SNP-PRAGE: SNP-based parametric robust analysis of gene set enrichment View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12-14

AUTHORS

Jaehoon Lee, Soyeon Ahn, Sohee Oh, Bruce Weir, Taesung Park

ABSTRACT

BACKGROUND: The current genome-wide association (GWA) analysis mainly focuses on the single genetic variant, which may not reveal some the genetic variants that have small individual effects but large joint effects. Considering the multiple SNPs jointly in Genome-wide association (GWA) analysis can increase power. When multiple SNPs are jointly considered, the corresponding SNP-level association measures are likely to be correlated due to the linkage disequilibrium (LD) among SNPs. METHODS: We propose SNP-based parametric robust analysis of gene-set enrichment (SNP-PRAGE) method which handles correlation adequately among association measures of SNPs, and minimizes computing effort by the parametric assumption. SNP-PRAGE first obtains gene-level association measures from SNP-level association measures by incorporating the size of corresponding (or nearby) genes and the LD structure among SNPs. Afterward, SNP-PRAGE acquires the gene-set level summary of genes that undergo the same biological knowledge. This two-step summarization makes the within-set association measures to be independent from each other, and therefore the central limit theorem can be adequately applied for the parametric model. RESULTS & CONCLUSIONS: We applied SNP-PRAGE to two GWA data sets: hypertension data of 8,842 samples from the Korean population and bipolar disorder data of 4,806 samples from the Wellcome Trust Case Control Consortium (WTCCC). We found two enriched gene sets for hypertension and three enriched gene sets for bipolar disorder. By a simulation study, we compared our method to other gene set methods, and we found SNP-PRAGE reduced many false positives notably while requiring much less computational efforts than other permutation-based gene set approaches. More... »

PAGES

s11-s11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1752-0509-5-s2-s11

DOI

http://dx.doi.org/10.1186/1752-0509-5-s2-s11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027166158

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22784568


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bipolar Disorder", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Association Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linkage Disequilibrium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Statistics, Seoul National University, San 56-1, Shilim-dong, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Statistics, Seoul National University, San 56-1, Shilim-dong, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jaehoon", 
        "id": "sg:person.01071710744.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071710744.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Research Collaborating Center, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam 463-707, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Medical Research Collaborating Center, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam 463-707, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Soyeon", 
        "id": "sg:person.0612662613.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612662613.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Statistics, Seoul National University, San 56-1, Shilim-dong, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Statistics, Seoul National University, San 56-1, Shilim-dong, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Sohee", 
        "id": "sg:person.0633621336.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633621336.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics, University of Washington, Box 357232, Seattle, Washington 98195, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Biostatistics, University of Washington, Box 357232, Seattle, Washington 98195, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weir", 
        "givenName": "Bruce", 
        "id": "sg:person.01206641346.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206641346.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Statistics, Seoul National University, San 56-1, Shilim-dong, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Statistics, Seoul National University, San 56-1, Shilim-dong, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Taesung", 
        "id": "sg:person.0605547264.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605547264.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-6-s1-s6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005713174", 
          "https://doi.org/10.1186/1471-2156-6-s1-s6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025919373", 
          "https://doi.org/10.1038/ng.357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.mp.4000930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037606040", 
          "https://doi.org/10.1038/sj.mp.4000930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041481526", 
          "https://doi.org/10.1186/1471-2105-10-102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031429813", 
          "https://doi.org/10.1038/ng1847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004556449", 
          "https://doi.org/10.1038/nature05911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025271948", 
          "https://doi.org/10.1186/1471-2105-6-144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejhg.2009.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052601696", 
          "https://doi.org/10.1038/ejhg.2009.115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.mp.4001268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051745949", 
          "https://doi.org/10.1038/sj.mp.4001268"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12-14", 
    "datePublishedReg": "2011-12-14", 
    "description": "BACKGROUND: The current genome-wide association (GWA) analysis mainly focuses on the single genetic variant, which may not reveal some the genetic variants that have small individual effects but large joint effects. Considering the multiple SNPs jointly in Genome-wide association (GWA) analysis can increase power. When multiple SNPs are jointly considered, the corresponding SNP-level association measures are likely to be correlated due to the linkage disequilibrium (LD) among SNPs.\nMETHODS: We propose SNP-based parametric robust analysis of gene-set enrichment (SNP-PRAGE) method which handles correlation adequately among association measures of SNPs, and minimizes computing effort by the parametric assumption. SNP-PRAGE first obtains gene-level association measures from SNP-level association measures by incorporating the size of corresponding (or nearby) genes and the LD structure among SNPs. Afterward, SNP-PRAGE acquires the gene-set level summary of genes that undergo the same biological knowledge. This two-step summarization makes the within-set association measures to be independent from each other, and therefore the central limit theorem can be adequately applied for the parametric model.\nRESULTS & CONCLUSIONS: We applied SNP-PRAGE to two GWA data sets: hypertension data of 8,842 samples from the Korean population and bipolar disorder data of 4,806 samples from the Wellcome Trust Case Control Consortium (WTCCC). We found two enriched gene sets for hypertension and three enriched gene sets for bipolar disorder. By a simulation study, we compared our method to other gene set methods, and we found SNP-PRAGE reduced many false positives notably while requiring much less computational efforts than other permutation-based gene set approaches.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1752-0509-5-s2-s11", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2775947", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1327442", 
        "issn": [
          "1752-0509"
        ], 
        "name": "BMC Systems Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "genome-wide association analysis", 
      "enriched gene sets", 
      "Wellcome Trust Case Control Consortium", 
      "gene sets", 
      "current genome-wide association analysis", 
      "gene-set enrichment methods", 
      "association analysis", 
      "GWA data sets", 
      "linkage disequilibrium", 
      "multiple SNPs", 
      "genetic variants", 
      "small individual effects", 
      "bipolar disorder data", 
      "single genetic variant", 
      "corresponding genes", 
      "genes", 
      "biological knowledge", 
      "SNPs", 
      "LD structure", 
      "enrichment method", 
      "central limit theorem", 
      "less computational effort", 
      "robust analysis", 
      "limit theorem", 
      "computational effort", 
      "variants", 
      "association measures", 
      "parametric assumptions", 
      "parametric model", 
      "simulation study", 
      "disequilibrium", 
      "individual effects", 
      "enrichment", 
      "Korean population", 
      "consortium", 
      "hypertension data", 
      "AMP", 
      "analysis", 
      "joint effects", 
      "theorem", 
      "data sets", 
      "population", 
      "disorder data", 
      "set", 
      "false positives", 
      "bipolar disorder", 
      "summary", 
      "effect", 
      "efforts", 
      "structure", 
      "assumption", 
      "data", 
      "size", 
      "model", 
      "knowledge", 
      "samples", 
      "study", 
      "disorders", 
      "approach", 
      "power", 
      "results", 
      "conclusion", 
      "positives", 
      "correlation", 
      "measures", 
      "AbstractText", 
      "method", 
      "summarization", 
      "hypertension", 
      "large joint effects", 
      "SNP-level association measures", 
      "propose SNP", 
      "parametric robust analysis", 
      "SNP-PRAGE first obtains gene-level association measures", 
      "first obtains gene-level association measures", 
      "obtains gene-level association measures", 
      "gene-level association measures", 
      "SNP-PRAGE", 
      "gene-set level summary", 
      "level summary", 
      "same biological knowledge", 
      "two-step summarization", 
      "Trust Case Control Consortium", 
      "Case Control Consortium", 
      "Control Consortium", 
      "permutation-based gene"
    ], 
    "name": "SNP-PRAGE: SNP-based parametric robust analysis of gene set enrichment", 
    "pagination": "s11-s11", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027166158"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1752-0509-5-s2-s11"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22784568"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1752-0509-5-s2-s11", 
      "https://app.dimensions.ai/details/publication/pub.1027166158"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_532.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1752-0509-5-s2-s11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-s2-s11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-s2-s11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-s2-s11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-s2-s11'


 

This table displays all metadata directly associated to this object as RDF triples.

259 TRIPLES      22 PREDICATES      131 URIs      113 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1752-0509-5-s2-s11 schema:about N08777f5b1e4b4c808d50f1cef991005c
2 N1bb1565b41cc4f86b9abe7c312c8bfa4
3 N2107cd42bc5e425b8cafda0c89be122d
4 N499ebe0cc1f446b6ae7a32eea3028be9
5 N73f908be0d8e435481c1d83556395961
6 N8f5054c753fe4405a72f3656e7dbd1ea
7 Naf838cfc7dd0412eb794a7248d25f5e3
8 Nc0405d2fac344ded8900cedae5c17da4
9 Nd37f89ac09a24fd8903666ba5d874225
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author Nd8bf9ae3fd7d4dddb6f87668a33707e8
13 schema:citation sg:pub.10.1038/10343
14 sg:pub.10.1038/ejhg.2009.115
15 sg:pub.10.1038/nature05911
16 sg:pub.10.1038/ng.357
17 sg:pub.10.1038/ng1847
18 sg:pub.10.1038/sj.mp.4000930
19 sg:pub.10.1038/sj.mp.4001268
20 sg:pub.10.1186/1471-2105-10-102
21 sg:pub.10.1186/1471-2105-6-144
22 sg:pub.10.1186/1471-2156-6-s1-s6
23 schema:datePublished 2011-12-14
24 schema:datePublishedReg 2011-12-14
25 schema:description BACKGROUND: <AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The current genome-wide association (GWA) analysis mainly focuses on the single genetic variant, which may not reveal some the genetic variants that have small individual effects but large joint effects. Considering the multiple SNPs jointly in Genome-wide association (GWA) analysis can increase power. When multiple SNPs are jointly considered, the corresponding SNP-level association measures are likely to be correlated due to the linkage disequilibrium (LD) among SNPs.</AbstractText> METHODS: <AbstractText Label="METHODS" NlmCategory="METHODS">We propose SNP-based parametric robust analysis of gene-set enrichment (SNP-PRAGE) method which handles correlation adequately among association measures of SNPs, and minimizes computing effort by the parametric assumption. SNP-PRAGE first obtains gene-level association measures from SNP-level association measures by incorporating the size of corresponding (or nearby) genes and the LD structure among SNPs. Afterward, SNP-PRAGE acquires the gene-set level summary of genes that undergo the same biological knowledge. This two-step summarization makes the within-set association measures to be independent from each other, and therefore the central limit theorem can be adequately applied for the parametric model.</AbstractText> RESULTS & CONCLUSIONS: <AbstractText Label="RESULTS &amp; CONCLUSIONS" NlmCategory="CONCLUSIONS">We applied SNP-PRAGE to two GWA data sets: hypertension data of 8,842 samples from the Korean population and bipolar disorder data of 4,806 samples from the Wellcome Trust Case Control Consortium (WTCCC). We found two enriched gene sets for hypertension and three enriched gene sets for bipolar disorder. By a simulation study, we compared our method to other gene set methods, and we found SNP-PRAGE reduced many false positives notably while requiring much less computational efforts than other permutation-based gene set approaches.</AbstractText>
26 schema:genre article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf Nf734453f433d477097af75d65217851d
30 Nfedb83dc94c3485c87df9196d00f75dd
31 sg:journal.1327442
32 schema:keywords AMP
33 AbstractText
34 Case Control Consortium
35 Control Consortium
36 GWA data sets
37 Korean population
38 LD structure
39 SNP-PRAGE
40 SNP-PRAGE first obtains gene-level association measures
41 SNP-level association measures
42 SNPs
43 Trust Case Control Consortium
44 Wellcome Trust Case Control Consortium
45 analysis
46 approach
47 association analysis
48 association measures
49 assumption
50 biological knowledge
51 bipolar disorder
52 bipolar disorder data
53 central limit theorem
54 computational effort
55 conclusion
56 consortium
57 correlation
58 corresponding genes
59 current genome-wide association analysis
60 data
61 data sets
62 disequilibrium
63 disorder data
64 disorders
65 effect
66 efforts
67 enriched gene sets
68 enrichment
69 enrichment method
70 false positives
71 first obtains gene-level association measures
72 gene sets
73 gene-level association measures
74 gene-set enrichment methods
75 gene-set level summary
76 genes
77 genetic variants
78 genome-wide association analysis
79 hypertension
80 hypertension data
81 individual effects
82 joint effects
83 knowledge
84 large joint effects
85 less computational effort
86 level summary
87 limit theorem
88 linkage disequilibrium
89 measures
90 method
91 model
92 multiple SNPs
93 obtains gene-level association measures
94 parametric assumptions
95 parametric model
96 parametric robust analysis
97 permutation-based gene
98 population
99 positives
100 power
101 propose SNP
102 results
103 robust analysis
104 same biological knowledge
105 samples
106 set
107 simulation study
108 single genetic variant
109 size
110 small individual effects
111 structure
112 study
113 summarization
114 summary
115 theorem
116 two-step summarization
117 variants
118 schema:name SNP-PRAGE: SNP-based parametric robust analysis of gene set enrichment
119 schema:pagination s11-s11
120 schema:productId N4cefae551aec42c593f8132f01a047d4
121 N829ae09ceb474e50ad9573792977575e
122 Nce79f0110e174a9a970b4bea8590d03e
123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027166158
124 https://doi.org/10.1186/1752-0509-5-s2-s11
125 schema:sdDatePublished 2022-01-01T18:24
126 schema:sdLicense https://scigraph.springernature.com/explorer/license/
127 schema:sdPublisher N38ad3c4c25b64d0b8c4e8d4f3f66c6be
128 schema:url https://doi.org/10.1186/1752-0509-5-s2-s11
129 sgo:license sg:explorer/license/
130 sgo:sdDataset articles
131 rdf:type schema:ScholarlyArticle
132 N08777f5b1e4b4c808d50f1cef991005c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Genetic Predisposition to Disease
134 rdf:type schema:DefinedTerm
135 N1bb1565b41cc4f86b9abe7c312c8bfa4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Linkage Disequilibrium
137 rdf:type schema:DefinedTerm
138 N1c0dc32a40b14256a00869b4e8f867de rdf:first sg:person.01206641346.10
139 rdf:rest Na6d788570146471aabbdbb53e924d302
140 N2107cd42bc5e425b8cafda0c89be122d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Humans
142 rdf:type schema:DefinedTerm
143 N2f80bbc0995a4a1c93d159b96380d4ce rdf:first sg:person.0633621336.09
144 rdf:rest N1c0dc32a40b14256a00869b4e8f867de
145 N38ad3c4c25b64d0b8c4e8d4f3f66c6be schema:name Springer Nature - SN SciGraph project
146 rdf:type schema:Organization
147 N499ebe0cc1f446b6ae7a32eea3028be9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Bipolar Disorder
149 rdf:type schema:DefinedTerm
150 N4cefae551aec42c593f8132f01a047d4 schema:name pubmed_id
151 schema:value 22784568
152 rdf:type schema:PropertyValue
153 N73f908be0d8e435481c1d83556395961 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Genetic Association Studies
155 rdf:type schema:DefinedTerm
156 N829ae09ceb474e50ad9573792977575e schema:name doi
157 schema:value 10.1186/1752-0509-5-s2-s11
158 rdf:type schema:PropertyValue
159 N8f5054c753fe4405a72f3656e7dbd1ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Linear Models
161 rdf:type schema:DefinedTerm
162 Na6d788570146471aabbdbb53e924d302 rdf:first sg:person.0605547264.43
163 rdf:rest rdf:nil
164 Nacfa90f221e445f898350992d99381d4 rdf:first sg:person.0612662613.04
165 rdf:rest N2f80bbc0995a4a1c93d159b96380d4ce
166 Naf838cfc7dd0412eb794a7248d25f5e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Polymorphism, Single Nucleotide
168 rdf:type schema:DefinedTerm
169 Nc0405d2fac344ded8900cedae5c17da4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Computer Simulation
171 rdf:type schema:DefinedTerm
172 Nce79f0110e174a9a970b4bea8590d03e schema:name dimensions_id
173 schema:value pub.1027166158
174 rdf:type schema:PropertyValue
175 Nd37f89ac09a24fd8903666ba5d874225 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Genome, Human
177 rdf:type schema:DefinedTerm
178 Nd8bf9ae3fd7d4dddb6f87668a33707e8 rdf:first sg:person.01071710744.47
179 rdf:rest Nacfa90f221e445f898350992d99381d4
180 Nf734453f433d477097af75d65217851d schema:issueNumber Suppl 2
181 rdf:type schema:PublicationIssue
182 Nfedb83dc94c3485c87df9196d00f75dd schema:volumeNumber 5
183 rdf:type schema:PublicationVolume
184 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
185 schema:name Biological Sciences
186 rdf:type schema:DefinedTerm
187 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
188 schema:name Genetics
189 rdf:type schema:DefinedTerm
190 sg:grant.2775947 http://pending.schema.org/fundedItem sg:pub.10.1186/1752-0509-5-s2-s11
191 rdf:type schema:MonetaryGrant
192 sg:journal.1327442 schema:issn 1752-0509
193 schema:name BMC Systems Biology
194 schema:publisher Springer Nature
195 rdf:type schema:Periodical
196 sg:person.01071710744.47 schema:affiliation grid-institutes:grid.31501.36
197 schema:familyName Lee
198 schema:givenName Jaehoon
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071710744.47
200 rdf:type schema:Person
201 sg:person.01206641346.10 schema:affiliation grid-institutes:grid.34477.33
202 schema:familyName Weir
203 schema:givenName Bruce
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206641346.10
205 rdf:type schema:Person
206 sg:person.0605547264.43 schema:affiliation grid-institutes:grid.31501.36
207 schema:familyName Park
208 schema:givenName Taesung
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605547264.43
210 rdf:type schema:Person
211 sg:person.0612662613.04 schema:affiliation grid-institutes:grid.412480.b
212 schema:familyName Ahn
213 schema:givenName Soyeon
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612662613.04
215 rdf:type schema:Person
216 sg:person.0633621336.09 schema:affiliation grid-institutes:grid.31501.36
217 schema:familyName Oh
218 schema:givenName Sohee
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633621336.09
220 rdf:type schema:Person
221 sg:pub.10.1038/10343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009819816
222 https://doi.org/10.1038/10343
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/ejhg.2009.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052601696
225 https://doi.org/10.1038/ejhg.2009.115
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/nature05911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004556449
228 https://doi.org/10.1038/nature05911
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/ng.357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025919373
231 https://doi.org/10.1038/ng.357
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/ng1847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031429813
234 https://doi.org/10.1038/ng1847
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/sj.mp.4000930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037606040
237 https://doi.org/10.1038/sj.mp.4000930
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/sj.mp.4001268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051745949
240 https://doi.org/10.1038/sj.mp.4001268
241 rdf:type schema:CreativeWork
242 sg:pub.10.1186/1471-2105-10-102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041481526
243 https://doi.org/10.1186/1471-2105-10-102
244 rdf:type schema:CreativeWork
245 sg:pub.10.1186/1471-2105-6-144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025271948
246 https://doi.org/10.1186/1471-2105-6-144
247 rdf:type schema:CreativeWork
248 sg:pub.10.1186/1471-2156-6-s1-s6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005713174
249 https://doi.org/10.1186/1471-2156-6-s1-s6
250 rdf:type schema:CreativeWork
251 grid-institutes:grid.31501.36 schema:alternateName Department of Statistics, Seoul National University, San 56-1, Shilim-dong, Seoul, Korea
252 schema:name Department of Statistics, Seoul National University, San 56-1, Shilim-dong, Seoul, Korea
253 rdf:type schema:Organization
254 grid-institutes:grid.34477.33 schema:alternateName Department of Biostatistics, University of Washington, Box 357232, Seattle, Washington 98195, USA
255 schema:name Department of Biostatistics, University of Washington, Box 357232, Seattle, Washington 98195, USA
256 rdf:type schema:Organization
257 grid-institutes:grid.412480.b schema:alternateName Medical Research Collaborating Center, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam 463-707, Korea
258 schema:name Medical Research Collaborating Center, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam 463-707, Korea
259 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...