DnaA and the timing of chromosome replication in Es-cherichia coli as a function of growth rate View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12-21

AUTHORS

Matthew AA Grant, Chiara Saggioro, Ulisse Ferrari, Bruno Bassetti, Bianca Sclavi, Marco Cosentino Lagomarsino

ABSTRACT

BACKGROUND: In Escherichia coli, overlapping rounds of DNA replication allow the bacteria to double in faster times than the time required to copy the genome. The precise timing of initiation of DNA replication is determined by a regulatory circuit that depends on the binding of a critical number of ATP-bound DnaA proteins at the origin of replication, resulting in the melting of the DNA and the assembly of the replication complex. The synthesis of DnaA in the cell is controlled by a growth-rate dependent, negatively autoregulated gene found near the origin of replication. Both the regulatory and initiation activity of DnaA depend on its nucleotide bound state and its availability. RESULTS: In order to investigate the contributions of the different regulatory processes to the timing of initiation of DNA replication at varying growth rates, we formulate a minimal quantitative model of the initiator circuit that includes the key ingredients known to regulate the activity of the DnaA protein. This model describes the average-cell oscillations in DnaA-ATP/DNA during the cell cycle, for varying growth rates. We evaluate the conditions under which this ratio attains the same threshold value at the time of initiation, independently of the growth rate. CONCLUSIONS: We find that a quantitative description of replication initiation by DnaA must rely on the dependency of the basic parameters on growth rate, in order to account for the timing of initiation of DNA replication at different cell doubling times. We isolate two main possible scenarios for this, depending on the roles of DnaA autoregulation and DnaA ATP-hydrolysis regulatory process. One possibility is that the basal rate of regulatory inactivation by ATP hydrolysis must vary with growth rate. Alternatively, some parameters defining promoter activity need to be a function of the growth rate. In either case, the basal rate of gene expression needs to increase with the growth rate, in accordance with the known characteristics of the dnaA promoter. Furthermore, both inactivation and autorepression reduce the amplitude of the cell-cycle oscillations of DnaA-ATP/DNA. More... »

PAGES

201-201

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1752-0509-5-201

DOI

http://dx.doi.org/10.1186/1752-0509-5-201

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019938310

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22189092


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenosine Triphosphate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Replication Timing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA-Binding Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Fungal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrolysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "BSS Group, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK", 
          "id": "http://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "BSS Group, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grant", 
        "givenName": "Matthew AA", 
        "id": "sg:person.01356734120.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356734120.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LBPA, UMR 8113 du CNRS, Ecole Normale Sup\u00e9rieure de Cachan, 61 Avenue du Pr\u00e9sident Wilson, 94235 CACHAN, France", 
          "id": "http://www.grid.ac/institutes/grid.463890.0", 
          "name": [
            "LBPA, UMR 8113 du CNRS, Ecole Normale Sup\u00e9rieure de Cachan, 61 Avenue du Pr\u00e9sident Wilson, 94235 CACHAN, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saggioro", 
        "givenName": "Chiara", 
        "id": "sg:person.01231566272.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231566272.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dip. Fisica, Universit\u00e0 \"Sapienza\", and IPCF-CNR, UOS Roma Piazzale A. Moro 2, I-00185, Rome, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dip. Fisica, Universit\u00e0 \"Sapienza\", and IPCF-CNR, UOS Roma Piazzale A. Moro 2, I-00185, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferrari", 
        "givenName": "Ulisse", 
        "id": "sg:person.015445154416.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015445154416.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "I.N.F.N. Milano, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Universit\u00e0 degli Studi di Milano, Dip. Fisica. Via Celoria 16, 20133 Milano, Italy", 
            "I.N.F.N. Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bassetti", 
        "givenName": "Bruno", 
        "id": "sg:person.0646151663.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646151663.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LBPA, UMR 8113 du CNRS, Ecole Normale Sup\u00e9rieure de Cachan, 61 Avenue du Pr\u00e9sident Wilson, 94235 CACHAN, France", 
          "id": "http://www.grid.ac/institutes/grid.463890.0", 
          "name": [
            "LBPA, UMR 8113 du CNRS, Ecole Normale Sup\u00e9rieure de Cachan, 61 Avenue du Pr\u00e9sident Wilson, 94235 CACHAN, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sclavi", 
        "givenName": "Bianca", 
        "id": "sg:person.01015671620.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015671620.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e0 degli Studi di Milano, Dip. Fisica. Via Celoria 16, 20133 Milano, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "G\u00e9nophysique/Genomic Physics Group, UMR7238 CNRS \"Microorganism Genomics", 
            "University Pierre et Marie Curie, 15 rue de l'\u00c9cole de M\u00e9decine, 75006 Paris, France", 
            "Universit\u00e0 degli Studi di Milano, Dip. Fisica. Via Celoria 16, 20133 Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lagomarsino", 
        "givenName": "Marco Cosentino", 
        "id": "sg:person.01305274241.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305274241.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-78765-5_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029531848", 
          "https://doi.org/10.1007/978-3-540-78765-5_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00326535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014934002", 
          "https://doi.org/10.1007/bf00326535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002249031", 
          "https://doi.org/10.1038/nrmicro1088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro2314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039350804", 
          "https://doi.org/10.1038/nrmicro2314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039590686", 
          "https://doi.org/10.1038/nmeth.1452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/2191077a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042642008", 
          "https://doi.org/10.1038/2191077a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/newbio241133a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048410502", 
          "https://doi.org/10.1038/newbio241133a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12-21", 
    "datePublishedReg": "2011-12-21", 
    "description": "BACKGROUND: In Escherichia coli, overlapping rounds of DNA replication allow the bacteria to double in faster times than the time required to copy the genome. The precise timing of initiation of DNA replication is determined by a regulatory circuit that depends on the binding of a critical number of ATP-bound DnaA proteins at the origin of replication, resulting in the melting of the DNA and the assembly of the replication complex. The synthesis of DnaA in the cell is controlled by a growth-rate dependent, negatively autoregulated gene found near the origin of replication. Both the regulatory and initiation activity of DnaA depend on its nucleotide bound state and its availability.\nRESULTS: In order to investigate the contributions of the different regulatory processes to the timing of initiation of DNA replication at varying growth rates, we formulate a minimal quantitative model of the initiator circuit that includes the key ingredients known to regulate the activity of the DnaA protein. This model describes the average-cell oscillations in DnaA-ATP/DNA during the cell cycle, for varying growth rates. We evaluate the conditions under which this ratio attains the same threshold value at the time of initiation, independently of the growth rate.\nCONCLUSIONS: We find that a quantitative description of replication initiation by DnaA must rely on the dependency of the basic parameters on growth rate, in order to account for the timing of initiation of DNA replication at different cell doubling times. We isolate two main possible scenarios for this, depending on the roles of DnaA autoregulation and DnaA ATP-hydrolysis regulatory process. One possibility is that the basal rate of regulatory inactivation by ATP hydrolysis must vary with growth rate. Alternatively, some parameters defining promoter activity need to be a function of the growth rate. In either case, the basal rate of gene expression needs to increase with the growth rate, in accordance with the known characteristics of the dnaA promoter. Furthermore, both inactivation and autorepression reduce the amplitude of the cell-cycle oscillations of DnaA-ATP/DNA.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1752-0509-5-201", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1327442", 
        "issn": [
          "1752-0509"
        ], 
        "name": "BMC Systems Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "keywords": [
      "DNA replication", 
      "origin of replication", 
      "DnaA protein", 
      "regulatory processes", 
      "growth-rate dependent", 
      "cell cycle oscillations", 
      "growth rate", 
      "regulatory inactivation", 
      "chromosome replication", 
      "different regulatory processes", 
      "dnaA promoter", 
      "replication initiation", 
      "regulatory circuits", 
      "replication complex", 
      "Es-cherichia coli", 
      "DnaA", 
      "ATP hydrolysis", 
      "promoter activity", 
      "gene expression", 
      "cell cycle", 
      "Escherichia coli", 
      "cell doubling time", 
      "initiation activity", 
      "DNA", 
      "replication", 
      "basal rate", 
      "protein", 
      "coli", 
      "main possible scenarios", 
      "inactivation", 
      "autorepression", 
      "genome", 
      "doubling time", 
      "genes", 
      "promoter", 
      "precise timing", 
      "nucleotides", 
      "initiation", 
      "ATP", 
      "bacteria", 
      "activity", 
      "binding", 
      "expression", 
      "assembly", 
      "origin", 
      "timing of initiation", 
      "cells", 
      "time of initiation", 
      "complexes", 
      "function", 
      "timing", 
      "hydrolysis", 
      "quantitative model", 
      "autoregulation", 
      "role", 
      "availability", 
      "cycle", 
      "critical number", 
      "process", 
      "quantitative description", 
      "dependent", 
      "possible scenarios", 
      "synthesis", 
      "rounds", 
      "rate", 
      "number", 
      "conditions", 
      "time", 
      "contribution", 
      "possibility", 
      "description", 
      "order", 
      "model", 
      "ingredients", 
      "accordance", 
      "state", 
      "characteristics", 
      "oscillations", 
      "ratio", 
      "scenarios", 
      "dependency", 
      "parameters", 
      "threshold value", 
      "basic parameters", 
      "circuit", 
      "values", 
      "cases", 
      "key ingredient", 
      "faster time", 
      "amplitude", 
      "same threshold value", 
      "melting", 
      "synthesis of DnaA", 
      "minimal quantitative model", 
      "initiator circuit", 
      "average-cell oscillations", 
      "DnaA-ATP/DNA", 
      "different cell doubling times", 
      "DnaA autoregulation", 
      "DnaA ATP-hydrolysis regulatory process", 
      "ATP-hydrolysis regulatory process"
    ], 
    "name": "DnaA and the timing of chromosome replication in Es-cherichia coli as a function of growth rate", 
    "pagination": "201-201", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019938310"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1752-0509-5-201"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22189092"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1752-0509-5-201", 
      "https://app.dimensions.ai/details/publication/pub.1019938310"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_538.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1752-0509-5-201"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-201'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-201'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-201'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-201'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      22 PREDICATES      143 URIs      128 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1752-0509-5-201 schema:about N2b6625a463d741e3ab29d1ce4a221377
2 N32d44deff0eb4b02a67cdee4ddf5e09d
3 N4ad23e1286fd481691407ea0a39c0719
4 N5ef2294f00104067816203da691e6d07
5 N81a04fbba7d44dc8a7a6d5c4c464253e
6 N90c67fafdb0c43b888df9b4f69f80bc8
7 N9ee4c9a4283f48f4828ba3359d57fd9f
8 Nb7fa8ed6018349e09a089c42a20be0a3
9 Ndb5644eea0e74f73bd35f3c8eb2a4245
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author N5908fc5e978f4cab8c8259bb6111e4b8
13 schema:citation sg:pub.10.1007/978-3-540-78765-5_9
14 sg:pub.10.1007/bf00326535
15 sg:pub.10.1038/2191077a0
16 sg:pub.10.1038/newbio241133a0
17 sg:pub.10.1038/nmeth.1452
18 sg:pub.10.1038/nrmicro1088
19 sg:pub.10.1038/nrmicro2314
20 schema:datePublished 2011-12-21
21 schema:datePublishedReg 2011-12-21
22 schema:description BACKGROUND: In Escherichia coli, overlapping rounds of DNA replication allow the bacteria to double in faster times than the time required to copy the genome. The precise timing of initiation of DNA replication is determined by a regulatory circuit that depends on the binding of a critical number of ATP-bound DnaA proteins at the origin of replication, resulting in the melting of the DNA and the assembly of the replication complex. The synthesis of DnaA in the cell is controlled by a growth-rate dependent, negatively autoregulated gene found near the origin of replication. Both the regulatory and initiation activity of DnaA depend on its nucleotide bound state and its availability. RESULTS: In order to investigate the contributions of the different regulatory processes to the timing of initiation of DNA replication at varying growth rates, we formulate a minimal quantitative model of the initiator circuit that includes the key ingredients known to regulate the activity of the DnaA protein. This model describes the average-cell oscillations in DnaA-ATP/DNA during the cell cycle, for varying growth rates. We evaluate the conditions under which this ratio attains the same threshold value at the time of initiation, independently of the growth rate. CONCLUSIONS: We find that a quantitative description of replication initiation by DnaA must rely on the dependency of the basic parameters on growth rate, in order to account for the timing of initiation of DNA replication at different cell doubling times. We isolate two main possible scenarios for this, depending on the roles of DnaA autoregulation and DnaA ATP-hydrolysis regulatory process. One possibility is that the basal rate of regulatory inactivation by ATP hydrolysis must vary with growth rate. Alternatively, some parameters defining promoter activity need to be a function of the growth rate. In either case, the basal rate of gene expression needs to increase with the growth rate, in accordance with the known characteristics of the dnaA promoter. Furthermore, both inactivation and autorepression reduce the amplitude of the cell-cycle oscillations of DnaA-ATP/DNA.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N16ec4f8ff53844018f925a491e9bd9e6
27 N9419b81e5f78414f83f42c4c4a2ca90f
28 sg:journal.1327442
29 schema:keywords ATP
30 ATP hydrolysis
31 ATP-hydrolysis regulatory process
32 DNA
33 DNA replication
34 DnaA
35 DnaA ATP-hydrolysis regulatory process
36 DnaA autoregulation
37 DnaA protein
38 DnaA-ATP/DNA
39 Es-cherichia coli
40 Escherichia coli
41 accordance
42 activity
43 amplitude
44 assembly
45 autoregulation
46 autorepression
47 availability
48 average-cell oscillations
49 bacteria
50 basal rate
51 basic parameters
52 binding
53 cases
54 cell cycle
55 cell cycle oscillations
56 cell doubling time
57 cells
58 characteristics
59 chromosome replication
60 circuit
61 coli
62 complexes
63 conditions
64 contribution
65 critical number
66 cycle
67 dependency
68 dependent
69 description
70 different cell doubling times
71 different regulatory processes
72 dnaA promoter
73 doubling time
74 expression
75 faster time
76 function
77 gene expression
78 genes
79 genome
80 growth rate
81 growth-rate dependent
82 hydrolysis
83 inactivation
84 ingredients
85 initiation
86 initiation activity
87 initiator circuit
88 key ingredient
89 main possible scenarios
90 melting
91 minimal quantitative model
92 model
93 nucleotides
94 number
95 order
96 origin
97 origin of replication
98 oscillations
99 parameters
100 possibility
101 possible scenarios
102 precise timing
103 process
104 promoter
105 promoter activity
106 protein
107 quantitative description
108 quantitative model
109 rate
110 ratio
111 regulatory circuits
112 regulatory inactivation
113 regulatory processes
114 replication
115 replication complex
116 replication initiation
117 role
118 rounds
119 same threshold value
120 scenarios
121 state
122 synthesis
123 synthesis of DnaA
124 threshold value
125 time
126 time of initiation
127 timing
128 timing of initiation
129 values
130 schema:name DnaA and the timing of chromosome replication in Es-cherichia coli as a function of growth rate
131 schema:pagination 201-201
132 schema:productId N32ac073266144b9a8306163c3ad3f467
133 N41766f80ee374de6bb2e2d64aaa96962
134 N6c676dc333554927875faabba534f4f3
135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019938310
136 https://doi.org/10.1186/1752-0509-5-201
137 schema:sdDatePublished 2022-01-01T18:26
138 schema:sdLicense https://scigraph.springernature.com/explorer/license/
139 schema:sdPublisher N06001714ce864c5280a394c61bdca9b0
140 schema:url https://doi.org/10.1186/1752-0509-5-201
141 sgo:license sg:explorer/license/
142 sgo:sdDataset articles
143 rdf:type schema:ScholarlyArticle
144 N06001714ce864c5280a394c61bdca9b0 schema:name Springer Nature - SN SciGraph project
145 rdf:type schema:Organization
146 N16ec4f8ff53844018f925a491e9bd9e6 schema:issueNumber 1
147 rdf:type schema:PublicationIssue
148 N23beb5b2cbee4f8b80dbab52baea6350 rdf:first sg:person.01231566272.58
149 rdf:rest Nc4e5bc636f3b4c2d85259654a7a1525d
150 N2b6625a463d741e3ab29d1ce4a221377 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Bacterial Proteins
152 rdf:type schema:DefinedTerm
153 N32ac073266144b9a8306163c3ad3f467 schema:name dimensions_id
154 schema:value pub.1019938310
155 rdf:type schema:PropertyValue
156 N32d44deff0eb4b02a67cdee4ddf5e09d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Gene Expression Regulation, Fungal
158 rdf:type schema:DefinedTerm
159 N41766f80ee374de6bb2e2d64aaa96962 schema:name pubmed_id
160 schema:value 22189092
161 rdf:type schema:PropertyValue
162 N41cf9ae194864f02a345ac9b6fb7516b rdf:first sg:person.01305274241.09
163 rdf:rest rdf:nil
164 N4ad23e1286fd481691407ea0a39c0719 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Escherichia coli
166 rdf:type schema:DefinedTerm
167 N5908fc5e978f4cab8c8259bb6111e4b8 rdf:first sg:person.01356734120.45
168 rdf:rest N23beb5b2cbee4f8b80dbab52baea6350
169 N5ef2294f00104067816203da691e6d07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name DNA-Binding Proteins
171 rdf:type schema:DefinedTerm
172 N6c676dc333554927875faabba534f4f3 schema:name doi
173 schema:value 10.1186/1752-0509-5-201
174 rdf:type schema:PropertyValue
175 N81a04fbba7d44dc8a7a6d5c4c464253e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Models, Biological
177 rdf:type schema:DefinedTerm
178 N90c67fafdb0c43b888df9b4f69f80bc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Computer Simulation
180 rdf:type schema:DefinedTerm
181 N9419b81e5f78414f83f42c4c4a2ca90f schema:volumeNumber 5
182 rdf:type schema:PublicationVolume
183 N9ee4c9a4283f48f4828ba3359d57fd9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name DNA Replication Timing
185 rdf:type schema:DefinedTerm
186 Na1a011179b43461faf01835cac45450c rdf:first sg:person.01015671620.31
187 rdf:rest N41cf9ae194864f02a345ac9b6fb7516b
188 Nb7fa8ed6018349e09a089c42a20be0a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Adenosine Triphosphate
190 rdf:type schema:DefinedTerm
191 Nc4e5bc636f3b4c2d85259654a7a1525d rdf:first sg:person.015445154416.95
192 rdf:rest Nc8a72b0757054e9887618c2a701f841b
193 Nc8a72b0757054e9887618c2a701f841b rdf:first sg:person.0646151663.75
194 rdf:rest Na1a011179b43461faf01835cac45450c
195 Ndb5644eea0e74f73bd35f3c8eb2a4245 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Hydrolysis
197 rdf:type schema:DefinedTerm
198 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
199 schema:name Biological Sciences
200 rdf:type schema:DefinedTerm
201 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
202 schema:name Genetics
203 rdf:type schema:DefinedTerm
204 sg:journal.1327442 schema:issn 1752-0509
205 schema:name BMC Systems Biology
206 schema:publisher Springer Nature
207 rdf:type schema:Periodical
208 sg:person.01015671620.31 schema:affiliation grid-institutes:grid.463890.0
209 schema:familyName Sclavi
210 schema:givenName Bianca
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015671620.31
212 rdf:type schema:Person
213 sg:person.01231566272.58 schema:affiliation grid-institutes:grid.463890.0
214 schema:familyName Saggioro
215 schema:givenName Chiara
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231566272.58
217 rdf:type schema:Person
218 sg:person.01305274241.09 schema:affiliation grid-institutes:grid.4708.b
219 schema:familyName Lagomarsino
220 schema:givenName Marco Cosentino
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01305274241.09
222 rdf:type schema:Person
223 sg:person.01356734120.45 schema:affiliation grid-institutes:grid.5335.0
224 schema:familyName Grant
225 schema:givenName Matthew AA
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356734120.45
227 rdf:type schema:Person
228 sg:person.015445154416.95 schema:affiliation grid-institutes:grid.7841.a
229 schema:familyName Ferrari
230 schema:givenName Ulisse
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015445154416.95
232 rdf:type schema:Person
233 sg:person.0646151663.75 schema:affiliation grid-institutes:None
234 schema:familyName Bassetti
235 schema:givenName Bruno
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646151663.75
237 rdf:type schema:Person
238 sg:pub.10.1007/978-3-540-78765-5_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029531848
239 https://doi.org/10.1007/978-3-540-78765-5_9
240 rdf:type schema:CreativeWork
241 sg:pub.10.1007/bf00326535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014934002
242 https://doi.org/10.1007/bf00326535
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/2191077a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042642008
245 https://doi.org/10.1038/2191077a0
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/newbio241133a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048410502
248 https://doi.org/10.1038/newbio241133a0
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/nmeth.1452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039590686
251 https://doi.org/10.1038/nmeth.1452
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/nrmicro1088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002249031
254 https://doi.org/10.1038/nrmicro1088
255 rdf:type schema:CreativeWork
256 sg:pub.10.1038/nrmicro2314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039350804
257 https://doi.org/10.1038/nrmicro2314
258 rdf:type schema:CreativeWork
259 grid-institutes:None schema:alternateName I.N.F.N. Milano, Italy
260 schema:name I.N.F.N. Milano, Italy
261 Università degli Studi di Milano, Dip. Fisica. Via Celoria 16, 20133 Milano, Italy
262 rdf:type schema:Organization
263 grid-institutes:grid.463890.0 schema:alternateName LBPA, UMR 8113 du CNRS, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 CACHAN, France
264 schema:name LBPA, UMR 8113 du CNRS, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 CACHAN, France
265 rdf:type schema:Organization
266 grid-institutes:grid.4708.b schema:alternateName Università degli Studi di Milano, Dip. Fisica. Via Celoria 16, 20133 Milano, Italy
267 schema:name Génophysique/Genomic Physics Group, UMR7238 CNRS "Microorganism Genomics
268 University Pierre et Marie Curie, 15 rue de l'École de Médecine, 75006 Paris, France
269 Università degli Studi di Milano, Dip. Fisica. Via Celoria 16, 20133 Milano, Italy
270 rdf:type schema:Organization
271 grid-institutes:grid.5335.0 schema:alternateName BSS Group, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
272 schema:name BSS Group, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
273 rdf:type schema:Organization
274 grid-institutes:grid.7841.a schema:alternateName Dip. Fisica, Università "Sapienza", and IPCF-CNR, UOS Roma Piazzale A. Moro 2, I-00185, Rome, Italy
275 schema:name Dip. Fisica, Università "Sapienza", and IPCF-CNR, UOS Roma Piazzale A. Moro 2, I-00185, Rome, Italy
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...