SNP-PRAGE: SNP-based parametric robust analysis of gene set enrichment View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12-14

AUTHORS

Jaehoon Lee, Soyeon Ahn, Sohee Oh, Bruce Weir, Taesung Park

ABSTRACT

BackgroundThe current genome-wide association (GWA) analysis mainly focuses on the single genetic variant, which may not reveal some the genetic variants that have small individual effects but large joint effects. Considering the multiple SNPs jointly in Genome-wide association (GWA) analysis can increase power. When multiple SNPs are jointly considered, the corresponding SNP-level association measures are likely to be correlated due to the linkage disequilibrium (LD) among SNPs.MethodsWe propose SNP-based parametric robust analysis of gene-set enrichment (SNP-PRAGE) method which handles correlation adequately among association measures of SNPs, and minimizes computing effort by the parametric assumption. SNP-PRAGE first obtains gene-level association measures from SNP-level association measures by incorporating the size of corresponding (or nearby) genes and the LD structure among SNPs. Afterward, SNP-PRAGE acquires the gene-set level summary of genes that undergo the same biological knowledge. This two-step summarization makes the within-set association measures to be independent from each other, and therefore the central limit theorem can be adequately applied for the parametric model.Results & conclusionsWe applied SNP-PRAGE to two GWA data sets: hypertension data of 8,842 samples from the Korean population and bipolar disorder data of 4,806 samples from the Wellcome Trust Case Control Consortium (WTCCC). We found two enriched gene sets for hypertension and three enriched gene sets for bipolar disorder. By a simulation study, we compared our method to other gene set methods, and we found SNP-PRAGE reduced many false positives notably while requiring much less computational efforts than other permutation-based gene set approaches. More... »

PAGES

s11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1752-0509-5-s2-s11

DOI

http://dx.doi.org/10.1186/1752-0509-5-s2-s11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027166158

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22784568


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bipolar Disorder", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Association Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Predisposition to Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linkage Disequilibrium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Statistics, Seoul National University, San 56-1, Shilim-dong, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Statistics, Seoul National University, San 56-1, Shilim-dong, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jaehoon", 
        "id": "sg:person.01071710744.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071710744.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Research Collaborating Center, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, 463-707, Seongnam, Korea", 
          "id": "http://www.grid.ac/institutes/grid.412480.b", 
          "name": [
            "Medical Research Collaborating Center, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, 463-707, Seongnam, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Soyeon", 
        "id": "sg:person.0612662613.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612662613.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Statistics, Seoul National University, San 56-1, Shilim-dong, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Statistics, Seoul National University, San 56-1, Shilim-dong, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oh", 
        "givenName": "Sohee", 
        "id": "sg:person.0633621336.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633621336.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics, University of Washington, Box 357232, Seattle, 98195, Washington, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Biostatistics, University of Washington, Box 357232, Seattle, 98195, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weir", 
        "givenName": "Bruce", 
        "id": "sg:person.01206641346.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206641346.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Statistics, Seoul National University, San 56-1, Shilim-dong, Seoul, Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Statistics, Seoul National University, San 56-1, Shilim-dong, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Taesung", 
        "id": "sg:person.0605547264.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605547264.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature05911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004556449", 
          "https://doi.org/10.1038/nature05911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.mp.4001268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051745949", 
          "https://doi.org/10.1038/sj.mp.4001268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031429813", 
          "https://doi.org/10.1038/ng1847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-6-144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025271948", 
          "https://doi.org/10.1186/1471-2105-6-144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejhg.2009.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052601696", 
          "https://doi.org/10.1038/ejhg.2009.115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041481526", 
          "https://doi.org/10.1186/1471-2105-10-102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2156-6-s1-s6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005713174", 
          "https://doi.org/10.1186/1471-2156-6-s1-s6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.mp.4000930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037606040", 
          "https://doi.org/10.1038/sj.mp.4000930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025919373", 
          "https://doi.org/10.1038/ng.357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/10343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009819816", 
          "https://doi.org/10.1038/10343"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12-14", 
    "datePublishedReg": "2011-12-14", 
    "description": "BackgroundThe current genome-wide association (GWA) analysis mainly focuses on the single genetic variant, which may not reveal some the genetic variants that have small individual effects but large joint effects. Considering the multiple SNPs jointly in Genome-wide association (GWA) analysis can increase power. When multiple SNPs are jointly considered, the corresponding SNP-level association measures are likely to be correlated due to the linkage disequilibrium (LD) among SNPs.MethodsWe propose SNP-based parametric robust analysis of gene-set enrichment (SNP-PRAGE) method which handles correlation adequately among association measures of SNPs, and minimizes computing effort by the parametric assumption. SNP-PRAGE first obtains gene-level association measures from SNP-level association measures by incorporating the size of corresponding (or nearby) genes and the LD structure among SNPs. Afterward, SNP-PRAGE acquires the gene-set level summary of genes that undergo the same biological knowledge. This two-step summarization makes the within-set association measures to be independent from each other, and therefore the central limit theorem can be adequately applied for the parametric model.Results & conclusionsWe applied SNP-PRAGE to two GWA data sets: hypertension data of 8,842 samples from the Korean population and bipolar disorder data of 4,806 samples from the Wellcome Trust Case Control Consortium (WTCCC). We found two enriched gene sets for hypertension and three enriched gene sets for bipolar disorder. By a simulation study, we compared our method to other gene set methods, and we found SNP-PRAGE reduced many false positives notably while requiring much less computational efforts than other permutation-based gene set approaches.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1752-0509-5-s2-s11", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2775947", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1327442", 
        "issn": [
          "1752-0509"
        ], 
        "name": "BMC Systems Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "Suppl 2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "genome-wide association analysis", 
      "enriched gene sets", 
      "Wellcome Trust Case Control Consortium", 
      "gene sets", 
      "current genome-wide association analysis", 
      "association analysis", 
      "gene-set enrichment methods", 
      "GWA data sets", 
      "linkage disequilibrium", 
      "multiple SNPs", 
      "genetic variants", 
      "small individual effects", 
      "bipolar disorder data", 
      "single genetic variant", 
      "corresponding genes", 
      "genes", 
      "biological knowledge", 
      "SNPs", 
      "LD structure", 
      "enrichment method", 
      "variants", 
      "disequilibrium", 
      "robust analysis", 
      "individual effects", 
      "enrichment", 
      "Korean population", 
      "consortium", 
      "analysis", 
      "joint effects", 
      "hypertension data", 
      "population", 
      "disorder data", 
      "false positives", 
      "data sets", 
      "association measures", 
      "bipolar disorder", 
      "summary", 
      "effect", 
      "efforts", 
      "set", 
      "structure", 
      "data", 
      "size", 
      "knowledge", 
      "samples", 
      "study", 
      "disorders", 
      "ConclusionsWe", 
      "results", 
      "positives", 
      "correlation", 
      "approach", 
      "method", 
      "model", 
      "measures", 
      "simulation study", 
      "less computational effort", 
      "computational effort", 
      "assumption", 
      "summarization", 
      "parametric model", 
      "parametric assumptions", 
      "power", 
      "hypertension", 
      "theorem", 
      "central limit theorem", 
      "limit theorem"
    ], 
    "name": "SNP-PRAGE: SNP-based parametric robust analysis of gene set enrichment", 
    "pagination": "s11", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027166158"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1752-0509-5-s2-s11"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22784568"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1752-0509-5-s2-s11", 
      "https://app.dimensions.ai/details/publication/pub.1027166158"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1752-0509-5-s2-s11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-s2-s11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-s2-s11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-s2-s11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-s2-s11'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      22 PREDICATES      112 URIs      94 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1752-0509-5-s2-s11 schema:about N1c41f7f7c6c74e389d214d4ae5606f72
2 N4409133539d74de1b0505f4b43cc656f
3 N745b71b7e52c4834a8aef368a3f7894b
4 N85f8cb93d31b4643962d5fc06d60a8ef
5 N91a674ef580149dfafbfe281f21b022c
6 Naebac71683f547179def58fd7c86da17
7 Nd399fb111a80456ab2a9739ab7df8fe1
8 Nd4cb0bb0192e45e1a0a857fe47798773
9 Ndb3dfa3d057d4781ae8fbd5e4e821654
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author N2e0be7dd67ef4975b4856f34eba5556c
13 schema:citation sg:pub.10.1038/10343
14 sg:pub.10.1038/ejhg.2009.115
15 sg:pub.10.1038/nature05911
16 sg:pub.10.1038/ng.357
17 sg:pub.10.1038/ng1847
18 sg:pub.10.1038/sj.mp.4000930
19 sg:pub.10.1038/sj.mp.4001268
20 sg:pub.10.1186/1471-2105-10-102
21 sg:pub.10.1186/1471-2105-6-144
22 sg:pub.10.1186/1471-2156-6-s1-s6
23 schema:datePublished 2011-12-14
24 schema:datePublishedReg 2011-12-14
25 schema:description BackgroundThe current genome-wide association (GWA) analysis mainly focuses on the single genetic variant, which may not reveal some the genetic variants that have small individual effects but large joint effects. Considering the multiple SNPs jointly in Genome-wide association (GWA) analysis can increase power. When multiple SNPs are jointly considered, the corresponding SNP-level association measures are likely to be correlated due to the linkage disequilibrium (LD) among SNPs.MethodsWe propose SNP-based parametric robust analysis of gene-set enrichment (SNP-PRAGE) method which handles correlation adequately among association measures of SNPs, and minimizes computing effort by the parametric assumption. SNP-PRAGE first obtains gene-level association measures from SNP-level association measures by incorporating the size of corresponding (or nearby) genes and the LD structure among SNPs. Afterward, SNP-PRAGE acquires the gene-set level summary of genes that undergo the same biological knowledge. This two-step summarization makes the within-set association measures to be independent from each other, and therefore the central limit theorem can be adequately applied for the parametric model.Results & conclusionsWe applied SNP-PRAGE to two GWA data sets: hypertension data of 8,842 samples from the Korean population and bipolar disorder data of 4,806 samples from the Wellcome Trust Case Control Consortium (WTCCC). We found two enriched gene sets for hypertension and three enriched gene sets for bipolar disorder. By a simulation study, we compared our method to other gene set methods, and we found SNP-PRAGE reduced many false positives notably while requiring much less computational efforts than other permutation-based gene set approaches.
26 schema:genre article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf Nb85b5f2bd95745859fd4671349bc2937
30 Ne37d95daec6547d2ab9ecaf41f1f3c97
31 sg:journal.1327442
32 schema:keywords ConclusionsWe
33 GWA data sets
34 Korean population
35 LD structure
36 SNPs
37 Wellcome Trust Case Control Consortium
38 analysis
39 approach
40 association analysis
41 association measures
42 assumption
43 biological knowledge
44 bipolar disorder
45 bipolar disorder data
46 central limit theorem
47 computational effort
48 consortium
49 correlation
50 corresponding genes
51 current genome-wide association analysis
52 data
53 data sets
54 disequilibrium
55 disorder data
56 disorders
57 effect
58 efforts
59 enriched gene sets
60 enrichment
61 enrichment method
62 false positives
63 gene sets
64 gene-set enrichment methods
65 genes
66 genetic variants
67 genome-wide association analysis
68 hypertension
69 hypertension data
70 individual effects
71 joint effects
72 knowledge
73 less computational effort
74 limit theorem
75 linkage disequilibrium
76 measures
77 method
78 model
79 multiple SNPs
80 parametric assumptions
81 parametric model
82 population
83 positives
84 power
85 results
86 robust analysis
87 samples
88 set
89 simulation study
90 single genetic variant
91 size
92 small individual effects
93 structure
94 study
95 summarization
96 summary
97 theorem
98 variants
99 schema:name SNP-PRAGE: SNP-based parametric robust analysis of gene set enrichment
100 schema:pagination s11
101 schema:productId N51e3f8c47d8d496baff4dc8af2cb677d
102 N839e479c893145229e2108e148546371
103 Ne5a817f2b6c84955b3b3a1110627ce59
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027166158
105 https://doi.org/10.1186/1752-0509-5-s2-s11
106 schema:sdDatePublished 2022-05-10T10:04
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher N60eb9b66d60e466381b69d72247d9f41
109 schema:url https://doi.org/10.1186/1752-0509-5-s2-s11
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N1c41f7f7c6c74e389d214d4ae5606f72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Bipolar Disorder
115 rdf:type schema:DefinedTerm
116 N2e0be7dd67ef4975b4856f34eba5556c rdf:first sg:person.01071710744.47
117 rdf:rest N70f431e423454e6abed4b7a893fedd58
118 N4409133539d74de1b0505f4b43cc656f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Humans
120 rdf:type schema:DefinedTerm
121 N51e3f8c47d8d496baff4dc8af2cb677d schema:name dimensions_id
122 schema:value pub.1027166158
123 rdf:type schema:PropertyValue
124 N60eb9b66d60e466381b69d72247d9f41 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 N70d7825e5fd14113bb2c56d4478099b6 rdf:first sg:person.0633621336.09
127 rdf:rest Na63b224463c84d5f9d1576bb43d2fb49
128 N70f431e423454e6abed4b7a893fedd58 rdf:first sg:person.0612662613.04
129 rdf:rest N70d7825e5fd14113bb2c56d4478099b6
130 N745b71b7e52c4834a8aef368a3f7894b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Linkage Disequilibrium
132 rdf:type schema:DefinedTerm
133 N839e479c893145229e2108e148546371 schema:name doi
134 schema:value 10.1186/1752-0509-5-s2-s11
135 rdf:type schema:PropertyValue
136 N85f8cb93d31b4643962d5fc06d60a8ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Computer Simulation
138 rdf:type schema:DefinedTerm
139 N91a674ef580149dfafbfe281f21b022c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Polymorphism, Single Nucleotide
141 rdf:type schema:DefinedTerm
142 Na63b224463c84d5f9d1576bb43d2fb49 rdf:first sg:person.01206641346.10
143 rdf:rest Nd248403d21d740e7a0d11b86fbdacd04
144 Naebac71683f547179def58fd7c86da17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Genome, Human
146 rdf:type schema:DefinedTerm
147 Nb85b5f2bd95745859fd4671349bc2937 schema:issueNumber Suppl 2
148 rdf:type schema:PublicationIssue
149 Nd248403d21d740e7a0d11b86fbdacd04 rdf:first sg:person.0605547264.43
150 rdf:rest rdf:nil
151 Nd399fb111a80456ab2a9739ab7df8fe1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Linear Models
153 rdf:type schema:DefinedTerm
154 Nd4cb0bb0192e45e1a0a857fe47798773 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Genetic Predisposition to Disease
156 rdf:type schema:DefinedTerm
157 Ndb3dfa3d057d4781ae8fbd5e4e821654 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Genetic Association Studies
159 rdf:type schema:DefinedTerm
160 Ne37d95daec6547d2ab9ecaf41f1f3c97 schema:volumeNumber 5
161 rdf:type schema:PublicationVolume
162 Ne5a817f2b6c84955b3b3a1110627ce59 schema:name pubmed_id
163 schema:value 22784568
164 rdf:type schema:PropertyValue
165 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
166 schema:name Biological Sciences
167 rdf:type schema:DefinedTerm
168 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
169 schema:name Genetics
170 rdf:type schema:DefinedTerm
171 sg:grant.2775947 http://pending.schema.org/fundedItem sg:pub.10.1186/1752-0509-5-s2-s11
172 rdf:type schema:MonetaryGrant
173 sg:journal.1327442 schema:issn 1752-0509
174 schema:name BMC Systems Biology
175 schema:publisher Springer Nature
176 rdf:type schema:Periodical
177 sg:person.01071710744.47 schema:affiliation grid-institutes:grid.31501.36
178 schema:familyName Lee
179 schema:givenName Jaehoon
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071710744.47
181 rdf:type schema:Person
182 sg:person.01206641346.10 schema:affiliation grid-institutes:grid.34477.33
183 schema:familyName Weir
184 schema:givenName Bruce
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206641346.10
186 rdf:type schema:Person
187 sg:person.0605547264.43 schema:affiliation grid-institutes:grid.31501.36
188 schema:familyName Park
189 schema:givenName Taesung
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605547264.43
191 rdf:type schema:Person
192 sg:person.0612662613.04 schema:affiliation grid-institutes:grid.412480.b
193 schema:familyName Ahn
194 schema:givenName Soyeon
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612662613.04
196 rdf:type schema:Person
197 sg:person.0633621336.09 schema:affiliation grid-institutes:grid.31501.36
198 schema:familyName Oh
199 schema:givenName Sohee
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633621336.09
201 rdf:type schema:Person
202 sg:pub.10.1038/10343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009819816
203 https://doi.org/10.1038/10343
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/ejhg.2009.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052601696
206 https://doi.org/10.1038/ejhg.2009.115
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nature05911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004556449
209 https://doi.org/10.1038/nature05911
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/ng.357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025919373
212 https://doi.org/10.1038/ng.357
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/ng1847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031429813
215 https://doi.org/10.1038/ng1847
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/sj.mp.4000930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037606040
218 https://doi.org/10.1038/sj.mp.4000930
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/sj.mp.4001268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051745949
221 https://doi.org/10.1038/sj.mp.4001268
222 rdf:type schema:CreativeWork
223 sg:pub.10.1186/1471-2105-10-102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041481526
224 https://doi.org/10.1186/1471-2105-10-102
225 rdf:type schema:CreativeWork
226 sg:pub.10.1186/1471-2105-6-144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025271948
227 https://doi.org/10.1186/1471-2105-6-144
228 rdf:type schema:CreativeWork
229 sg:pub.10.1186/1471-2156-6-s1-s6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005713174
230 https://doi.org/10.1186/1471-2156-6-s1-s6
231 rdf:type schema:CreativeWork
232 grid-institutes:grid.31501.36 schema:alternateName Department of Statistics, Seoul National University, San 56-1, Shilim-dong, Seoul, Korea
233 schema:name Department of Statistics, Seoul National University, San 56-1, Shilim-dong, Seoul, Korea
234 rdf:type schema:Organization
235 grid-institutes:grid.34477.33 schema:alternateName Department of Biostatistics, University of Washington, Box 357232, Seattle, 98195, Washington, USA
236 schema:name Department of Biostatistics, University of Washington, Box 357232, Seattle, 98195, Washington, USA
237 rdf:type schema:Organization
238 grid-institutes:grid.412480.b schema:alternateName Medical Research Collaborating Center, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, 463-707, Seongnam, Korea
239 schema:name Medical Research Collaborating Center, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, 463-707, Seongnam, Korea
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...