From conformons to human brains: an informal overview of nonlinear dynamics and its applications in biomedicine View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Wlodzimierz Klonowski

ABSTRACT

Methods of contemporary physics are increasingly important for biomedical research but, for a multitude of diverse reasons, most practitioners of biomedicine lack access to a comprehensive knowledge of these modern methodologies. This paper is an attempt to describe nonlinear dynamics and its methods in a way that could be read and understood by biomedical professionals who usually are not trained in advanced mathematics. After an overview of basic concepts and vocabulary of nonlinear dynamics, deterministic chaos, and fractals, application of nonlinear methods of biosignal analysis is discussed. In particular, five case studies are presented: 1. Monitoring the depth of anaesthesia and of sedation; 2. Bright Light Therapy and Seasonal Affective Disorder; 3. Analysis of posturographic signals; 4. Evoked EEG and photo-stimulation; 5. Influence of electromagnetic fields generated by cellular phones. More... »

PAGES

5

References to SciGraph publications

  • 2005. SEM Image Analysis for Roughness Assessment of Implant Materials in COMPUTER RECOGNITION SYSTEMS
  • 2007. Nonlinear EEG-signal Analysis Reveals Hypersensitivity to Electromagnetic Fields Generated by Cellular Phones in WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2006
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1753-4631-1-5

    DOI

    http://dx.doi.org/10.1186/1753-4631-1-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051764930

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/17908344


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Polish Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.413454.3", 
              "name": [
                "Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland", 
                "GBAF, Medical Research Center Polish Academy of Sciences, Warsaw, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Klonowski", 
            "givenName": "Wlodzimierz", 
            "id": "sg:person.01130353707.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130353707.87"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0167-2789(88)90081-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003220323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(88)90081-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003220323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2004.05.045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009575822"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-32390-2_65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009902855", 
              "https://doi.org/10.1007/3-540-32390-2_65"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-32390-2_65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009902855", 
              "https://doi.org/10.1007/3-540-32390-2_65"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/00207459908994323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010937705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9781420015126.ch6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027258066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0140-6736(00)03243-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033908507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-36841-0_252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042595098", 
              "https://doi.org/10.1007/978-3-540-36841-0_252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0097-8485(01)00071-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044844844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074867523", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083187964", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/zpch-1989-0183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085359744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iembs.2000.901497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094206551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cne.2003.1196743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095386077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789812774217_0031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096053706"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-12", 
        "datePublishedReg": "2007-12-01", 
        "description": " Methods of contemporary physics are increasingly important for biomedical research but, for a multitude of diverse reasons, most practitioners of biomedicine lack access to a comprehensive knowledge of these modern methodologies. This paper is an attempt to describe nonlinear dynamics and its methods in a way that could be read and understood by biomedical professionals who usually are not trained in advanced mathematics. After an overview of basic concepts and vocabulary of nonlinear dynamics, deterministic chaos, and fractals, application of nonlinear methods of biosignal analysis is discussed. In particular, five case studies are presented: 1. Monitoring the depth of anaesthesia and of sedation; 2. Bright Light Therapy and Seasonal Affective Disorder; 3. Analysis of posturographic signals; 4. Evoked EEG and photo-stimulation; 5. Influence of electromagnetic fields generated by cellular phones.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1753-4631-1-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3765952", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1295581", 
            "issn": [
              "2195-0008"
            ], 
            "name": "EPJ Nonlinear Biomedical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "1"
          }
        ], 
        "name": "From conformons to human brains: an informal overview of nonlinear dynamics and its applications in biomedicine", 
        "pagination": "5", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f6946323516c6f3df5d5887a347a00b164d2605b947c1de12b203a7c77592467"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "17908344"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101303143"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1753-4631-1-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051764930"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1753-4631-1-5", 
          "https://app.dimensions.ai/details/publication/pub.1051764930"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000551.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1753-4631-1-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1753-4631-1-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1753-4631-1-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1753-4631-1-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1753-4631-1-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    113 TRIPLES      21 PREDICATES      43 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1753-4631-1-5 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N65b8091118f84ac2acf453ad40114cce
    4 schema:citation sg:pub.10.1007/3-540-32390-2_65
    5 sg:pub.10.1007/978-3-540-36841-0_252
    6 https://app.dimensions.ai/details/publication/pub.1074867523
    7 https://app.dimensions.ai/details/publication/pub.1083187964
    8 https://doi.org/10.1016/0167-2789(88)90081-4
    9 https://doi.org/10.1016/j.physa.2004.05.045
    10 https://doi.org/10.1016/s0097-8485(01)00071-7
    11 https://doi.org/10.1016/s0140-6736(00)03243-8
    12 https://doi.org/10.1109/cne.2003.1196743
    13 https://doi.org/10.1109/iembs.2000.901497
    14 https://doi.org/10.1142/9789812774217_0031
    15 https://doi.org/10.1201/9781420015126.ch6
    16 https://doi.org/10.1515/zpch-1989-0183
    17 https://doi.org/10.3109/00207459908994323
    18 schema:datePublished 2007-12
    19 schema:datePublishedReg 2007-12-01
    20 schema:description Methods of contemporary physics are increasingly important for biomedical research but, for a multitude of diverse reasons, most practitioners of biomedicine lack access to a comprehensive knowledge of these modern methodologies. This paper is an attempt to describe nonlinear dynamics and its methods in a way that could be read and understood by biomedical professionals who usually are not trained in advanced mathematics. After an overview of basic concepts and vocabulary of nonlinear dynamics, deterministic chaos, and fractals, application of nonlinear methods of biosignal analysis is discussed. In particular, five case studies are presented: 1. Monitoring the depth of anaesthesia and of sedation; 2. Bright Light Therapy and Seasonal Affective Disorder; 3. Analysis of posturographic signals; 4. Evoked EEG and photo-stimulation; 5. Influence of electromagnetic fields generated by cellular phones.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf Nbba6576439754e1d99e52d69991d3d74
    25 Ne417b634f3df48a9a8dae00115903b6e
    26 sg:journal.1295581
    27 schema:name From conformons to human brains: an informal overview of nonlinear dynamics and its applications in biomedicine
    28 schema:pagination 5
    29 schema:productId N1ede5320b59b4448aaf5ecd4f20b13af
    30 N81796044228a4e9faaeb63b70eb13699
    31 Nbf0cd9197cad4c14b019295787be61b7
    32 Ndf4a03eb4deb420894131c82262399bd
    33 Ne4ecd5d3584c43ce8dfd9b843ce0e82a
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051764930
    35 https://doi.org/10.1186/1753-4631-1-5
    36 schema:sdDatePublished 2019-04-10T15:58
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher N8db2d7966a1544dca6c9f67110ca2b9f
    39 schema:url http://link.springer.com/10.1186%2F1753-4631-1-5
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N1ede5320b59b4448aaf5ecd4f20b13af schema:name pubmed_id
    44 schema:value 17908344
    45 rdf:type schema:PropertyValue
    46 N65b8091118f84ac2acf453ad40114cce rdf:first sg:person.01130353707.87
    47 rdf:rest rdf:nil
    48 N81796044228a4e9faaeb63b70eb13699 schema:name doi
    49 schema:value 10.1186/1753-4631-1-5
    50 rdf:type schema:PropertyValue
    51 N8db2d7966a1544dca6c9f67110ca2b9f schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 Nbba6576439754e1d99e52d69991d3d74 schema:issueNumber 1
    54 rdf:type schema:PublicationIssue
    55 Nbf0cd9197cad4c14b019295787be61b7 schema:name nlm_unique_id
    56 schema:value 101303143
    57 rdf:type schema:PropertyValue
    58 Ndf4a03eb4deb420894131c82262399bd schema:name readcube_id
    59 schema:value f6946323516c6f3df5d5887a347a00b164d2605b947c1de12b203a7c77592467
    60 rdf:type schema:PropertyValue
    61 Ne417b634f3df48a9a8dae00115903b6e schema:volumeNumber 1
    62 rdf:type schema:PublicationVolume
    63 Ne4ecd5d3584c43ce8dfd9b843ce0e82a schema:name dimensions_id
    64 schema:value pub.1051764930
    65 rdf:type schema:PropertyValue
    66 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Physical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Other Physical Sciences
    71 rdf:type schema:DefinedTerm
    72 sg:grant.3765952 http://pending.schema.org/fundedItem sg:pub.10.1186/1753-4631-1-5
    73 rdf:type schema:MonetaryGrant
    74 sg:journal.1295581 schema:issn 2195-0008
    75 schema:name EPJ Nonlinear Biomedical Physics
    76 rdf:type schema:Periodical
    77 sg:person.01130353707.87 schema:affiliation https://www.grid.ac/institutes/grid.413454.3
    78 schema:familyName Klonowski
    79 schema:givenName Wlodzimierz
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130353707.87
    81 rdf:type schema:Person
    82 sg:pub.10.1007/3-540-32390-2_65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009902855
    83 https://doi.org/10.1007/3-540-32390-2_65
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/978-3-540-36841-0_252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042595098
    86 https://doi.org/10.1007/978-3-540-36841-0_252
    87 rdf:type schema:CreativeWork
    88 https://app.dimensions.ai/details/publication/pub.1074867523 schema:CreativeWork
    89 https://app.dimensions.ai/details/publication/pub.1083187964 schema:CreativeWork
    90 https://doi.org/10.1016/0167-2789(88)90081-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003220323
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1016/j.physa.2004.05.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009575822
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1016/s0097-8485(01)00071-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044844844
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1016/s0140-6736(00)03243-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033908507
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1109/cne.2003.1196743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095386077
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1109/iembs.2000.901497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094206551
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1142/9789812774217_0031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096053706
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1201/9781420015126.ch6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027258066
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1515/zpch-1989-0183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085359744
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.3109/00207459908994323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010937705
    109 rdf:type schema:CreativeWork
    110 https://www.grid.ac/institutes/grid.413454.3 schema:alternateName Polish Academy of Sciences
    111 schema:name GBAF, Medical Research Center Polish Academy of Sciences, Warsaw, Poland
    112 Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
    113 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...