ChemChains: a platform for simulation and analysis of biochemical networks aimed to laboratory scientists View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-12

AUTHORS

Tomáš Helikar, Jim A Rogers

ABSTRACT

BACKGROUND: New mathematical models of complex biological structures and computer simulation software allow modelers to simulate and analyze biochemical systems in silico and form mathematical predictions. Due to this potential predictive ability, the use of these models and software has the possibility to compliment laboratory investigations and help refine, or even develop, new hypotheses. However, the existing mathematical modeling techniques and simulation tools are often difficult to use by laboratory biologists without training in high-level mathematics, limiting their use to trained modelers. RESULTS: We have developed a Boolean network-based simulation and analysis software tool, ChemChains, which combines the advantages of the parameter-free nature of logical models while providing the ability for users to interact with their models in a continuous manner, similar to the way laboratory biologists interact with laboratory data. ChemChains allows users to simulate models in an automatic fashion under tens of thousands of different external environments, as well as perform various mutational studies. CONCLUSION: ChemChains combines the advantages of logical and continuous modeling and provides a way for laboratory biologists to perform in silico experiments on mathematical models easily, a necessary component of laboratory research in the systems biology era. More... »

PAGES

58

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1752-0509-3-58

DOI

http://dx.doi.org/10.1186/1752-0509-3-58

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037902586

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19500393


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Automatic Data Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feedback, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Laboratories", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Personnel", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ras Proteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Nebraska Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.266813.8", 
          "name": [
            "Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, 68198, Omaha, NE, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Helikar", 
        "givenName": "Tom\u00e1\u0161", 
        "id": "sg:person.01210600565.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210600565.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nebraska at Omaha", 
          "id": "https://www.grid.ac/institutes/grid.266815.e", 
          "name": [
            "Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, 68198, Omaha, NE, USA", 
            "Department of Mathematics, University of Nebraska, 6001 Dodge Street, 68182, Omaha, NE, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rogers", 
        "givenName": "Jim A", 
        "id": "sg:person.01146326465.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146326465.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0962-8924(99)01668-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003219212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003717207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcb.2003.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017065888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tcb.2003.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017065888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scisignal.2000008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018816787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023587035", 
          "https://doi.org/10.1038/nature01254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023587035", 
          "https://doi.org/10.1038/nature01254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023587035", 
          "https://doi.org/10.1038/nature01254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-1-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024399429", 
          "https://doi.org/10.1186/1752-0509-1-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystems.2005.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026872301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1535-7163.mct-04-0297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031877232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034464810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bies.20834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035597526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037837492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1478-5382(03)02370-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038331374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/15.1.72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039270933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044351825", 
          "https://doi.org/10.1186/1471-2105-7-482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048042523", 
          "https://doi.org/10.1186/1471-2105-8-462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0705088105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049279196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1069492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050549261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/10665270252833208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1119959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scisignal.142eg6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062681983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1517/14622416.2.3.203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067587662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077010744", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "BACKGROUND: New mathematical models of complex biological structures and computer simulation software allow modelers to simulate and analyze biochemical systems in silico and form mathematical predictions. Due to this potential predictive ability, the use of these models and software has the possibility to compliment laboratory investigations and help refine, or even develop, new hypotheses. However, the existing mathematical modeling techniques and simulation tools are often difficult to use by laboratory biologists without training in high-level mathematics, limiting their use to trained modelers.\nRESULTS: We have developed a Boolean network-based simulation and analysis software tool, ChemChains, which combines the advantages of the parameter-free nature of logical models while providing the ability for users to interact with their models in a continuous manner, similar to the way laboratory biologists interact with laboratory data. ChemChains allows users to simulate models in an automatic fashion under tens of thousands of different external environments, as well as perform various mutational studies.\nCONCLUSION: ChemChains combines the advantages of logical and continuous modeling and provides a way for laboratory biologists to perform in silico experiments on mathematical models easily, a necessary component of laboratory research in the systems biology era.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1752-0509-3-58", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2517801", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1327442", 
        "issn": [
          "1752-0509"
        ], 
        "name": "BMC Systems Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "ChemChains: a platform for simulation and analysis of biochemical networks aimed to laboratory scientists", 
    "pagination": "58", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b48e2e5774e8584d9a2af94efa037740d6930b614682a2b3a26753630462f4a7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19500393"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101301827"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1752-0509-3-58"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037902586"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1752-0509-3-58", 
      "https://app.dimensions.ai/details/publication/pub.1037902586"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1752-0509-3-58"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-3-58'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-3-58'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-3-58'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-3-58'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      62 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1752-0509-3-58 schema:about N2551f00095e24b67823dcb36d42a41a6
2 N471be7ed74fa45a8a6c64f3d784e3208
3 N611d7467ef1e4ce3a495e9b7526317d9
4 N65ca079119ba492299033edd8e8e0064
5 N83cef3d2b4014383b51619ac86c5d2d4
6 N9d5715dc3ed3499d8f0868cdaf13c592
7 Nbc8b0d3fc0aa429fbe6b920e7790e18e
8 Nc4c02808517e49a1a2c2f2a87681603c
9 Ncd36bf54d7b743cea935294046dc2288
10 Nd6c74a63b9ef479a88428734709b21b7
11 Ned8ff6825b1549fd85042d07948600ce
12 anzsrc-for:01
13 anzsrc-for:0102
14 schema:author N02f6eba1142040a79d76bb8b1281037c
15 schema:citation sg:pub.10.1038/nature01254
16 sg:pub.10.1186/1471-2105-7-482
17 sg:pub.10.1186/1471-2105-8-462
18 sg:pub.10.1186/1752-0509-1-2
19 https://app.dimensions.ai/details/publication/pub.1077010744
20 https://doi.org/10.1002/bies.20834
21 https://doi.org/10.1016/j.biosystems.2005.10.003
22 https://doi.org/10.1016/j.tcb.2003.09.002
23 https://doi.org/10.1016/s0962-8924(99)01668-2
24 https://doi.org/10.1016/s1478-5382(03)02370-9
25 https://doi.org/10.1073/pnas.0705088105
26 https://doi.org/10.1089/10665270252833208
27 https://doi.org/10.1093/bioinformatics/15.1.72
28 https://doi.org/10.1093/bioinformatics/btg015
29 https://doi.org/10.1093/bioinformatics/btg042
30 https://doi.org/10.1126/science.1069492
31 https://doi.org/10.1126/science.1119959
32 https://doi.org/10.1126/scisignal.142eg6
33 https://doi.org/10.1126/scisignal.2000008
34 https://doi.org/10.1158/1535-7163.mct-04-0297
35 https://doi.org/10.1371/journal.pcbi.0030163
36 https://doi.org/10.1517/14622416.2.3.203
37 schema:datePublished 2009-12
38 schema:datePublishedReg 2009-12-01
39 schema:description BACKGROUND: New mathematical models of complex biological structures and computer simulation software allow modelers to simulate and analyze biochemical systems in silico and form mathematical predictions. Due to this potential predictive ability, the use of these models and software has the possibility to compliment laboratory investigations and help refine, or even develop, new hypotheses. However, the existing mathematical modeling techniques and simulation tools are often difficult to use by laboratory biologists without training in high-level mathematics, limiting their use to trained modelers. RESULTS: We have developed a Boolean network-based simulation and analysis software tool, ChemChains, which combines the advantages of the parameter-free nature of logical models while providing the ability for users to interact with their models in a continuous manner, similar to the way laboratory biologists interact with laboratory data. ChemChains allows users to simulate models in an automatic fashion under tens of thousands of different external environments, as well as perform various mutational studies. CONCLUSION: ChemChains combines the advantages of logical and continuous modeling and provides a way for laboratory biologists to perform in silico experiments on mathematical models easily, a necessary component of laboratory research in the systems biology era.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N1ee6dda713a04e5692aff2ef1154115a
44 N637bfe2f852d43bbbb51b259dada4b8b
45 sg:journal.1327442
46 schema:name ChemChains: a platform for simulation and analysis of biochemical networks aimed to laboratory scientists
47 schema:pagination 58
48 schema:productId N30dbd375ae6b41a8aa0925beea4317b8
49 Nc3fe1c01c60f4db1850760f8192f1c62
50 Nc570d24f28ed44efaceaf5895ee11960
51 Nd585beaf638449138e3ff6f207835359
52 Nfcadc478ffae45248c34988ae1296df4
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037902586
54 https://doi.org/10.1186/1752-0509-3-58
55 schema:sdDatePublished 2019-04-10T15:52
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nd7a3d0371cf148cdabb143c6c61866dd
58 schema:url http://link.springer.com/10.1186%2F1752-0509-3-58
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N02f6eba1142040a79d76bb8b1281037c rdf:first sg:person.01210600565.65
63 rdf:rest Nd26bdce25f0f479995302bec7b9855b3
64 N1ee6dda713a04e5692aff2ef1154115a schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 N2551f00095e24b67823dcb36d42a41a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name ras Proteins
68 rdf:type schema:DefinedTerm
69 N30dbd375ae6b41a8aa0925beea4317b8 schema:name dimensions_id
70 schema:value pub.1037902586
71 rdf:type schema:PropertyValue
72 N471be7ed74fa45a8a6c64f3d784e3208 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Computer Simulation
74 rdf:type schema:DefinedTerm
75 N611d7467ef1e4ce3a495e9b7526317d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Computational Biology
77 rdf:type schema:DefinedTerm
78 N637bfe2f852d43bbbb51b259dada4b8b schema:volumeNumber 3
79 rdf:type schema:PublicationVolume
80 N65ca079119ba492299033edd8e8e0064 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Time Factors
82 rdf:type schema:DefinedTerm
83 N83cef3d2b4014383b51619ac86c5d2d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Feedback, Physiological
85 rdf:type schema:DefinedTerm
86 N9d5715dc3ed3499d8f0868cdaf13c592 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Research Personnel
88 rdf:type schema:DefinedTerm
89 Nbc8b0d3fc0aa429fbe6b920e7790e18e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Laboratories
91 rdf:type schema:DefinedTerm
92 Nc3fe1c01c60f4db1850760f8192f1c62 schema:name doi
93 schema:value 10.1186/1752-0509-3-58
94 rdf:type schema:PropertyValue
95 Nc4c02808517e49a1a2c2f2a87681603c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Automatic Data Processing
97 rdf:type schema:DefinedTerm
98 Nc570d24f28ed44efaceaf5895ee11960 schema:name nlm_unique_id
99 schema:value 101301827
100 rdf:type schema:PropertyValue
101 Ncd36bf54d7b743cea935294046dc2288 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Models, Biological
103 rdf:type schema:DefinedTerm
104 Nd26bdce25f0f479995302bec7b9855b3 rdf:first sg:person.01146326465.48
105 rdf:rest rdf:nil
106 Nd585beaf638449138e3ff6f207835359 schema:name pubmed_id
107 schema:value 19500393
108 rdf:type schema:PropertyValue
109 Nd6c74a63b9ef479a88428734709b21b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Software
111 rdf:type schema:DefinedTerm
112 Nd7a3d0371cf148cdabb143c6c61866dd schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Ned8ff6825b1549fd85042d07948600ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Research Design
116 rdf:type schema:DefinedTerm
117 Nfcadc478ffae45248c34988ae1296df4 schema:name readcube_id
118 schema:value b48e2e5774e8584d9a2af94efa037740d6930b614682a2b3a26753630462f4a7
119 rdf:type schema:PropertyValue
120 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
121 schema:name Mathematical Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
124 schema:name Applied Mathematics
125 rdf:type schema:DefinedTerm
126 sg:grant.2517801 http://pending.schema.org/fundedItem sg:pub.10.1186/1752-0509-3-58
127 rdf:type schema:MonetaryGrant
128 sg:journal.1327442 schema:issn 1752-0509
129 schema:name BMC Systems Biology
130 rdf:type schema:Periodical
131 sg:person.01146326465.48 schema:affiliation https://www.grid.ac/institutes/grid.266815.e
132 schema:familyName Rogers
133 schema:givenName Jim A
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146326465.48
135 rdf:type schema:Person
136 sg:person.01210600565.65 schema:affiliation https://www.grid.ac/institutes/grid.266813.8
137 schema:familyName Helikar
138 schema:givenName Tomáš
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210600565.65
140 rdf:type schema:Person
141 sg:pub.10.1038/nature01254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023587035
142 https://doi.org/10.1038/nature01254
143 rdf:type schema:CreativeWork
144 sg:pub.10.1186/1471-2105-7-482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044351825
145 https://doi.org/10.1186/1471-2105-7-482
146 rdf:type schema:CreativeWork
147 sg:pub.10.1186/1471-2105-8-462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048042523
148 https://doi.org/10.1186/1471-2105-8-462
149 rdf:type schema:CreativeWork
150 sg:pub.10.1186/1752-0509-1-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024399429
151 https://doi.org/10.1186/1752-0509-1-2
152 rdf:type schema:CreativeWork
153 https://app.dimensions.ai/details/publication/pub.1077010744 schema:CreativeWork
154 https://doi.org/10.1002/bies.20834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035597526
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.biosystems.2005.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026872301
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.tcb.2003.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017065888
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0962-8924(99)01668-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003219212
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s1478-5382(03)02370-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038331374
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1073/pnas.0705088105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049279196
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1089/10665270252833208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204918
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/bioinformatics/15.1.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039270933
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/bioinformatics/btg015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037837492
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/bioinformatics/btg042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003717207
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1126/science.1069492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050549261
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1126/science.1119959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452739
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1126/scisignal.142eg6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062681983
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1126/scisignal.2000008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018816787
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1158/1535-7163.mct-04-0297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031877232
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1371/journal.pcbi.0030163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034464810
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1517/14622416.2.3.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067587662
187 rdf:type schema:CreativeWork
188 https://www.grid.ac/institutes/grid.266813.8 schema:alternateName University of Nebraska Medical Center
189 schema:name Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, 68198, Omaha, NE, USA
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.266815.e schema:alternateName University of Nebraska at Omaha
192 schema:name Department of Mathematics, University of Nebraska, 6001 Dodge Street, 68182, Omaha, NE, USA
193 Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, 68198, Omaha, NE, USA
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...