE REVIEWS NEUROSCIENCE
  • 1998-06. Collective dynamics of ‘small-world’ networks in NATURE
  • 1991-07. A new method of the description of the information flow in the brain structures in BIOLOGICAL CYBERNETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1753-4631-4-s1-s8

    DOI

    http://dx.doi.org/10.1186/1753-4631-4-s1-s8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039954780

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/20522269


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sapienza University of Rome", 
              "id": "https://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "IRCCS \"Fondazione Santa Lucia\", Rome, Italy", 
                "Department of Human Physiology and Pharmacology, University \u201cSapienza\u201d, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fallani", 
            "givenName": "Fabrizio De Vico", 
            "id": "sg:person.0760216410.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760216410.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Sao Paulo", 
              "id": "https://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Institute of Physics at Sao Carlos, University of Sao Paulo, Sao Carlos-SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Costa", 
            "givenName": "Luciano da Fontoura", 
            "id": "sg:person.01346313415.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346313415.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Sao Paulo", 
              "id": "https://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Institute of Physics at Sao Carlos, University of Sao Paulo, Sao Carlos-SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rodriguez", 
            "givenName": "Francisco Aparecido", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sapienza University of Rome", 
              "id": "https://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "IRCCS \"Fondazione Santa Lucia\", Rome, Italy", 
                "Department of Informatica e Sistemistica, University \u201cSapienza\u201d, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Astolfi", 
            "givenName": "Laura", 
            "id": "sg:person.01204471753.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204471753.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sapienza University of Rome", 
              "id": "https://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "IRCCS \"Fondazione Santa Lucia\", Rome, Italy", 
                "Department of Human Physiology and Pharmacology, University \u201cSapienza\u201d, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vecchiato", 
            "givenName": "Giovanni", 
            "id": "sg:person.01230750704.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230750704.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sapienza University of Rome", 
              "id": "https://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "IRCCS \"Fondazione Santa Lucia\", Rome, Italy", 
                "Department of Informatica e Sistemistica, University \u201cSapienza\u201d, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Toppi", 
            "givenName": "Jlenia", 
            "id": "sg:person.0641370645.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641370645.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fondazione Santa Lucia", 
              "id": "https://www.grid.ac/institutes/grid.417778.a", 
              "name": [
                "IRCCS \"Fondazione Santa Lucia\", Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Borghini", 
            "givenName": "Gianluca", 
            "id": "sg:person.01217637517.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217637517.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fondazione Santa Lucia", 
              "id": "https://www.grid.ac/institutes/grid.417778.a", 
              "name": [
                "IRCCS \"Fondazione Santa Lucia\", Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cincotti", 
            "givenName": "Febo", 
            "id": "sg:person.01127524366.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127524366.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fondazione Santa Lucia", 
              "id": "https://www.grid.ac/institutes/grid.417778.a", 
              "name": [
                "IRCCS \"Fondazione Santa Lucia\", Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mattia", 
            "givenName": "Donatella", 
            "id": "sg:person.01024332104.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024332104.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sapienza University of Rome", 
              "id": "https://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "Department of Informatica e Sistemistica, University \u201cSapienza\u201d, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Salinari", 
            "givenName": "Serenella", 
            "id": "sg:person.01347735654.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347735654.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "\u201c2\u00b0 Div. (Relazioni Internazionali) della Direzione Generale della Sanit\u00e0 Militare\u201d, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Isabella", 
            "givenName": "Roberto", 
            "id": "sg:person.01100306110.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100306110.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sapienza University of Rome", 
              "id": "https://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "IRCCS \"Fondazione Santa Lucia\", Rome, Italy", 
                "Department of Human Physiology and Pharmacology, University \u201cSapienza\u201d, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Babiloni", 
            "givenName": "Fabio", 
            "id": "sg:person.01364125716.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364125716.42"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrn2575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004953014", 
              "https://doi.org/10.1038/nrn2575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10548-007-0019-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005063086", 
              "https://doi.org/10.1007/s10548-007-0019-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.87.198701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005667063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.87.198701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005667063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physrep.2005.10.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006977567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jocn.2005.11.045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007439781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-8986.2007.00556.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007653986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mri.2004.10.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008638670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/hbm.20353", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011040704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neulet.2006.04.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019324536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00198091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022228526", 
              "https://doi.org/10.1007/bf00198091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00198091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022228526", 
              "https://doi.org/10.1007/bf00198091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2006.05.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023088918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00018730601170527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024301493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004220050541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025051644", 
              "https://doi.org/10.1007/s004220050541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001756-199710200-00011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025919142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00001756-199710200-00011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025919142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780471740360.ebs0655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026164321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/hbm.20263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028384765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0013-4694(94)90164-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029563529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0013-4694(94)90164-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029563529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00007990", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039063057", 
              "https://doi.org/10.1007/pl00007990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/30918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041985305", 
              "https://doi.org/10.1038/30918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/30918", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041985305", 
              "https://doi.org/10.1038/30918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00221-002-1346-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042084105", 
              "https://doi.org/10.1007/s00221-002-1346-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1385/ni:2:2:145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045648324", 
              "https://doi.org/10.1385/ni:2:2:145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10548-007-0018-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045750735", 
              "https://doi.org/10.1007/s10548-007-0018-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02345746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045996623", 
              "https://doi.org/10.1007/bf02345746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02345746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045996623", 
              "https://doi.org/10.1007/bf02345746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004220000235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046917279", 
              "https://doi.org/10.1007/s004220000235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1388-2457(99)00141-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047824550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12021-007-9006-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050902195", 
              "https://doi.org/10.1007/s12021-007-9006-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35067570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052380675", 
              "https://doi.org/10.1038/35067570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35067570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052380675", 
              "https://doi.org/10.1038/35067570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1753-4631-1-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052914108", 
              "https://doi.org/10.1186/1753-4631-1-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00401706.1999.10485612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058287718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/50/1/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059025556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/10.237671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061084201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2004.827929", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061526165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2006.873692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061526666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnsre.2008.2009784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061740322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218127409023020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062955581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2533879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069979104"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-06", 
        "datePublishedReg": "2010-06-01", 
        "description": "BACKGROUND: Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical representation of a network, which is essentially reduced to nodes and connections between them.\nMETHODS: We used high-resolution EEG technology to enhance the poor spatial information of the EEG activity on the scalp and it gives a measure of the electrical activity on the cortical surface. Afterwards, we used the Directed Transfer Function (DTF) that is a multivariate spectral measure for the estimation of the directional influences between any given pair of channels in a multivariate dataset. Finally, a graph theoretical approach was used to model the brain networks as graphs. These methods were used to analyze the structure of cortical connectivity during the attempt to move a paralyzed limb in a group (N=5) of spinal cord injured patients and during the movement execution in a group (N=5) of healthy subjects.\nRESULTS: Analysis performed on the cortical networks estimated from the group of normal and SCI patients revealed that both groups present few nodes with a high out-degree value (i.e. outgoing links). This property is valid in the networks estimated for all the frequency bands investigated. In particular, cingulate motor areas (CMAs) ROIs act as ''hubs'' for the out fl ow of information in both groups, SCI and healthy. Results also suggest that spinal cord injuries affect the functional architecture of the cortical network sub-serving the volition of motor acts mainly in its local feature property.In particular, a higher local efficiency El can be observed in the SCI patients for three frequency bands, theta (3-6 Hz), alpha (7-12 Hz) and beta (13-29 Hz).By taking into account all the possible pathways between different ROI couples, we were able to separate clearly the network properties of the SCI group from the CTRL group. In particular, we report a sort of compensatory mechanism in the SCI patients for the Theta (3-6 Hz) frequency band, indicating a higher level of \"activation\" Omega within the cortical network during the motor task. The activation index is directly related to diffusion, a type of dynamics that underlies several biological systems including possible spreading of neuronal activation across several cortical regions.\nCONCLUSIONS: The present study aims at demonstrating the possible applications of graph theoretical approaches in the analyses of brain functional connectivity from EEG signals. In particular, the methodological aspects of the i) cortical activity from scalp EEG signals, ii) functional connectivity estimations iii) graph theoretical indexes are emphasized in the present paper to show their impact in a real application.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1753-4631-4-s1-s8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1295581", 
            "issn": [
              "2195-0008"
            ], 
            "name": "EPJ Nonlinear Biomedical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "Suppl 1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "A graph-theoretical approach in brain functional networks. Possible implications in EEG studies", 
        "pagination": "s8", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "be53fba43530d5d7cd6b52b553a0b2175423b49d0d781cfbc8a33d70a483b172"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "20522269"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101303143"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1753-4631-4-s1-s8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039954780"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1753-4631-4-s1-s8", 
          "https://app.dimensions.ai/details/publication/pub.1039954780"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000514.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1753-4631-4-S1-S8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1753-4631-4-s1-s8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1753-4631-4-s1-s8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1753-4631-4-s1-s8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1753-4631-4-s1-s8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    276 TRIPLES      21 PREDICATES      65 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1753-4631-4-s1-s8 schema:about anzsrc-for:11
    2 anzsrc-for:1109
    3 schema:author N565eea31eb6d4499872eb06227afec65
    4 schema:citation sg:pub.10.1007/bf00198091
    5 sg:pub.10.1007/bf02345746
    6 sg:pub.10.1007/pl00007990
    7 sg:pub.10.1007/s00221-002-1346-8
    8 sg:pub.10.1007/s004220000235
    9 sg:pub.10.1007/s004220050541
    10 sg:pub.10.1007/s10548-007-0018-1
    11 sg:pub.10.1007/s10548-007-0019-0
    12 sg:pub.10.1007/s12021-007-9006-6
    13 sg:pub.10.1038/30918
    14 sg:pub.10.1038/35067570
    15 sg:pub.10.1038/nrn2575
    16 sg:pub.10.1186/1753-4631-1-3
    17 sg:pub.10.1385/ni:2:2:145
    18 https://doi.org/10.1002/9780471740360.ebs0655
    19 https://doi.org/10.1002/hbm.20263
    20 https://doi.org/10.1002/hbm.20353
    21 https://doi.org/10.1016/0013-4694(94)90164-3
    22 https://doi.org/10.1016/j.jocn.2005.11.045
    23 https://doi.org/10.1016/j.mri.2004.10.007
    24 https://doi.org/10.1016/j.neulet.2006.04.006
    25 https://doi.org/10.1016/j.neuroimage.2006.05.033
    26 https://doi.org/10.1016/j.physrep.2005.10.009
    27 https://doi.org/10.1016/s1388-2457(99)00141-8
    28 https://doi.org/10.1080/00018730601170527
    29 https://doi.org/10.1080/00401706.1999.10485612
    30 https://doi.org/10.1088/0031-9155/50/1/004
    31 https://doi.org/10.1097/00001756-199710200-00011
    32 https://doi.org/10.1103/physrevlett.87.198701
    33 https://doi.org/10.1109/10.237671
    34 https://doi.org/10.1109/tbme.2004.827929
    35 https://doi.org/10.1109/tbme.2006.873692
    36 https://doi.org/10.1109/tnsre.2008.2009784
    37 https://doi.org/10.1111/j.1469-8986.2007.00556.x
    38 https://doi.org/10.1142/s0218127409023020
    39 https://doi.org/10.2307/2533879
    40 schema:datePublished 2010-06
    41 schema:datePublishedReg 2010-06-01
    42 schema:description BACKGROUND: Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical representation of a network, which is essentially reduced to nodes and connections between them. METHODS: We used high-resolution EEG technology to enhance the poor spatial information of the EEG activity on the scalp and it gives a measure of the electrical activity on the cortical surface. Afterwards, we used the Directed Transfer Function (DTF) that is a multivariate spectral measure for the estimation of the directional influences between any given pair of channels in a multivariate dataset. Finally, a graph theoretical approach was used to model the brain networks as graphs. These methods were used to analyze the structure of cortical connectivity during the attempt to move a paralyzed limb in a group (N=5) of spinal cord injured patients and during the movement execution in a group (N=5) of healthy subjects. RESULTS: Analysis performed on the cortical networks estimated from the group of normal and SCI patients revealed that both groups present few nodes with a high out-degree value (i.e. outgoing links). This property is valid in the networks estimated for all the frequency bands investigated. In particular, cingulate motor areas (CMAs) ROIs act as ''hubs'' for the out fl ow of information in both groups, SCI and healthy. Results also suggest that spinal cord injuries affect the functional architecture of the cortical network sub-serving the volition of motor acts mainly in its local feature property.In particular, a higher local efficiency El can be observed in the SCI patients for three frequency bands, theta (3-6 Hz), alpha (7-12 Hz) and beta (13-29 Hz).By taking into account all the possible pathways between different ROI couples, we were able to separate clearly the network properties of the SCI group from the CTRL group. In particular, we report a sort of compensatory mechanism in the SCI patients for the Theta (3-6 Hz) frequency band, indicating a higher level of "activation" Omega within the cortical network during the motor task. The activation index is directly related to diffusion, a type of dynamics that underlies several biological systems including possible spreading of neuronal activation across several cortical regions. CONCLUSIONS: The present study aims at demonstrating the possible applications of graph theoretical approaches in the analyses of brain functional connectivity from EEG signals. In particular, the methodological aspects of the i) cortical activity from scalp EEG signals, ii) functional connectivity estimations iii) graph theoretical indexes are emphasized in the present paper to show their impact in a real application.
    43 schema:genre research_article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree true
    46 schema:isPartOf N1843299f914949fdb1d19f25fee5e80f
    47 N67fdd8c271f2486dba8535956c9bbe02
    48 sg:journal.1295581
    49 schema:name A graph-theoretical approach in brain functional networks. Possible implications in EEG studies
    50 schema:pagination s8
    51 schema:productId N5c509ee89ce74ed2a38897c972bd8cc4
    52 N717d7f5095e34000b948a16320293722
    53 Na169990b6c9941ea9ee122f17ffd4823
    54 Na8b419f2e7b34797ac0105f5337c1cb3
    55 Ne35f3686fb804f67a325d45c7cf57e30
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039954780
    57 https://doi.org/10.1186/1753-4631-4-s1-s8
    58 schema:sdDatePublished 2019-04-10T19:58
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher N45738d5310ae4131bda932bf1e814e33
    61 schema:url http://link.springer.com/10.1186%2F1753-4631-4-S1-S8
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N03703c282f214f4ab56b714b88ff99d7 rdf:first sg:person.01127524366.89
    66 rdf:rest Nf45e076f46fa405484f011fc96d8f5ac
    67 N13ba3da1bc7b4a3eac9d94d360717289 schema:name “2° Div. (Relazioni Internazionali) della Direzione Generale della Sanità Militare”, Rome, Italy
    68 rdf:type schema:Organization
    69 N1843299f914949fdb1d19f25fee5e80f schema:volumeNumber 4
    70 rdf:type schema:PublicationVolume
    71 N1be14f6af3ec46e9bf825e153af2d7ea rdf:first sg:person.01230750704.91
    72 rdf:rest Ncf3210c7343c432fb2e95eb7230d4582
    73 N256ec071c27d495bba34541d76bb92bd rdf:first sg:person.01364125716.42
    74 rdf:rest rdf:nil
    75 N3e60ee5448ba4d3489fa1d6c5fc7daa7 rdf:first sg:person.01347735654.28
    76 rdf:rest Nd50fdaddb4e34c8ab3f3b70ddfb32904
    77 N3f8519e2fce3401ba936cb53392eeb26 rdf:first sg:person.01346313415.14
    78 rdf:rest N5de348303fbf4480853382ea37d29a1c
    79 N45738d5310ae4131bda932bf1e814e33 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 N45db2804c71647d484392e5b98d88e87 rdf:first sg:person.01204471753.50
    82 rdf:rest N1be14f6af3ec46e9bf825e153af2d7ea
    83 N565eea31eb6d4499872eb06227afec65 rdf:first sg:person.0760216410.96
    84 rdf:rest N3f8519e2fce3401ba936cb53392eeb26
    85 N5c509ee89ce74ed2a38897c972bd8cc4 schema:name pubmed_id
    86 schema:value 20522269
    87 rdf:type schema:PropertyValue
    88 N5de348303fbf4480853382ea37d29a1c rdf:first Ncb56c7ede66f4b9e98f60a8f42eb286e
    89 rdf:rest N45db2804c71647d484392e5b98d88e87
    90 N67fdd8c271f2486dba8535956c9bbe02 schema:issueNumber Suppl 1
    91 rdf:type schema:PublicationIssue
    92 N717d7f5095e34000b948a16320293722 schema:name doi
    93 schema:value 10.1186/1753-4631-4-s1-s8
    94 rdf:type schema:PropertyValue
    95 Na169990b6c9941ea9ee122f17ffd4823 schema:name nlm_unique_id
    96 schema:value 101303143
    97 rdf:type schema:PropertyValue
    98 Na8b419f2e7b34797ac0105f5337c1cb3 schema:name dimensions_id
    99 schema:value pub.1039954780
    100 rdf:type schema:PropertyValue
    101 Ncb56c7ede66f4b9e98f60a8f42eb286e schema:affiliation https://www.grid.ac/institutes/grid.11899.38
    102 schema:familyName Rodriguez
    103 schema:givenName Francisco Aparecido
    104 rdf:type schema:Person
    105 Ncf3210c7343c432fb2e95eb7230d4582 rdf:first sg:person.0641370645.27
    106 rdf:rest Nd9a994ac4d144741be77605c68ce4163
    107 Nd50fdaddb4e34c8ab3f3b70ddfb32904 rdf:first sg:person.01100306110.56
    108 rdf:rest N256ec071c27d495bba34541d76bb92bd
    109 Nd9a994ac4d144741be77605c68ce4163 rdf:first sg:person.01217637517.00
    110 rdf:rest N03703c282f214f4ab56b714b88ff99d7
    111 Ne35f3686fb804f67a325d45c7cf57e30 schema:name readcube_id
    112 schema:value be53fba43530d5d7cd6b52b553a0b2175423b49d0d781cfbc8a33d70a483b172
    113 rdf:type schema:PropertyValue
    114 Nf45e076f46fa405484f011fc96d8f5ac rdf:first sg:person.01024332104.15
    115 rdf:rest N3e60ee5448ba4d3489fa1d6c5fc7daa7
    116 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Medical and Health Sciences
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Neurosciences
    121 rdf:type schema:DefinedTerm
    122 sg:journal.1295581 schema:issn 2195-0008
    123 schema:name EPJ Nonlinear Biomedical Physics
    124 rdf:type schema:Periodical
    125 sg:person.01024332104.15 schema:affiliation https://www.grid.ac/institutes/grid.417778.a
    126 schema:familyName Mattia
    127 schema:givenName Donatella
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024332104.15
    129 rdf:type schema:Person
    130 sg:person.01100306110.56 schema:affiliation N13ba3da1bc7b4a3eac9d94d360717289
    131 schema:familyName Isabella
    132 schema:givenName Roberto
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100306110.56
    134 rdf:type schema:Person
    135 sg:person.01127524366.89 schema:affiliation https://www.grid.ac/institutes/grid.417778.a
    136 schema:familyName Cincotti
    137 schema:givenName Febo
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127524366.89
    139 rdf:type schema:Person
    140 sg:person.01204471753.50 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
    141 schema:familyName Astolfi
    142 schema:givenName Laura
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204471753.50
    144 rdf:type schema:Person
    145 sg:person.01217637517.00 schema:affiliation https://www.grid.ac/institutes/grid.417778.a
    146 schema:familyName Borghini
    147 schema:givenName Gianluca
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217637517.00
    149 rdf:type schema:Person
    150 sg:person.01230750704.91 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
    151 schema:familyName Vecchiato
    152 schema:givenName Giovanni
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230750704.91
    154 rdf:type schema:Person
    155 sg:person.01346313415.14 schema:affiliation https://www.grid.ac/institutes/grid.11899.38
    156 schema:familyName Costa
    157 schema:givenName Luciano da Fontoura
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346313415.14
    159 rdf:type schema:Person
    160 sg:person.01347735654.28 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
    161 schema:familyName Salinari
    162 schema:givenName Serenella
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347735654.28
    164 rdf:type schema:Person
    165 sg:person.01364125716.42 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
    166 schema:familyName Babiloni
    167 schema:givenName Fabio
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364125716.42
    169 rdf:type schema:Person
    170 sg:person.0641370645.27 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
    171 schema:familyName Toppi
    172 schema:givenName Jlenia
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641370645.27
    174 rdf:type schema:Person
    175 sg:person.0760216410.96 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
    176 schema:familyName Fallani
    177 schema:givenName Fabrizio De Vico
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760216410.96
    179 rdf:type schema:Person
    180 sg:pub.10.1007/bf00198091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022228526
    181 https://doi.org/10.1007/bf00198091
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/bf02345746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045996623
    184 https://doi.org/10.1007/bf02345746
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/pl00007990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039063057
    187 https://doi.org/10.1007/pl00007990
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s00221-002-1346-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042084105
    190 https://doi.org/10.1007/s00221-002-1346-8
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s004220000235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046917279
    193 https://doi.org/10.1007/s004220000235
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s004220050541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025051644
    196 https://doi.org/10.1007/s004220050541
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s10548-007-0018-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045750735
    199 https://doi.org/10.1007/s10548-007-0018-1
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s10548-007-0019-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005063086
    202 https://doi.org/10.1007/s10548-007-0019-0
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s12021-007-9006-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050902195
    205 https://doi.org/10.1007/s12021-007-9006-6
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
    208 https://doi.org/10.1038/30918
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/35067570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052380675
    211 https://doi.org/10.1038/35067570
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nrn2575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004953014
    214 https://doi.org/10.1038/nrn2575
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1186/1753-4631-1-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052914108
    217 https://doi.org/10.1186/1753-4631-1-3
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1385/ni:2:2:145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045648324
    220 https://doi.org/10.1385/ni:2:2:145
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1002/9780471740360.ebs0655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026164321
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1002/hbm.20263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028384765
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1002/hbm.20353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011040704
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/0013-4694(94)90164-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029563529
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.jocn.2005.11.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007439781
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.mri.2004.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008638670
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/j.neulet.2006.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019324536
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1016/j.neuroimage.2006.05.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023088918
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1016/j.physrep.2005.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006977567
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1016/s1388-2457(99)00141-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047824550
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1080/00018730601170527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024301493
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1080/00401706.1999.10485612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058287718
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1088/0031-9155/50/1/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059025556
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1097/00001756-199710200-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025919142
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1103/physrevlett.87.198701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005667063
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1109/10.237671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084201
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1109/tbme.2004.827929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526165
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1109/tbme.2006.873692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526666
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1109/tnsre.2008.2009784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740322
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1111/j.1469-8986.2007.00556.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007653986
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1142/s0218127409023020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062955581
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.2307/2533879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069979104
    265 rdf:type schema:CreativeWork
    266 https://www.grid.ac/institutes/grid.11899.38 schema:alternateName University of Sao Paulo
    267 schema:name Institute of Physics at Sao Carlos, University of Sao Paulo, Sao Carlos-SP, Brazil
    268 rdf:type schema:Organization
    269 https://www.grid.ac/institutes/grid.417778.a schema:alternateName Fondazione Santa Lucia
    270 schema:name IRCCS "Fondazione Santa Lucia", Rome, Italy
    271 rdf:type schema:Organization
    272 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
    273 schema:name Department of Human Physiology and Pharmacology, University “Sapienza”, Rome, Italy
    274 Department of Informatica e Sistemistica, University “Sapienza”, Rome, Italy
    275 IRCCS "Fondazione Santa Lucia", Rome, Italy
    276 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...