Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

John Jack, John F Wambaugh, Imran Shah

ABSTRACT

BACKGROUND: With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate the physiological effect of chemicals, including potential toxicity. Here we investigate a biologically motivated model for estimating tissue level responses by aggregating the behavior of a cell population. We assume that the molecular state of individual cells is independently governed by discrete non-deterministic signaling mechanisms. This results in noisy but highly reproducible aggregate level responses that are consistent with experimental data. RESULTS: We developed an asynchronous threshold Boolean network simulation algorithm to model signal transduction in a single cell, and then used an ensemble of these models to estimate the aggregate response across a cell population. Using published data, we derived a putative crosstalk network involving growth factors and cytokines - i.e., Epidermal Growth Factor, Insulin, Insulin like Growth Factor Type 1, and Tumor Necrosis Factor α - to describe early signaling events in cell proliferation signal transduction. Reproducibility of the modeling technique across ensembles of Boolean networks representing cell populations is investigated. Furthermore, we compare our simulation results to experimental observations of hepatocytes reported in the literature. CONCLUSION: A systematic analysis of the results following differential stimulation of this model by growth factors and cytokines suggests that: (a) using Boolean network ensembles with asynchronous updating provides biologically plausible noisy individual cellular responses with reproducible mean behavior for large cell populations, and (b) with sufficient data our model can estimate the response to different concentrations of extracellular ligands. Our results suggest that this approach is both quantitative, allowing statistical verification and calibration, and extensible, allowing modification and revision as guided by experimental evidence. The simulation methodology is part of the US EPA Virtual Liver, which is investigating the effects of everyday contaminants on living tissues. Future models will incorporate additional crosstalk surrounding proliferation as well as the putative effects of xenobiotics on these signaling cascades within hepatocytes. More... »

PAGES

109

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1752-0509-5-109

DOI

http://dx.doi.org/10.1186/1752-0509-5-109

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041264278

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21745399


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jack", 
        "givenName": "John", 
        "id": "sg:person.0615722546.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615722546.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wambaugh", 
        "givenName": "John F", 
        "id": "sg:person.0711364373.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711364373.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shah", 
        "givenName": "Imran", 
        "id": "sg:person.0756413731.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756413731.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1038/msb.2009.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001748378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2009.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001748378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2009.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001748378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0806447105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002068353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrc2604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005305935", 
          "https://doi.org/10.1038/nrc2604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0008040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005752161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10937404.2010.483948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010557605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m103306200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010797218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013384337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1677/jme.0.0330263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014845705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10937400490498075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015014668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015546561", 
          "https://doi.org/10.1038/nature04785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015546561", 
          "https://doi.org/10.1038/nature04785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015546561", 
          "https://doi.org/10.1038/nature04785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-1110(90)90033-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018330842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-1110(90)90033-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018330842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021196532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2009.01.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022080951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(69)90015-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023348122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.510260614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023881396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2008.0132.focus", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025141340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0001672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025553048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.2001.2335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027488275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028461027", 
          "https://doi.org/10.1038/ng1293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028461027", 
          "https://doi.org/10.1038/ng1293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.106.081240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028939320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-3-97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029130653", 
          "https://doi.org/10.1186/1752-0509-3-97"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1160165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029297321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3835(95)03785-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031039407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031533572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81683-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031899717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrc.2007.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033120979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.055101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036649683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.055101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036649683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037000820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/toxsci/kfn255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038291421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/toxsci/kfn258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039038422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10937404.2010.483949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039685717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1078/1438-4639-00240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039986144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040656659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040793604", 
          "https://doi.org/10.1038/nature09145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040793604", 
          "https://doi.org/10.1038/nature09145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041017607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.048701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044044434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.048701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044044434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.11502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044820334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2203/dose-response.09-017.luke", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049431522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2203/dose-response.09-017.luke", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049431522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-3-88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049793330", 
          "https://doi.org/10.1186/1752-0509-3-88"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050616550", 
          "https://doi.org/10.1038/nature08012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050616550", 
          "https://doi.org/10.1038/nature08012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.0800074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051921023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1239303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052744398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.2.261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052758132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0305937101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053209982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/20/11/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059068702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2005.12.48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074554990", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083303199", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate the physiological effect of chemicals, including potential toxicity. Here we investigate a biologically motivated model for estimating tissue level responses by aggregating the behavior of a cell population. We assume that the molecular state of individual cells is independently governed by discrete non-deterministic signaling mechanisms. This results in noisy but highly reproducible aggregate level responses that are consistent with experimental data.\nRESULTS: We developed an asynchronous threshold Boolean network simulation algorithm to model signal transduction in a single cell, and then used an ensemble of these models to estimate the aggregate response across a cell population. Using published data, we derived a putative crosstalk network involving growth factors and cytokines - i.e., Epidermal Growth Factor, Insulin, Insulin like Growth Factor Type 1, and Tumor Necrosis Factor \u03b1 - to describe early signaling events in cell proliferation signal transduction. Reproducibility of the modeling technique across ensembles of Boolean networks representing cell populations is investigated. Furthermore, we compare our simulation results to experimental observations of hepatocytes reported in the literature.\nCONCLUSION: A systematic analysis of the results following differential stimulation of this model by growth factors and cytokines suggests that: (a) using Boolean network ensembles with asynchronous updating provides biologically plausible noisy individual cellular responses with reproducible mean behavior for large cell populations, and (b) with sufficient data our model can estimate the response to different concentrations of extracellular ligands. Our results suggest that this approach is both quantitative, allowing statistical verification and calibration, and extensible, allowing modification and revision as guided by experimental evidence. The simulation methodology is part of the US EPA Virtual Liver, which is investigating the effects of everyday contaminants on living tissues. Future models will incorporate additional crosstalk surrounding proliferation as well as the putative effects of xenobiotics on these signaling cascades within hepatocytes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1752-0509-5-109", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1327442", 
        "issn": [
          "1752-0509"
        ], 
        "name": "BMC Systems Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles", 
    "pagination": "109", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c491e33bc3e3872b6aded1aca096692a2159f6a484008d3ea2d4cc06b379e9e6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21745399"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101301827"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1752-0509-5-109"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041264278"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1752-0509-5-109", 
      "https://app.dimensions.ai/details/publication/pub.1041264278"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1752-0509-5-109"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-109'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-109'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-109'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-5-109'


 

This table displays all metadata directly associated to this object as RDF triples.

266 TRIPLES      21 PREDICATES      85 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1752-0509-5-109 schema:about N0f3889b2e2b6425280864290d0d0dbf4
2 N2e9bcb1c2ce248c5a9a0581446dcf3e2
3 N4349c4f96d1f4f7bb2efc5a72b5b1d58
4 N4ea8c827b3f843ebbfa4644faf644746
5 N5d8407b6f86e451e957eab7ddf73a7ef
6 N76302df7e8964610979d81e22d46028f
7 Neb0915f6948844469feb50a3a9ff82ae
8 Nf13095a9d170445ab73fa8bbceddc3af
9 anzsrc-for:06
10 anzsrc-for:0601
11 schema:author N2cfd0187fafa4d01bb08b88d2394e3f5
12 schema:citation sg:pub.10.1038/nature04785
13 sg:pub.10.1038/nature08012
14 sg:pub.10.1038/nature09145
15 sg:pub.10.1038/ng1293
16 sg:pub.10.1038/nrc2604
17 sg:pub.10.1186/1752-0509-3-88
18 sg:pub.10.1186/1752-0509-3-97
19 https://app.dimensions.ai/details/publication/pub.1074554990
20 https://app.dimensions.ai/details/publication/pub.1083303199
21 https://doi.org/10.1002/hep.510260614
22 https://doi.org/10.1006/jtbi.2001.2335
23 https://doi.org/10.1016/0022-5193(69)90015-0
24 https://doi.org/10.1016/0165-1110(90)90033-8
25 https://doi.org/10.1016/0304-3835(95)03785-u
26 https://doi.org/10.1016/j.ces.2009.01.041
27 https://doi.org/10.1016/j.jcrc.2007.10.031
28 https://doi.org/10.1016/s0092-8674(00)81683-9
29 https://doi.org/10.1038/msb.2009.87
30 https://doi.org/10.1073/pnas.0305937101
31 https://doi.org/10.1073/pnas.0806447105
32 https://doi.org/10.1074/jbc.m103306200
33 https://doi.org/10.1078/1438-4639-00240
34 https://doi.org/10.1080/10937400490498075
35 https://doi.org/10.1080/10937404.2010.483948
36 https://doi.org/10.1080/10937404.2010.483949
37 https://doi.org/10.1088/0305-4470/20/11/009
38 https://doi.org/10.1089/cmb.2005.12.48
39 https://doi.org/10.1093/bioinformatics/18.2.261
40 https://doi.org/10.1093/bioinformatics/btl210
41 https://doi.org/10.1093/nar/gki072
42 https://doi.org/10.1093/nar/gkn653
43 https://doi.org/10.1093/nar/gkp896
44 https://doi.org/10.1093/toxsci/kfn255
45 https://doi.org/10.1093/toxsci/kfn258
46 https://doi.org/10.1098/rsif.2008.0132.focus
47 https://doi.org/10.1101/gr.1239303
48 https://doi.org/10.1103/physreve.72.055101
49 https://doi.org/10.1103/physrevlett.95.048701
50 https://doi.org/10.1126/science.1160165
51 https://doi.org/10.1289/ehp.0800074
52 https://doi.org/10.1289/ehp.11502
53 https://doi.org/10.1371/journal.pcbi.1000438
54 https://doi.org/10.1371/journal.pcbi.1000756
55 https://doi.org/10.1371/journal.pone.0001672
56 https://doi.org/10.1371/journal.pone.0008040
57 https://doi.org/10.1529/biophysj.106.081240
58 https://doi.org/10.1677/jme.0.0330263
59 https://doi.org/10.2203/dose-response.09-017.luke
60 schema:datePublished 2011-12
61 schema:datePublishedReg 2011-12-01
62 schema:description BACKGROUND: With increasing knowledge about the potential mechanisms underlying cellular functions, it is becoming feasible to predict the response of biological systems to genetic and environmental perturbations. Due to the lack of homogeneity in living tissues it is difficult to estimate the physiological effect of chemicals, including potential toxicity. Here we investigate a biologically motivated model for estimating tissue level responses by aggregating the behavior of a cell population. We assume that the molecular state of individual cells is independently governed by discrete non-deterministic signaling mechanisms. This results in noisy but highly reproducible aggregate level responses that are consistent with experimental data. RESULTS: We developed an asynchronous threshold Boolean network simulation algorithm to model signal transduction in a single cell, and then used an ensemble of these models to estimate the aggregate response across a cell population. Using published data, we derived a putative crosstalk network involving growth factors and cytokines - i.e., Epidermal Growth Factor, Insulin, Insulin like Growth Factor Type 1, and Tumor Necrosis Factor α - to describe early signaling events in cell proliferation signal transduction. Reproducibility of the modeling technique across ensembles of Boolean networks representing cell populations is investigated. Furthermore, we compare our simulation results to experimental observations of hepatocytes reported in the literature. CONCLUSION: A systematic analysis of the results following differential stimulation of this model by growth factors and cytokines suggests that: (a) using Boolean network ensembles with asynchronous updating provides biologically plausible noisy individual cellular responses with reproducible mean behavior for large cell populations, and (b) with sufficient data our model can estimate the response to different concentrations of extracellular ligands. Our results suggest that this approach is both quantitative, allowing statistical verification and calibration, and extensible, allowing modification and revision as guided by experimental evidence. The simulation methodology is part of the US EPA Virtual Liver, which is investigating the effects of everyday contaminants on living tissues. Future models will incorporate additional crosstalk surrounding proliferation as well as the putative effects of xenobiotics on these signaling cascades within hepatocytes.
63 schema:genre research_article
64 schema:inLanguage en
65 schema:isAccessibleForFree true
66 schema:isPartOf N021f9ff76d334aedb0812989e966d93f
67 Na62a80f2385a4432b64217bcc9798575
68 sg:journal.1327442
69 schema:name Simulating Quantitative Cellular Responses Using Asynchronous Threshold Boolean Network Ensembles
70 schema:pagination 109
71 schema:productId N2452d3ae5f164d96b01ca1a686618cfb
72 N3bf5771cff12484ca67317b19a6b07b0
73 Nbedbb61bba67406d99ca3b9aab79aa92
74 Nd17f8f83b1014d9780f22c8cd2433055
75 Nf57a04374ebd47c78a40ce49287adf4a
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041264278
77 https://doi.org/10.1186/1752-0509-5-109
78 schema:sdDatePublished 2019-04-10T19:09
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N5c1b1fa9fbb24f15bf8eb7704be9a823
81 schema:url http://link.springer.com/10.1186%2F1752-0509-5-109
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N021f9ff76d334aedb0812989e966d93f schema:issueNumber 1
86 rdf:type schema:PublicationIssue
87 N0f3889b2e2b6425280864290d0d0dbf4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Reproducibility of Results
89 rdf:type schema:DefinedTerm
90 N20d9d8cdaa7c49a79a388da1b7ca9949 rdf:first sg:person.0711364373.40
91 rdf:rest N9a3c396405744362bcb17abfc570bb88
92 N2452d3ae5f164d96b01ca1a686618cfb schema:name pubmed_id
93 schema:value 21745399
94 rdf:type schema:PropertyValue
95 N2cfd0187fafa4d01bb08b88d2394e3f5 rdf:first sg:person.0615722546.51
96 rdf:rest N20d9d8cdaa7c49a79a388da1b7ca9949
97 N2d2c3926153d40b68ed4b448eb50cc0d schema:name National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
98 rdf:type schema:Organization
99 N2e9bcb1c2ce248c5a9a0581446dcf3e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Cell Line
101 rdf:type schema:DefinedTerm
102 N3bf5771cff12484ca67317b19a6b07b0 schema:name nlm_unique_id
103 schema:value 101301827
104 rdf:type schema:PropertyValue
105 N4349c4f96d1f4f7bb2efc5a72b5b1d58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Humans
107 rdf:type schema:DefinedTerm
108 N4ea8c827b3f843ebbfa4644faf644746 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Cells
110 rdf:type schema:DefinedTerm
111 N5c1b1fa9fbb24f15bf8eb7704be9a823 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N5d8407b6f86e451e957eab7ddf73a7ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Models, Biological
115 rdf:type schema:DefinedTerm
116 N76302df7e8964610979d81e22d46028f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Algorithms
118 rdf:type schema:DefinedTerm
119 N9a3c396405744362bcb17abfc570bb88 rdf:first sg:person.0756413731.45
120 rdf:rest rdf:nil
121 Na62a80f2385a4432b64217bcc9798575 schema:volumeNumber 5
122 rdf:type schema:PublicationVolume
123 Nbedbb61bba67406d99ca3b9aab79aa92 schema:name readcube_id
124 schema:value c491e33bc3e3872b6aded1aca096692a2159f6a484008d3ea2d4cc06b379e9e6
125 rdf:type schema:PropertyValue
126 Nc9e49df7ceca4354b6f25c4fa22219bb schema:name National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
127 rdf:type schema:Organization
128 Nd17f8f83b1014d9780f22c8cd2433055 schema:name dimensions_id
129 schema:value pub.1041264278
130 rdf:type schema:PropertyValue
131 Nd2a3851628404fa8944ef2b0ee58d36b schema:name National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
132 rdf:type schema:Organization
133 Neb0915f6948844469feb50a3a9ff82ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Signal Transduction
135 rdf:type schema:DefinedTerm
136 Nf13095a9d170445ab73fa8bbceddc3af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Proteins
138 rdf:type schema:DefinedTerm
139 Nf57a04374ebd47c78a40ce49287adf4a schema:name doi
140 schema:value 10.1186/1752-0509-5-109
141 rdf:type schema:PropertyValue
142 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
143 schema:name Biological Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
146 schema:name Biochemistry and Cell Biology
147 rdf:type schema:DefinedTerm
148 sg:journal.1327442 schema:issn 1752-0509
149 schema:name BMC Systems Biology
150 rdf:type schema:Periodical
151 sg:person.0615722546.51 schema:affiliation Nd2a3851628404fa8944ef2b0ee58d36b
152 schema:familyName Jack
153 schema:givenName John
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615722546.51
155 rdf:type schema:Person
156 sg:person.0711364373.40 schema:affiliation N2d2c3926153d40b68ed4b448eb50cc0d
157 schema:familyName Wambaugh
158 schema:givenName John F
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711364373.40
160 rdf:type schema:Person
161 sg:person.0756413731.45 schema:affiliation Nc9e49df7ceca4354b6f25c4fa22219bb
162 schema:familyName Shah
163 schema:givenName Imran
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756413731.45
165 rdf:type schema:Person
166 sg:pub.10.1038/nature04785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015546561
167 https://doi.org/10.1038/nature04785
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nature08012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050616550
170 https://doi.org/10.1038/nature08012
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nature09145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040793604
173 https://doi.org/10.1038/nature09145
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/ng1293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028461027
176 https://doi.org/10.1038/ng1293
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nrc2604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005305935
179 https://doi.org/10.1038/nrc2604
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/1752-0509-3-88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049793330
182 https://doi.org/10.1186/1752-0509-3-88
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/1752-0509-3-97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029130653
185 https://doi.org/10.1186/1752-0509-3-97
186 rdf:type schema:CreativeWork
187 https://app.dimensions.ai/details/publication/pub.1074554990 schema:CreativeWork
188 https://app.dimensions.ai/details/publication/pub.1083303199 schema:CreativeWork
189 https://doi.org/10.1002/hep.510260614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023881396
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1006/jtbi.2001.2335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027488275
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/0022-5193(69)90015-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023348122
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/0165-1110(90)90033-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018330842
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/0304-3835(95)03785-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1031039407
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.ces.2009.01.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022080951
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.jcrc.2007.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033120979
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/s0092-8674(00)81683-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031899717
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1038/msb.2009.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001748378
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1073/pnas.0305937101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053209982
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1073/pnas.0806447105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002068353
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1074/jbc.m103306200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010797218
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1078/1438-4639-00240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039986144
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1080/10937400490498075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015014668
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1080/10937404.2010.483948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010557605
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1080/10937404.2010.483949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039685717
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1088/0305-4470/20/11/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059068702
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1089/cmb.2005.12.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245349
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/bioinformatics/18.2.261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052758132
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/bioinformatics/btl210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656659
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/nar/gki072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037000820
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/nar/gkn653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021196532
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/nar/gkp896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013384337
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1093/toxsci/kfn255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038291421
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/toxsci/kfn258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039038422
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1098/rsif.2008.0132.focus schema:sameAs https://app.dimensions.ai/details/publication/pub.1025141340
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1101/gr.1239303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052744398
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1103/physreve.72.055101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036649683
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1103/physrevlett.95.048701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044044434
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1126/science.1160165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029297321
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1289/ehp.0800074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051921023
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1289/ehp.11502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044820334
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1371/journal.pcbi.1000438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031533572
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1371/journal.pcbi.1000756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041017607
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1371/journal.pone.0001672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025553048
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1371/journal.pone.0008040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005752161
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1529/biophysj.106.081240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028939320
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1677/jme.0.0330263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014845705
264 rdf:type schema:CreativeWork
265 https://doi.org/10.2203/dose-response.09-017.luke schema:sameAs https://app.dimensions.ai/details/publication/pub.1049431522
266 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...