The role of noise and positive feedback in the onset of autosomal dominant diseases View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

William J Bosl, Rong Li

ABSTRACT

BACKGROUND: Autosomal dominant (AD) diseases result when a single mutant or non-functioning gene is present on an autosomal chromosome. These diseases often do not emerge at birth. There are presently two prevailing theories explaining the expression of AD diseases. One explanation originates from the Knudson two-hit theory of hereditary cancers, where loss of heterozygosity or occurrence of somatic mutations impairs the function of the wild-type copy. While these somatic second hits may be sufficient for stable disease states, it is often difficult to determine if their occurrence necessarily marks the initiation of disease progression. A more direct consequence of a heterozygous genetic background is haploinsufficiency, referring to a lack of sufficient gene function due to reduced wild-type gene copy number; however, haploinsufficiency can involve a variety of additional mechanisms, such as noise in gene expression or protein levels, injury and second hit mutations in other genes. In this study, we explore the possible contribution to the onset of autosomal dominant diseases from intrinsic factors, such as those determined by the structure of the molecular networks governing normal cellular physiology. RESULTS: First, simple models of single gene insufficiency using the positive feedback loops that may be derived from a three-component network were studied by computer simulation using Bionet software. The network structure is shown to affect the dynamics considerably; some networks are relatively stable even when large stochastic variations in are present, while others exhibit switch-like dynamics. In the latter cases, once the network switches over to the disease state it remains in that state permanently. Model pathways for two autosomal dominant diseases, AD polycystic kidney disease and mature onset diabetes of youth (MODY) were simulated and the results are compared to known disease characteristics. CONCLUSIONS: By identifying the intrinsic mechanisms involved in the onset of AD diseases, it may be possible to better assess risk factors as well as lead to potential new drug targets. To illustrate the applicability of this study of pathway dynamics, we simulated the primary pathways involved in two autosomal dominant diseases, Polycystic Kidney Disease (PKD) and mature onset diabetes of youth (MODY). Simulations demonstrate that some of the primary disease characteristics are consistent with the positive feedback-stochastic variation theory presented here. This has implications for new drug targets to control these diseases by blocking the positive feedback loop in the relevant pathways. More... »

PAGES

93

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1752-0509-4-93

DOI

http://dx.doi.org/10.1186/1752-0509-4-93

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044409767

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20587063


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosome Disorders", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Progression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feedback, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Dominant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polycystic Kidney Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Systems Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard\u2013MIT Division of Health Sciences and Technology", 
          "id": "https://www.grid.ac/institutes/grid.413735.7", 
          "name": [
            "Harvard Medical School, 02115, Boston, MA, USA", 
            "Children's Hospital Informatics Program at Harvard-MIT Division of Health Sciences and Technology, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bosl", 
        "givenName": "William J", 
        "id": "sg:person.01354102706.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354102706.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stowers Institute for Medical Research", 
          "id": "https://www.grid.ac/institutes/grid.250820.d", 
          "name": [
            "Stowers Institute for Medical Research, 64110, Kansas City, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Rong", 
        "id": "sg:person.0655145177.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655145177.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.212386999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001297678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.51.8.2355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002119284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.4.1524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003071536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35101031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004164497", 
          "https://doi.org/10.1038/35101031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35101031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004164497", 
          "https://doi.org/10.1038/35101031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ndt/12.6.1089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005528673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(95)90339-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007892692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01366952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009380995", 
          "https://doi.org/10.1007/bf01366952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01366952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009380995", 
          "https://doi.org/10.1007/bf01366952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1196/annals.1339.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009672143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1196/annals.1339.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009672143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pbiomolbio.2004.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011822576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1478-3975/3/3/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012811633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016459201", 
          "https://doi.org/10.1038/nature05316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016459201", 
          "https://doi.org/10.1038/nature05316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016459201", 
          "https://doi.org/10.1038/nature05316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81793-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020543227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1097-138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021078714", 
          "https://doi.org/10.1038/ng1097-138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021157662", 
          "https://doi.org/10.1038/nrg1750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021157662", 
          "https://doi.org/10.1038/nrg1750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10897-006-9040-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025792798", 
          "https://doi.org/10.1007/s10897-006-9040-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028416110", 
          "https://doi.org/10.1038/nm1783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bies.20087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031686134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/bbrc.2001.4554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033001673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0888-7543(11)80001-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033413593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0040008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034663124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bies.10023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035135668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-1-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036710907", 
          "https://doi.org/10.1186/1752-0509-1-13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1886386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038373834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1535-6108(03)00047-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039081388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039408804", 
          "https://doi.org/10.1038/nature01546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039408804", 
          "https://doi.org/10.1038/nature01546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1105891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040232409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1046/j.1523-1755.1999.00659.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042219550", 
          "https://doi.org/10.1046/j.1523-1755.1999.00659.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra002168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042832507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-007-0833-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043357810", 
          "https://doi.org/10.1007/s00125-007-0833-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-007-0833-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043357810", 
          "https://doi.org/10.1007/s00125-007-0833-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-007-0833-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043357810", 
          "https://doi.org/10.1007/s00125-007-0833-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci22850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043441000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.68.4.820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043776590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci119090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044709852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.98.3.1182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046727046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1098-2744(200012)29:4<205::aid-mc1002>3.0.co;2-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047984629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0695-151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048967576", 
          "https://doi.org/10.1038/ng0695-151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81570-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051690131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2005.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052815216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.26.15641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053484189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1113834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.272.5266.1339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062553185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci15043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063415327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078928529", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "BACKGROUND: Autosomal dominant (AD) diseases result when a single mutant or non-functioning gene is present on an autosomal chromosome. These diseases often do not emerge at birth. There are presently two prevailing theories explaining the expression of AD diseases. One explanation originates from the Knudson two-hit theory of hereditary cancers, where loss of heterozygosity or occurrence of somatic mutations impairs the function of the wild-type copy. While these somatic second hits may be sufficient for stable disease states, it is often difficult to determine if their occurrence necessarily marks the initiation of disease progression. A more direct consequence of a heterozygous genetic background is haploinsufficiency, referring to a lack of sufficient gene function due to reduced wild-type gene copy number; however, haploinsufficiency can involve a variety of additional mechanisms, such as noise in gene expression or protein levels, injury and second hit mutations in other genes. In this study, we explore the possible contribution to the onset of autosomal dominant diseases from intrinsic factors, such as those determined by the structure of the molecular networks governing normal cellular physiology.\nRESULTS: First, simple models of single gene insufficiency using the positive feedback loops that may be derived from a three-component network were studied by computer simulation using Bionet software. The network structure is shown to affect the dynamics considerably; some networks are relatively stable even when large stochastic variations in are present, while others exhibit switch-like dynamics. In the latter cases, once the network switches over to the disease state it remains in that state permanently. Model pathways for two autosomal dominant diseases, AD polycystic kidney disease and mature onset diabetes of youth (MODY) were simulated and the results are compared to known disease characteristics.\nCONCLUSIONS: By identifying the intrinsic mechanisms involved in the onset of AD diseases, it may be possible to better assess risk factors as well as lead to potential new drug targets. To illustrate the applicability of this study of pathway dynamics, we simulated the primary pathways involved in two autosomal dominant diseases, Polycystic Kidney Disease (PKD) and mature onset diabetes of youth (MODY). Simulations demonstrate that some of the primary disease characteristics are consistent with the positive feedback-stochastic variation theory presented here. This has implications for new drug targets to control these diseases by blocking the positive feedback loop in the relevant pathways.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1752-0509-4-93", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2404589", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2516292", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1327442", 
        "issn": [
          "1752-0509"
        ], 
        "name": "BMC Systems Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "The role of noise and positive feedback in the onset of autosomal dominant diseases", 
    "pagination": "93", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d38a46a4a3efd96dc68fc583bc300435a9c09e6f538072217022828854e2ec3d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20587063"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101301827"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1752-0509-4-93"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044409767"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1752-0509-4-93", 
      "https://app.dimensions.ai/details/publication/pub.1044409767"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1752-0509-4-93"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-4-93'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-4-93'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-4-93'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-4-93'


 

This table displays all metadata directly associated to this object as RDF triples.

268 TRIPLES      21 PREDICATES      83 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1752-0509-4-93 schema:about N2fb81fe568104f809fc7b3fc1b795209
2 N32257a61f762406eaa2704d39d615a81
3 N3a89fcb30faa42dd9cbecdeeb767fe79
4 N423629366ae845a6aacf1a2c6c915e06
5 N47a5d5f848c144caa2264388c571d35f
6 N59c46cf9989348b9904996d13b118275
7 N5a6418a4048b4939841d0a85ef5ea54c
8 N7a9cb06d480447c78534541070edb6b1
9 N7bfa8df2bd3c486b8801e93847ec6ad8
10 N8045e72edb72481ab18394814b4059d5
11 N8bf48e7f1b5e4cdaa233854fc3b5ca54
12 Na07df5b6ca4340e790b1c9e6830cfd66
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author N9f79066002fb49bead7c41965c08170b
16 schema:citation sg:pub.10.1007/bf01366952
17 sg:pub.10.1007/s00125-007-0833-7
18 sg:pub.10.1007/s10897-006-9040-9
19 sg:pub.10.1038/35101031
20 sg:pub.10.1038/nature01546
21 sg:pub.10.1038/nature05316
22 sg:pub.10.1038/ng0695-151
23 sg:pub.10.1038/ng1097-138
24 sg:pub.10.1038/nm1783
25 sg:pub.10.1038/nrg1750
26 sg:pub.10.1046/j.1523-1755.1999.00659.x
27 sg:pub.10.1186/1752-0509-1-13
28 https://app.dimensions.ai/details/publication/pub.1078928529
29 https://doi.org/10.1002/1098-2744(200012)29:4<205::aid-mc1002>3.0.co;2-w
30 https://doi.org/10.1002/bies.10023
31 https://doi.org/10.1002/bies.20087
32 https://doi.org/10.1006/bbrc.2001.4554
33 https://doi.org/10.1016/0092-8674(95)90339-9
34 https://doi.org/10.1016/j.cell.2005.04.006
35 https://doi.org/10.1016/j.pbiomolbio.2004.11.004
36 https://doi.org/10.1016/s0092-8674(00)81570-6
37 https://doi.org/10.1016/s0092-8674(00)81793-6
38 https://doi.org/10.1016/s0888-7543(11)80001-7
39 https://doi.org/10.1016/s1535-6108(03)00047-3
40 https://doi.org/10.1056/nejmra002168
41 https://doi.org/10.1063/1.1886386
42 https://doi.org/10.1073/pnas.212386999
43 https://doi.org/10.1073/pnas.68.4.820
44 https://doi.org/10.1073/pnas.93.4.1524
45 https://doi.org/10.1073/pnas.95.26.15641
46 https://doi.org/10.1073/pnas.98.3.1182
47 https://doi.org/10.1088/1478-3975/3/3/005
48 https://doi.org/10.1093/ndt/12.6.1089
49 https://doi.org/10.1126/science.1105891
50 https://doi.org/10.1126/science.1113834
51 https://doi.org/10.1126/science.272.5266.1339
52 https://doi.org/10.1172/jci119090
53 https://doi.org/10.1172/jci15043
54 https://doi.org/10.1172/jci22850
55 https://doi.org/10.1196/annals.1339.018
56 https://doi.org/10.1371/journal.pcbi.0040008
57 https://doi.org/10.2337/diabetes.51.8.2355
58 schema:datePublished 2010-12
59 schema:datePublishedReg 2010-12-01
60 schema:description BACKGROUND: Autosomal dominant (AD) diseases result when a single mutant or non-functioning gene is present on an autosomal chromosome. These diseases often do not emerge at birth. There are presently two prevailing theories explaining the expression of AD diseases. One explanation originates from the Knudson two-hit theory of hereditary cancers, where loss of heterozygosity or occurrence of somatic mutations impairs the function of the wild-type copy. While these somatic second hits may be sufficient for stable disease states, it is often difficult to determine if their occurrence necessarily marks the initiation of disease progression. A more direct consequence of a heterozygous genetic background is haploinsufficiency, referring to a lack of sufficient gene function due to reduced wild-type gene copy number; however, haploinsufficiency can involve a variety of additional mechanisms, such as noise in gene expression or protein levels, injury and second hit mutations in other genes. In this study, we explore the possible contribution to the onset of autosomal dominant diseases from intrinsic factors, such as those determined by the structure of the molecular networks governing normal cellular physiology. RESULTS: First, simple models of single gene insufficiency using the positive feedback loops that may be derived from a three-component network were studied by computer simulation using Bionet software. The network structure is shown to affect the dynamics considerably; some networks are relatively stable even when large stochastic variations in are present, while others exhibit switch-like dynamics. In the latter cases, once the network switches over to the disease state it remains in that state permanently. Model pathways for two autosomal dominant diseases, AD polycystic kidney disease and mature onset diabetes of youth (MODY) were simulated and the results are compared to known disease characteristics. CONCLUSIONS: By identifying the intrinsic mechanisms involved in the onset of AD diseases, it may be possible to better assess risk factors as well as lead to potential new drug targets. To illustrate the applicability of this study of pathway dynamics, we simulated the primary pathways involved in two autosomal dominant diseases, Polycystic Kidney Disease (PKD) and mature onset diabetes of youth (MODY). Simulations demonstrate that some of the primary disease characteristics are consistent with the positive feedback-stochastic variation theory presented here. This has implications for new drug targets to control these diseases by blocking the positive feedback loop in the relevant pathways.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf N97eb9adeaf9942b6ae735f37bbe624f2
65 Nce8435b537644093a8a52a368ce5625a
66 sg:journal.1327442
67 schema:name The role of noise and positive feedback in the onset of autosomal dominant diseases
68 schema:pagination 93
69 schema:productId N1eb41550acb2428aa877b1636b9901d5
70 N38ea0bf1577e4c7c8cd081a2c28bb51b
71 N3a0eae35a0de4042b3569c80156caefb
72 N847b9f821c04439d92c422d417961987
73 Nbfd0ff91cea54160af19163d0930881f
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044409767
75 https://doi.org/10.1186/1752-0509-4-93
76 schema:sdDatePublished 2019-04-10T20:48
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Ne309e845517747c384adefeb8877106c
79 schema:url http://link.springer.com/10.1186%2F1752-0509-4-93
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N1eb41550acb2428aa877b1636b9901d5 schema:name readcube_id
84 schema:value d38a46a4a3efd96dc68fc583bc300435a9c09e6f538072217022828854e2ec3d
85 rdf:type schema:PropertyValue
86 N2fb81fe568104f809fc7b3fc1b795209 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Computer Simulation
88 rdf:type schema:DefinedTerm
89 N32257a61f762406eaa2704d39d615a81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Genes, Dominant
91 rdf:type schema:DefinedTerm
92 N38ea0bf1577e4c7c8cd081a2c28bb51b schema:name nlm_unique_id
93 schema:value 101301827
94 rdf:type schema:PropertyValue
95 N3a0eae35a0de4042b3569c80156caefb schema:name doi
96 schema:value 10.1186/1752-0509-4-93
97 rdf:type schema:PropertyValue
98 N3a89fcb30faa42dd9cbecdeeb767fe79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Disease Progression
100 rdf:type schema:DefinedTerm
101 N423629366ae845a6aacf1a2c6c915e06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Gene Regulatory Networks
103 rdf:type schema:DefinedTerm
104 N47a5d5f848c144caa2264388c571d35f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Chromosome Disorders
106 rdf:type schema:DefinedTerm
107 N59c46cf9989348b9904996d13b118275 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Polycystic Kidney Diseases
109 rdf:type schema:DefinedTerm
110 N5a6418a4048b4939841d0a85ef5ea54c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Systems Biology
112 rdf:type schema:DefinedTerm
113 N7a9cb06d480447c78534541070edb6b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Feedback, Physiological
115 rdf:type schema:DefinedTerm
116 N7bfa8df2bd3c486b8801e93847ec6ad8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Stochastic Processes
118 rdf:type schema:DefinedTerm
119 N8045e72edb72481ab18394814b4059d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Models, Biological
121 rdf:type schema:DefinedTerm
122 N847b9f821c04439d92c422d417961987 schema:name pubmed_id
123 schema:value 20587063
124 rdf:type schema:PropertyValue
125 N8bf48e7f1b5e4cdaa233854fc3b5ca54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Diabetes Mellitus, Type 2
127 rdf:type schema:DefinedTerm
128 N97eb9adeaf9942b6ae735f37bbe624f2 schema:issueNumber 1
129 rdf:type schema:PublicationIssue
130 N9f79066002fb49bead7c41965c08170b rdf:first sg:person.01354102706.12
131 rdf:rest Nc55a6849f69d4619b30f4f35cb40a817
132 Na07df5b6ca4340e790b1c9e6830cfd66 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Humans
134 rdf:type schema:DefinedTerm
135 Nbfd0ff91cea54160af19163d0930881f schema:name dimensions_id
136 schema:value pub.1044409767
137 rdf:type schema:PropertyValue
138 Nc55a6849f69d4619b30f4f35cb40a817 rdf:first sg:person.0655145177.65
139 rdf:rest rdf:nil
140 Nce8435b537644093a8a52a368ce5625a schema:volumeNumber 4
141 rdf:type schema:PublicationVolume
142 Ne309e845517747c384adefeb8877106c schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
145 schema:name Biological Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
148 schema:name Genetics
149 rdf:type schema:DefinedTerm
150 sg:grant.2404589 http://pending.schema.org/fundedItem sg:pub.10.1186/1752-0509-4-93
151 rdf:type schema:MonetaryGrant
152 sg:grant.2516292 http://pending.schema.org/fundedItem sg:pub.10.1186/1752-0509-4-93
153 rdf:type schema:MonetaryGrant
154 sg:journal.1327442 schema:issn 1752-0509
155 schema:name BMC Systems Biology
156 rdf:type schema:Periodical
157 sg:person.01354102706.12 schema:affiliation https://www.grid.ac/institutes/grid.413735.7
158 schema:familyName Bosl
159 schema:givenName William J
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354102706.12
161 rdf:type schema:Person
162 sg:person.0655145177.65 schema:affiliation https://www.grid.ac/institutes/grid.250820.d
163 schema:familyName Li
164 schema:givenName Rong
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655145177.65
166 rdf:type schema:Person
167 sg:pub.10.1007/bf01366952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009380995
168 https://doi.org/10.1007/bf01366952
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s00125-007-0833-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043357810
171 https://doi.org/10.1007/s00125-007-0833-7
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s10897-006-9040-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025792798
174 https://doi.org/10.1007/s10897-006-9040-9
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/35101031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004164497
177 https://doi.org/10.1038/35101031
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nature01546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039408804
180 https://doi.org/10.1038/nature01546
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nature05316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016459201
183 https://doi.org/10.1038/nature05316
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ng0695-151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048967576
186 https://doi.org/10.1038/ng0695-151
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/ng1097-138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021078714
189 https://doi.org/10.1038/ng1097-138
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nm1783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028416110
192 https://doi.org/10.1038/nm1783
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nrg1750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021157662
195 https://doi.org/10.1038/nrg1750
196 rdf:type schema:CreativeWork
197 sg:pub.10.1046/j.1523-1755.1999.00659.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042219550
198 https://doi.org/10.1046/j.1523-1755.1999.00659.x
199 rdf:type schema:CreativeWork
200 sg:pub.10.1186/1752-0509-1-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036710907
201 https://doi.org/10.1186/1752-0509-1-13
202 rdf:type schema:CreativeWork
203 https://app.dimensions.ai/details/publication/pub.1078928529 schema:CreativeWork
204 https://doi.org/10.1002/1098-2744(200012)29:4<205::aid-mc1002>3.0.co;2-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1047984629
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1002/bies.10023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035135668
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1002/bies.20087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031686134
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1006/bbrc.2001.4554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033001673
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/0092-8674(95)90339-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007892692
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.cell.2005.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052815216
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.pbiomolbio.2004.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011822576
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/s0092-8674(00)81570-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051690131
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/s0092-8674(00)81793-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020543227
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/s0888-7543(11)80001-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033413593
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/s1535-6108(03)00047-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039081388
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1056/nejmra002168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042832507
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1063/1.1886386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038373834
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1073/pnas.212386999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001297678
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1073/pnas.68.4.820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043776590
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1073/pnas.93.4.1524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003071536
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1073/pnas.95.26.15641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053484189
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1073/pnas.98.3.1182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046727046
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1088/1478-3975/3/3/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012811633
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/ndt/12.6.1089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005528673
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1126/science.1105891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040232409
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.1113834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452311
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.272.5266.1339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062553185
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1172/jci119090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044709852
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1172/jci15043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063415327
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1172/jci22850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043441000
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1196/annals.1339.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009672143
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1371/journal.pcbi.0040008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034663124
259 rdf:type schema:CreativeWork
260 https://doi.org/10.2337/diabetes.51.8.2355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002119284
261 rdf:type schema:CreativeWork
262 https://www.grid.ac/institutes/grid.250820.d schema:alternateName Stowers Institute for Medical Research
263 schema:name Stowers Institute for Medical Research, 64110, Kansas City, MO, USA
264 rdf:type schema:Organization
265 https://www.grid.ac/institutes/grid.413735.7 schema:alternateName Harvard–MIT Division of Health Sciences and Technology
266 schema:name Children's Hospital Informatics Program at Harvard-MIT Division of Health Sciences and Technology, 02115, Boston, MA, USA
267 Harvard Medical School, 02115, Boston, MA, USA
268 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...