Quantifying differential gene connectivity between disease states for objective identification of disease-relevant genes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Jen-hwa Chu, Ross Lazarus, Vincent J Carey, Benjamin A Raby

ABSTRACT

BACKGROUND: Network modeling of whole transcriptome expression data enables characterization of complex epistatic (gene-gene) interactions that underlie cellular functions. Though numerous methods have been proposed and successfully implemented to develop these networks, there are no formal methods for comparing differences in network connectivity patterns as a function of phenotypic trait. RESULTS: Here we describe a novel approach for quantifying the differences in gene-gene connectivity patterns across disease states based on Graphical Gaussian Models (GGMs). We compare the posterior probabilities of connectivity for each gene pair across two disease states, expressed as a posterior odds-ratio (postOR) for each pair, which can be used to identify network components most relevant to disease status. The method can also be generalized to model differential gene connectivity patterns within previously defined gene sets, gene networks and pathways. We demonstrate that the GGM method reliably detects differences in network connectivity patterns in datasets of varying sample size. Applying this method to two independent breast cancer expression data sets, we identified numerous reproducible differences in network connectivity across histological grades of breast cancer, including several published gene sets and pathways. Most notably, our model identified two gene hubs (MMP12 and CXCL13) that each exhibited differential connectivity to more than 30 transcripts in both datasets. Both genes have been previously implicated in breast cancer pathobiology, but themselves are not differentially expressed by histologic grade in either dataset, and would thus have not been identified using traditional differential gene expression testing approaches. In addition, 16 curated gene sets demonstrated significant differential connectivity in both data sets, including the matrix metalloproteinases, PPAR alpha sequence targets, and the PUFA synthesis pathway. CONCLUSIONS: Our results suggest that GGM can be used to formally evaluate differences in global interactome connectivity across disease states, and can serve as a powerful tool for exploring the molecular events that contribute to disease at a systems level. More... »

PAGES

89

References to SciGraph publications

  • 2007-06. Molecular response to aromatase inhibitor treatment in primary breast cancer in BREAST CANCER RESEARCH
  • 2001-12. cDNA microarray analysis of the gene expression profile of VEGF-activated human umbilical vien endothelial cells in ANGIOGENESIS
  • 2008-03. Variations in DNA elucidate molecular networks that cause disease in NATURE
  • 2002-09. System for Automatically Inferring a Genetic Netwerk from Expression Profiles in JOURNAL OF BIOLOGICAL PHYSICS
  • 2007. Comparison of Gene Regulatory Networks via Steady-State Trajectories in EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY
  • 2005-06. Integrative analysis of the cancer transcriptome in NATURE GENETICS
  • 2008-12. Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen in BMC GENOMICS
  • 2006-12. CoXpress: differential co-expression in gene expression data in BMC BIOINFORMATICS
  • 2004-02. Network biology: understanding the cell's functional organization in NATURE REVIEWS GENETICS
  • 2008-09. Chemokine CXCL13 is overexpressed in the tumour tissue and in the peripheral blood of breast cancer patients in BRITISH JOURNAL OF CANCER
  • 2006-02. The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFβ1, PTEN, p53, and fibronectin in CANCER GENE THERAPY
  • 2009-12. A graphical model approach for inferring large-scale networks integrating gene expression and genetic polymorphism in BMC SYSTEMS BIOLOGY
  • 2003-08. Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth in NATURE MEDICINE
  • 2006-04. Gene expression signatures and biomarkers of noninvasive and invasive breast cancer cells: comprehensive profiles by representational difference analysis, microarrays and proteomics in ONCOGENE
  • 2000-10. The large-scale organization of metabolic networks in NATURE
  • 2007-12. Evidence for systems-level molecular mechanisms of tumorigenesis in BMC GENOMICS
  • 1995-01. Angiogenesis in cancer, vascular, rheumatoid and other disease in NATURE MEDICINE
  • 2001-07. Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway in ONCOGENE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1752-0509-5-89

    DOI

    http://dx.doi.org/10.1186/1752-0509-5-89

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007515717

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21627793


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Breast Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Epistasis, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Estrogens", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Neoplastic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Regulatory Networks", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Theoretical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Normal Distribution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Odds Ratio", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Systems Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription, Genetic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chu", 
            "givenName": "Jen-hwa", 
            "id": "sg:person.0640410014.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640410014.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lazarus", 
            "givenName": "Ross", 
            "id": "sg:person.0766744011.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766744011.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Brigham and Women's Hospital", 
              "id": "https://www.grid.ac/institutes/grid.62560.37", 
              "name": [
                "Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, 02115, Boston, MA, USA", 
                "Center for Genomic Medicine, Brigham and Women's Hospital, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carey", 
            "givenName": "Vincent J", 
            "id": "sg:person.01140525171.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140525171.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Brigham and Women's Hospital", 
              "id": "https://www.grid.ac/institutes/grid.62560.37", 
              "name": [
                "Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, 02115, Boston, MA, USA", 
                "Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 02115, Boston, MA, USA", 
                "Center for Genomic Medicine, Brigham and Women's Hospital, 02115, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Raby", 
            "givenName": "Benjamin A", 
            "id": "sg:person.01062144517.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062144517.60"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1073/pnas.1732912100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000610606"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2202/1544-6115.1175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001122307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2008.2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002288857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2008.2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002288857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1593/neo.09934", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003082772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.cgt.7700896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003771933", 
              "https://doi.org/10.1038/sj.cgt.7700896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.cgt.7700896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003771933", 
              "https://doi.org/10.1038/sj.cgt.7700896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2006.05.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005899526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006151249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.bjc.6604621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007547739", 
              "https://doi.org/10.1038/sj.bjc.6604621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1158684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007743479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm0195-27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008981922", 
              "https://doi.org/10.1038/nm0195-27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.00866-07", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009166842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-9-239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010596045", 
              "https://doi.org/10.1186/1471-2164-9-239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06757", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010678260", 
              "https://doi.org/10.1038/nature06757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010695043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0914005107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011637541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012205210", 
              "https://doi.org/10.1038/ng1570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012205210", 
              "https://doi.org/10.1038/ng1570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012205210", 
              "https://doi.org/10.1038/ng1570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1155/2007/82702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012325614", 
              "https://doi.org/10.1155/2007/82702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012962378", 
              "https://doi.org/10.1186/1471-2105-7-509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0007114508942161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013231583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-3-55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013601744", 
              "https://doi.org/10.1186/1752-0509-3-55"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1091403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015172314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/bcr1732", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015413615", 
              "https://doi.org/10.1186/bcr1732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-07-5206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017296025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018231980", 
              "https://doi.org/10.1038/nrg1272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018231980", 
              "https://doi.org/10.1038/nrg1272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1593/neo.09286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019231074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1289/ehp.8149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020394391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023477608", 
              "https://doi.org/10.1038/sj.onc.1209265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023477608", 
              "https://doi.org/10.1038/sj.onc.1209265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1209265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023477608", 
              "https://doi.org/10.1038/sj.onc.1209265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/humu.20927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024193461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/carcin/bgp119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024510309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/carcin/bgp119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024510309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1020337311471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025288633", 
              "https://doi.org/10.1023/a:1020337311471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2006.03.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027358233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/gcc.2870050406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028326004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0014-5793(99)00524-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029445187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jnci/djj052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030644591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmva.2004.02.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030739729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-8-185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031191219", 
              "https://doi.org/10.1186/1471-2164-8-185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031236162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031435825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031435825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-06-4394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034817737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035391370", 
              "https://doi.org/10.1038/nm905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035391370", 
              "https://doi.org/10.1038/nm905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.0020130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035790850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506580102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037705714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506580102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037705714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1000776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039887234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ygeno.2008.08.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042189503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/1541-7786.mcr-08-0189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042761719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1590/s0100-879x2006000800013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044636181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2010.05.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046034441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mc.10061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046062101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/ijc.23660", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046143622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1204608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046686514", 
              "https://doi.org/10.1038/sj.onc.1204608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.onc.1204608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046686514", 
              "https://doi.org/10.1038/sj.onc.1204608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047655426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1016018617152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049312614", 
              "https://doi.org/10.1023/a:1016018617152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.0010039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050451093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.0010039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050451093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0900351106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050778792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-05-1841", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051284785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35036627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051510804", 
              "https://doi.org/10.1038/35036627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35036627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051510804", 
              "https://doi.org/10.1038/35036627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/cmb.2007.0025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059245537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/cmb.2007.r018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059245656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.281.5377.692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062561970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/156800908784533445", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069190884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2202/1544-6115.1027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069289261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074735196", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074952309", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082632807", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082886186", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082899627", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-12", 
        "datePublishedReg": "2011-12-01", 
        "description": "BACKGROUND: Network modeling of whole transcriptome expression data enables characterization of complex epistatic (gene-gene) interactions that underlie cellular functions. Though numerous methods have been proposed and successfully implemented to develop these networks, there are no formal methods for comparing differences in network connectivity patterns as a function of phenotypic trait.\nRESULTS: Here we describe a novel approach for quantifying the differences in gene-gene connectivity patterns across disease states based on Graphical Gaussian Models (GGMs). We compare the posterior probabilities of connectivity for each gene pair across two disease states, expressed as a posterior odds-ratio (postOR) for each pair, which can be used to identify network components most relevant to disease status. The method can also be generalized to model differential gene connectivity patterns within previously defined gene sets, gene networks and pathways. We demonstrate that the GGM method reliably detects differences in network connectivity patterns in datasets of varying sample size. Applying this method to two independent breast cancer expression data sets, we identified numerous reproducible differences in network connectivity across histological grades of breast cancer, including several published gene sets and pathways. Most notably, our model identified two gene hubs (MMP12 and CXCL13) that each exhibited differential connectivity to more than 30 transcripts in both datasets. Both genes have been previously implicated in breast cancer pathobiology, but themselves are not differentially expressed by histologic grade in either dataset, and would thus have not been identified using traditional differential gene expression testing approaches. In addition, 16 curated gene sets demonstrated significant differential connectivity in both data sets, including the matrix metalloproteinases, PPAR alpha sequence targets, and the PUFA synthesis pathway.\nCONCLUSIONS: Our results suggest that GGM can be used to formally evaluate differences in global interactome connectivity across disease states, and can serve as a powerful tool for exploring the molecular events that contribute to disease at a systems level.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1752-0509-5-89", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2669398", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2529240", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2541256", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1327442", 
            "issn": [
              "1752-0509"
            ], 
            "name": "BMC Systems Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "name": "Quantifying differential gene connectivity between disease states for objective identification of disease-relevant genes", 
        "pagination": "89", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "23ccb0296affedd64bcb9b1c37d690623cf138c86fa9d5911bd62d11e5455570"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21627793"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101301827"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1752-0509-5-89"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007515717"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1752-0509-5-89", 
          "https://app.dimensions.ai/details/publication/pub.1007515717"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000549.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1752-0509-5-89"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-89'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-89'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-89'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-89'


     

    This table displays all metadata directly associated to this object as RDF triples.

    376 TRIPLES      21 PREDICATES      111 URIs      37 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1752-0509-5-89 schema:about N10dd2e4164b6470da63c9fc4df3ca891
    2 N314987668a024b80a243215856959e3a
    3 N4949ca6913fb4764a46ec2515fd92705
    4 N65d461586deb4f64b280e5decbaa72c9
    5 N7165256d19224e63bd5432add101048c
    6 N837d21ec157b48b9aec60c2cb8d5ac24
    7 N86c6c512046b4204a6f3b3d29728defd
    8 N97af9f86076f4531b566847efe9a9570
    9 Na3cf6bbe6c2141fbb4f818aae3f4e257
    10 Na55f671eec4e444aa18eff9c686604e3
    11 Nbfa2cd6835c649529901f441ad51fbbe
    12 Ncd993c31b8e64e36af758a07040907fc
    13 Nd0d2f3762cd54fe1bf3d45528eb010ac
    14 Ndc6a3d18a5b34b5eb4096f9c11c8332a
    15 Ne319c6e7529141009ad550782e65329e
    16 Ne8e8f43c9f994398b2294f7bd86f8c2a
    17 anzsrc-for:06
    18 anzsrc-for:0604
    19 schema:author Ndd88d8548d8d4ed386a01477b68618aa
    20 schema:citation sg:pub.10.1023/a:1016018617152
    21 sg:pub.10.1023/a:1020337311471
    22 sg:pub.10.1038/35036627
    23 sg:pub.10.1038/nature06757
    24 sg:pub.10.1038/ng1570
    25 sg:pub.10.1038/nm0195-27
    26 sg:pub.10.1038/nm905
    27 sg:pub.10.1038/nrg1272
    28 sg:pub.10.1038/sj.bjc.6604621
    29 sg:pub.10.1038/sj.cgt.7700896
    30 sg:pub.10.1038/sj.onc.1204608
    31 sg:pub.10.1038/sj.onc.1209265
    32 sg:pub.10.1155/2007/82702
    33 sg:pub.10.1186/1471-2105-7-509
    34 sg:pub.10.1186/1471-2164-8-185
    35 sg:pub.10.1186/1471-2164-9-239
    36 sg:pub.10.1186/1752-0509-3-55
    37 sg:pub.10.1186/bcr1732
    38 https://app.dimensions.ai/details/publication/pub.1074735196
    39 https://app.dimensions.ai/details/publication/pub.1074952309
    40 https://app.dimensions.ai/details/publication/pub.1082632807
    41 https://app.dimensions.ai/details/publication/pub.1082886186
    42 https://app.dimensions.ai/details/publication/pub.1082899627
    43 https://doi.org/10.1002/gcc.2870050406
    44 https://doi.org/10.1002/humu.20927
    45 https://doi.org/10.1002/ijc.23660
    46 https://doi.org/10.1002/mc.10061
    47 https://doi.org/10.1016/j.cell.2006.03.032
    48 https://doi.org/10.1016/j.cell.2006.05.007
    49 https://doi.org/10.1016/j.jmva.2004.02.009
    50 https://doi.org/10.1016/j.tig.2010.05.001
    51 https://doi.org/10.1016/j.ygeno.2008.08.005
    52 https://doi.org/10.1016/s0014-5793(99)00524-4
    53 https://doi.org/10.1017/s0007114508942161
    54 https://doi.org/10.1038/msb.2008.2
    55 https://doi.org/10.1073/pnas.0506580102
    56 https://doi.org/10.1073/pnas.0900351106
    57 https://doi.org/10.1073/pnas.0914005107
    58 https://doi.org/10.1073/pnas.1732912100
    59 https://doi.org/10.1089/cmb.2007.0025
    60 https://doi.org/10.1089/cmb.2007.r018
    61 https://doi.org/10.1093/bioinformatics/bti062
    62 https://doi.org/10.1093/bioinformatics/bti722
    63 https://doi.org/10.1093/bioinformatics/btl392
    64 https://doi.org/10.1093/bioinformatics/btn482
    65 https://doi.org/10.1093/bioinformatics/btp502
    66 https://doi.org/10.1093/carcin/bgp119
    67 https://doi.org/10.1093/jnci/djj052
    68 https://doi.org/10.1126/science.1091403
    69 https://doi.org/10.1126/science.1158684
    70 https://doi.org/10.1126/science.281.5377.692
    71 https://doi.org/10.1128/mcb.00866-07
    72 https://doi.org/10.1158/0008-5472.can-05-1841
    73 https://doi.org/10.1158/0008-5472.can-06-4394
    74 https://doi.org/10.1158/0008-5472.can-07-5206
    75 https://doi.org/10.1158/1541-7786.mcr-08-0189
    76 https://doi.org/10.1289/ehp.8149
    77 https://doi.org/10.1371/journal.pgen.0010039
    78 https://doi.org/10.1371/journal.pgen.0020130
    79 https://doi.org/10.1371/journal.pgen.1000776
    80 https://doi.org/10.1590/s0100-879x2006000800013
    81 https://doi.org/10.1593/neo.09286
    82 https://doi.org/10.1593/neo.09934
    83 https://doi.org/10.2174/156800908784533445
    84 https://doi.org/10.2202/1544-6115.1027
    85 https://doi.org/10.2202/1544-6115.1175
    86 schema:datePublished 2011-12
    87 schema:datePublishedReg 2011-12-01
    88 schema:description BACKGROUND: Network modeling of whole transcriptome expression data enables characterization of complex epistatic (gene-gene) interactions that underlie cellular functions. Though numerous methods have been proposed and successfully implemented to develop these networks, there are no formal methods for comparing differences in network connectivity patterns as a function of phenotypic trait. RESULTS: Here we describe a novel approach for quantifying the differences in gene-gene connectivity patterns across disease states based on Graphical Gaussian Models (GGMs). We compare the posterior probabilities of connectivity for each gene pair across two disease states, expressed as a posterior odds-ratio (postOR) for each pair, which can be used to identify network components most relevant to disease status. The method can also be generalized to model differential gene connectivity patterns within previously defined gene sets, gene networks and pathways. We demonstrate that the GGM method reliably detects differences in network connectivity patterns in datasets of varying sample size. Applying this method to two independent breast cancer expression data sets, we identified numerous reproducible differences in network connectivity across histological grades of breast cancer, including several published gene sets and pathways. Most notably, our model identified two gene hubs (MMP12 and CXCL13) that each exhibited differential connectivity to more than 30 transcripts in both datasets. Both genes have been previously implicated in breast cancer pathobiology, but themselves are not differentially expressed by histologic grade in either dataset, and would thus have not been identified using traditional differential gene expression testing approaches. In addition, 16 curated gene sets demonstrated significant differential connectivity in both data sets, including the matrix metalloproteinases, PPAR alpha sequence targets, and the PUFA synthesis pathway. CONCLUSIONS: Our results suggest that GGM can be used to formally evaluate differences in global interactome connectivity across disease states, and can serve as a powerful tool for exploring the molecular events that contribute to disease at a systems level.
    89 schema:genre research_article
    90 schema:inLanguage en
    91 schema:isAccessibleForFree true
    92 schema:isPartOf N1b260f7eef2840d6b36b5d8b7dd21292
    93 Nbad60136a88a499b8bde790a3727dc45
    94 sg:journal.1327442
    95 schema:name Quantifying differential gene connectivity between disease states for objective identification of disease-relevant genes
    96 schema:pagination 89
    97 schema:productId N0393507a6afb4836a1dac73baf705445
    98 N0c9edd0e359048f4a639276e9f229c93
    99 N1b341b21b0e24185b7aaa5ec5f5277ac
    100 Nb7931ee5d2ad49c381059d358050b2cb
    101 Nfbc4ce00b7fb4f9f9c85d42634c61745
    102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007515717
    103 https://doi.org/10.1186/1752-0509-5-89
    104 schema:sdDatePublished 2019-04-10T23:31
    105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    106 schema:sdPublisher N52ff0de93a6e4d6192c9278ca4fe0346
    107 schema:url http://link.springer.com/10.1186%2F1752-0509-5-89
    108 sgo:license sg:explorer/license/
    109 sgo:sdDataset articles
    110 rdf:type schema:ScholarlyArticle
    111 N0393507a6afb4836a1dac73baf705445 schema:name doi
    112 schema:value 10.1186/1752-0509-5-89
    113 rdf:type schema:PropertyValue
    114 N03a34ff6a5eb46ab9571202193530a64 schema:name Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, 02115, Boston, MA, USA
    115 rdf:type schema:Organization
    116 N0c9edd0e359048f4a639276e9f229c93 schema:name pubmed_id
    117 schema:value 21627793
    118 rdf:type schema:PropertyValue
    119 N10dd2e4164b6470da63c9fc4df3ca891 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Models, Genetic
    121 rdf:type schema:DefinedTerm
    122 N1b260f7eef2840d6b36b5d8b7dd21292 schema:volumeNumber 5
    123 rdf:type schema:PublicationVolume
    124 N1b341b21b0e24185b7aaa5ec5f5277ac schema:name nlm_unique_id
    125 schema:value 101301827
    126 rdf:type schema:PropertyValue
    127 N242306e0b95844128535ed0111834434 schema:name Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, 02115, Boston, MA, USA
    128 rdf:type schema:Organization
    129 N314987668a024b80a243215856959e3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Gene Expression Regulation, Neoplastic
    131 rdf:type schema:DefinedTerm
    132 N4949ca6913fb4764a46ec2515fd92705 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Computational Biology
    134 rdf:type schema:DefinedTerm
    135 N52ff0de93a6e4d6192c9278ca4fe0346 schema:name Springer Nature - SN SciGraph project
    136 rdf:type schema:Organization
    137 N65d461586deb4f64b280e5decbaa72c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Models, Theoretical
    139 rdf:type schema:DefinedTerm
    140 N7165256d19224e63bd5432add101048c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Gene Regulatory Networks
    142 rdf:type schema:DefinedTerm
    143 N837d21ec157b48b9aec60c2cb8d5ac24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Estrogens
    145 rdf:type schema:DefinedTerm
    146 N86c6c512046b4204a6f3b3d29728defd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Breast Neoplasms
    148 rdf:type schema:DefinedTerm
    149 N931cfa1192544b609c8dea5109b2f306 rdf:first sg:person.0766744011.63
    150 rdf:rest Nc88625102a004c709537e9d3f535924f
    151 N97af9f86076f4531b566847efe9a9570 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Phenotype
    153 rdf:type schema:DefinedTerm
    154 Na3cf6bbe6c2141fbb4f818aae3f4e257 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Odds Ratio
    156 rdf:type schema:DefinedTerm
    157 Na55f671eec4e444aa18eff9c686604e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Gene Expression Regulation
    159 rdf:type schema:DefinedTerm
    160 Nb7931ee5d2ad49c381059d358050b2cb schema:name dimensions_id
    161 schema:value pub.1007515717
    162 rdf:type schema:PropertyValue
    163 Nbad60136a88a499b8bde790a3727dc45 schema:issueNumber 1
    164 rdf:type schema:PublicationIssue
    165 Nbfa2cd6835c649529901f441ad51fbbe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Humans
    167 rdf:type schema:DefinedTerm
    168 Nc88625102a004c709537e9d3f535924f rdf:first sg:person.01140525171.84
    169 rdf:rest Nceacc454c9514ebb8d7d9f8cc1b918d4
    170 Ncd993c31b8e64e36af758a07040907fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Systems Biology
    172 rdf:type schema:DefinedTerm
    173 Nceacc454c9514ebb8d7d9f8cc1b918d4 rdf:first sg:person.01062144517.60
    174 rdf:rest rdf:nil
    175 Nd0d2f3762cd54fe1bf3d45528eb010ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Female
    177 rdf:type schema:DefinedTerm
    178 Ndc6a3d18a5b34b5eb4096f9c11c8332a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Normal Distribution
    180 rdf:type schema:DefinedTerm
    181 Ndd88d8548d8d4ed386a01477b68618aa rdf:first sg:person.0640410014.05
    182 rdf:rest N931cfa1192544b609c8dea5109b2f306
    183 Ne319c6e7529141009ad550782e65329e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name Transcription, Genetic
    185 rdf:type schema:DefinedTerm
    186 Ne8e8f43c9f994398b2294f7bd86f8c2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Epistasis, Genetic
    188 rdf:type schema:DefinedTerm
    189 Nfbc4ce00b7fb4f9f9c85d42634c61745 schema:name readcube_id
    190 schema:value 23ccb0296affedd64bcb9b1c37d690623cf138c86fa9d5911bd62d11e5455570
    191 rdf:type schema:PropertyValue
    192 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    193 schema:name Biological Sciences
    194 rdf:type schema:DefinedTerm
    195 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    196 schema:name Genetics
    197 rdf:type schema:DefinedTerm
    198 sg:grant.2529240 http://pending.schema.org/fundedItem sg:pub.10.1186/1752-0509-5-89
    199 rdf:type schema:MonetaryGrant
    200 sg:grant.2541256 http://pending.schema.org/fundedItem sg:pub.10.1186/1752-0509-5-89
    201 rdf:type schema:MonetaryGrant
    202 sg:grant.2669398 http://pending.schema.org/fundedItem sg:pub.10.1186/1752-0509-5-89
    203 rdf:type schema:MonetaryGrant
    204 sg:journal.1327442 schema:issn 1752-0509
    205 schema:name BMC Systems Biology
    206 rdf:type schema:Periodical
    207 sg:person.01062144517.60 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
    208 schema:familyName Raby
    209 schema:givenName Benjamin A
    210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062144517.60
    211 rdf:type schema:Person
    212 sg:person.01140525171.84 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
    213 schema:familyName Carey
    214 schema:givenName Vincent J
    215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140525171.84
    216 rdf:type schema:Person
    217 sg:person.0640410014.05 schema:affiliation N242306e0b95844128535ed0111834434
    218 schema:familyName Chu
    219 schema:givenName Jen-hwa
    220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640410014.05
    221 rdf:type schema:Person
    222 sg:person.0766744011.63 schema:affiliation N03a34ff6a5eb46ab9571202193530a64
    223 schema:familyName Lazarus
    224 schema:givenName Ross
    225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766744011.63
    226 rdf:type schema:Person
    227 sg:pub.10.1023/a:1016018617152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049312614
    228 https://doi.org/10.1023/a:1016018617152
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1023/a:1020337311471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025288633
    231 https://doi.org/10.1023/a:1020337311471
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/35036627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051510804
    234 https://doi.org/10.1038/35036627
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nature06757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010678260
    237 https://doi.org/10.1038/nature06757
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/ng1570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012205210
    240 https://doi.org/10.1038/ng1570
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nm0195-27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008981922
    243 https://doi.org/10.1038/nm0195-27
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nm905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035391370
    246 https://doi.org/10.1038/nm905
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nrg1272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018231980
    249 https://doi.org/10.1038/nrg1272
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/sj.bjc.6604621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007547739
    252 https://doi.org/10.1038/sj.bjc.6604621
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/sj.cgt.7700896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003771933
    255 https://doi.org/10.1038/sj.cgt.7700896
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/sj.onc.1204608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046686514
    258 https://doi.org/10.1038/sj.onc.1204608
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/sj.onc.1209265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023477608
    261 https://doi.org/10.1038/sj.onc.1209265
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1155/2007/82702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012325614
    264 https://doi.org/10.1155/2007/82702
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1186/1471-2105-7-509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012962378
    267 https://doi.org/10.1186/1471-2105-7-509
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1186/1471-2164-8-185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031191219
    270 https://doi.org/10.1186/1471-2164-8-185
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1186/1471-2164-9-239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010596045
    273 https://doi.org/10.1186/1471-2164-9-239
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1186/1752-0509-3-55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013601744
    276 https://doi.org/10.1186/1752-0509-3-55
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1186/bcr1732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015413615
    279 https://doi.org/10.1186/bcr1732
    280 rdf:type schema:CreativeWork
    281 https://app.dimensions.ai/details/publication/pub.1074735196 schema:CreativeWork
    282 https://app.dimensions.ai/details/publication/pub.1074952309 schema:CreativeWork
    283 https://app.dimensions.ai/details/publication/pub.1082632807 schema:CreativeWork
    284 https://app.dimensions.ai/details/publication/pub.1082886186 schema:CreativeWork
    285 https://app.dimensions.ai/details/publication/pub.1082899627 schema:CreativeWork
    286 https://doi.org/10.1002/gcc.2870050406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028326004
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1002/humu.20927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024193461
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1002/ijc.23660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046143622
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1002/mc.10061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046062101
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1016/j.cell.2006.03.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027358233
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1016/j.cell.2006.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005899526
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1016/j.jmva.2004.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030739729
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1016/j.tig.2010.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046034441
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1016/j.ygeno.2008.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042189503
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1016/s0014-5793(99)00524-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029445187
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1017/s0007114508942161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013231583
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1038/msb.2008.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002288857
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1073/pnas.0506580102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037705714
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1073/pnas.0900351106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050778792
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1073/pnas.0914005107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011637541
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.1073/pnas.1732912100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000610606
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.1089/cmb.2007.0025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245537
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.1089/cmb.2007.r018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245656
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1093/bioinformatics/bti062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031236162
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1093/bioinformatics/bti722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031435825
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1093/bioinformatics/btl392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047655426
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1093/bioinformatics/btn482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006151249
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1093/bioinformatics/btp502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010695043
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1093/carcin/bgp119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024510309
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.1093/jnci/djj052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030644591
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.1126/science.1091403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015172314
    337 rdf:type schema:CreativeWork
    338 https://doi.org/10.1126/science.1158684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007743479
    339 rdf:type schema:CreativeWork
    340 https://doi.org/10.1126/science.281.5377.692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062561970
    341 rdf:type schema:CreativeWork
    342 https://doi.org/10.1128/mcb.00866-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009166842
    343 rdf:type schema:CreativeWork
    344 https://doi.org/10.1158/0008-5472.can-05-1841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051284785
    345 rdf:type schema:CreativeWork
    346 https://doi.org/10.1158/0008-5472.can-06-4394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034817737
    347 rdf:type schema:CreativeWork
    348 https://doi.org/10.1158/0008-5472.can-07-5206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017296025
    349 rdf:type schema:CreativeWork
    350 https://doi.org/10.1158/1541-7786.mcr-08-0189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042761719
    351 rdf:type schema:CreativeWork
    352 https://doi.org/10.1289/ehp.8149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020394391
    353 rdf:type schema:CreativeWork
    354 https://doi.org/10.1371/journal.pgen.0010039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050451093
    355 rdf:type schema:CreativeWork
    356 https://doi.org/10.1371/journal.pgen.0020130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035790850
    357 rdf:type schema:CreativeWork
    358 https://doi.org/10.1371/journal.pgen.1000776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039887234
    359 rdf:type schema:CreativeWork
    360 https://doi.org/10.1590/s0100-879x2006000800013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044636181
    361 rdf:type schema:CreativeWork
    362 https://doi.org/10.1593/neo.09286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019231074
    363 rdf:type schema:CreativeWork
    364 https://doi.org/10.1593/neo.09934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003082772
    365 rdf:type schema:CreativeWork
    366 https://doi.org/10.2174/156800908784533445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069190884
    367 rdf:type schema:CreativeWork
    368 https://doi.org/10.2202/1544-6115.1027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069289261
    369 rdf:type schema:CreativeWork
    370 https://doi.org/10.2202/1544-6115.1175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001122307
    371 rdf:type schema:CreativeWork
    372 https://www.grid.ac/institutes/grid.62560.37 schema:alternateName Brigham and Women's Hospital
    373 schema:name Center for Genomic Medicine, Brigham and Women's Hospital, 02115, Boston, MA, USA
    374 Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, 02115, Boston, MA, USA
    375 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 02115, Boston, MA, USA
    376 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...