Genome-scale constraint-based modeling of Geobacter metallireducens View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-12

AUTHORS

Jun Sun, Bahareh Sayyar, Jessica E Butler, Priti Pharkya, Tom R Fahland, Iman Famili, Christophe H Schilling, Derek R Lovley, Radhakrishnan Mahadevan

ABSTRACT

BACKGROUND: Geobacter metallireducens was the first organism that can be grown in pure culture to completely oxidize organic compounds with Fe(III) oxide serving as electron acceptor. Geobacter species, including G. sulfurreducens and G. metallireducens, are used for bioremediation and electricity generation from waste organic matter and renewable biomass. The constraint-based modeling approach enables the development of genome-scale in silico models that can predict the behavior of complex biological systems and their responses to the environments. Such a modeling approach was applied to provide physiological and ecological insights on the metabolism of G. metallireducens. RESULTS: The genome-scale metabolic model of G. metallireducens was constructed to include 747 genes and 697 reactions. Compared to the G. sulfurreducens model, the G. metallireducens metabolic model contains 118 unique reactions that reflect many of G. metallireducens' specific metabolic capabilities. Detailed examination of the G. metallireducens model suggests that its central metabolism contains several energy-inefficient reactions that are not present in the G. sulfurreducens model. Experimental biomass yield of G. metallireducens growing on pyruvate was lower than the predicted optimal biomass yield. Microarray data of G. metallireducens growing with benzoate and acetate indicated that genes encoding these energy-inefficient reactions were up-regulated by benzoate. These results suggested that the energy-inefficient reactions were likely turned off during G. metallireducens growth with acetate for optimal biomass yield, but were up-regulated during growth with complex electron donors such as benzoate for rapid energy generation. Furthermore, several computational modeling approaches were applied to accelerate G. metallireducens research. For example, growth of G. metallireducens with different electron donors and electron acceptors were studied using the genome-scale metabolic model, which provided a fast and cost-effective way to understand the metabolism of G. metallireducens. CONCLUSION: We have developed a genome-scale metabolic model for G. metallireducens that features both metabolic similarities and differences to the published model for its close relative, G. sulfurreducens. Together these metabolic models provide an important resource for improving strategies on bioremediation and bioenergy generation. More... »

PAGES

15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1752-0509-3-15

DOI

http://dx.doi.org/10.1186/1752-0509-3-15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024079562

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19175927


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biodegradation, Environmental", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ecosystem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electron Transport", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Energy Metabolism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Geobacter", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iron", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Networks and Pathways", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Species Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Systems Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Genomatica (United States)", 
          "id": "https://www.grid.ac/institutes/grid.420355.5", 
          "name": [
            "Genomatica Inc, 10520 Wateridge Circle, San Diego, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Jun", 
        "id": "sg:person.01137005664.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137005664.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sayyar", 
        "givenName": "Bahareh", 
        "id": "sg:person.0654236304.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654236304.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Amherst", 
          "id": "https://www.grid.ac/institutes/grid.266683.f", 
          "name": [
            "Department of Microbiology, University of Massachusetts, Amherst, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Butler", 
        "givenName": "Jessica E", 
        "id": "sg:person.0700566340.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700566340.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomatica (United States)", 
          "id": "https://www.grid.ac/institutes/grid.420355.5", 
          "name": [
            "Genomatica Inc, 10520 Wateridge Circle, San Diego, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pharkya", 
        "givenName": "Priti", 
        "id": "sg:person.01321347464.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321347464.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomatica (United States)", 
          "id": "https://www.grid.ac/institutes/grid.420355.5", 
          "name": [
            "Genomatica Inc, 10520 Wateridge Circle, San Diego, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fahland", 
        "givenName": "Tom R", 
        "id": "sg:person.01335712343.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335712343.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomatica (United States)", 
          "id": "https://www.grid.ac/institutes/grid.420355.5", 
          "name": [
            "Genomatica Inc, 10520 Wateridge Circle, San Diego, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Famili", 
        "givenName": "Iman", 
        "id": "sg:person.01157655733.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157655733.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Genomatica (United States)", 
          "id": "https://www.grid.ac/institutes/grid.420355.5", 
          "name": [
            "Genomatica Inc, 10520 Wateridge Circle, San Diego, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schilling", 
        "givenName": "Christophe H", 
        "id": "sg:person.0644362024.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644362024.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Amherst", 
          "id": "https://www.grid.ac/institutes/grid.266683.f", 
          "name": [
            "Department of Microbiology, University of Massachusetts, Amherst, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lovley", 
        "givenName": "Derek R", 
        "id": "sg:person.0710465122.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710465122.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahadevan", 
        "givenName": "Radhakrishnan", 
        "id": "sg:person.01317257247.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317257247.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00248-003-0004-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001221949", 
          "https://doi.org/10.1007/s00248-003-0004-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00248-003-0004-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001221949", 
          "https://doi.org/10.1007/s00248-003-0004-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2911(04)49005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001585076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001987331", 
          "https://doi.org/10.1038/nrmicro1442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001987331", 
          "https://doi.org/10.1038/nrmicro1442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.01444-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003741781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.10.5528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005244921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007246617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007246617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00290916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009864620", 
          "https://doi.org/10.1007/bf00290916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.02986-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013737693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.70.5.3091-3095.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014558332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/ijs.0.64221-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015624533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.186.9.2897-2899.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018914223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.72.2.1558-1568.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019088985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-8-180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019660727", 
          "https://doi.org/10.1186/1471-2164-8-180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.2005.04909.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019671288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.2005.04909.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019671288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.2546004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020145522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.66.9.3743-3749.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020229604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.188.2.450-455.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021130738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2003-4-9-r54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027511348", 
          "https://doi.org/10.1186/gb-2003-4-9-r54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020454831407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029780451", 
          "https://doi.org/10.1023/a:1020454831407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.69.3.1548-1555.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030014633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/ijs.0.63417-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030869038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-0004(00)01754-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031798241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymben.2008.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033857783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1997.00840.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034011826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.67.8.3750-3752.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035086625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/014904502317246200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037309861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2006.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038265415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039118797", 
          "https://doi.org/10.1038/nature03661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039118797", 
          "https://doi.org/10.1038/nature03661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039118797", 
          "https://doi.org/10.1038/nature03661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039118797", 
          "https://doi.org/10.1038/nature03661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/339297a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041930656", 
          "https://doi.org/10.1038/339297a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042206621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042206621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m703759200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043652954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1066771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044161557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.00260-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044667147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2005.00731.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045341777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077157346", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077157636", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077158244", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082399300", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "BACKGROUND: Geobacter metallireducens was the first organism that can be grown in pure culture to completely oxidize organic compounds with Fe(III) oxide serving as electron acceptor. Geobacter species, including G. sulfurreducens and G. metallireducens, are used for bioremediation and electricity generation from waste organic matter and renewable biomass. The constraint-based modeling approach enables the development of genome-scale in silico models that can predict the behavior of complex biological systems and their responses to the environments. Such a modeling approach was applied to provide physiological and ecological insights on the metabolism of G. metallireducens.\nRESULTS: The genome-scale metabolic model of G. metallireducens was constructed to include 747 genes and 697 reactions. Compared to the G. sulfurreducens model, the G. metallireducens metabolic model contains 118 unique reactions that reflect many of G. metallireducens' specific metabolic capabilities. Detailed examination of the G. metallireducens model suggests that its central metabolism contains several energy-inefficient reactions that are not present in the G. sulfurreducens model. Experimental biomass yield of G. metallireducens growing on pyruvate was lower than the predicted optimal biomass yield. Microarray data of G. metallireducens growing with benzoate and acetate indicated that genes encoding these energy-inefficient reactions were up-regulated by benzoate. These results suggested that the energy-inefficient reactions were likely turned off during G. metallireducens growth with acetate for optimal biomass yield, but were up-regulated during growth with complex electron donors such as benzoate for rapid energy generation. Furthermore, several computational modeling approaches were applied to accelerate G. metallireducens research. For example, growth of G. metallireducens with different electron donors and electron acceptors were studied using the genome-scale metabolic model, which provided a fast and cost-effective way to understand the metabolism of G. metallireducens.\nCONCLUSION: We have developed a genome-scale metabolic model for G. metallireducens that features both metabolic similarities and differences to the published model for its close relative, G. sulfurreducens. Together these metabolic models provide an important resource for improving strategies on bioremediation and bioenergy generation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1752-0509-3-15", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4122941", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1327442", 
        "issn": [
          "1752-0509"
        ], 
        "name": "BMC Systems Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Genome-scale constraint-based modeling of Geobacter metallireducens", 
    "pagination": "15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "72b89bc7c273197b45ba704c4200a688f17fb65973b68bc1aa740cec5949dd7b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19175927"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101301827"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1752-0509-3-15"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024079562"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1752-0509-3-15", 
      "https://app.dimensions.ai/details/publication/pub.1024079562"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1752-0509-3-15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-3-15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-3-15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-3-15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-3-15'


 

This table displays all metadata directly associated to this object as RDF triples.

314 TRIPLES      21 PREDICATES      83 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1752-0509-3-15 schema:about N1836344ff6e844d7b4d697c602dff990
2 N332f3be0460840768fad265eca742d57
3 N51fae1903d514ae4bc91d791ad291059
4 N59d5aebbd15a44a9bfb498c4451f8748
5 N645f5e1c8ea346bfa6e7a6915e65d553
6 N6d6c9f4fd2cf47f0aa2a25dbfda4868c
7 N6e473cf64d264bd6ba53dfff583d2a65
8 N80e3c5ab0d1845c18327dd172c497919
9 N9bcbababcc3d4124912ba16a8ee0deb5
10 N9d5bfc2b4a8d40418949a3ac7921403c
11 Nb73f11805f7e410fb588ca4694027569
12 Nca484baabe34454085bccbdd95962f32
13 Ndbf1bd73ca4545dbb819aa584ac73a05
14 Ndd7200503e9e494a8917b1ec06e60309
15 Ne7cea10111d244d0b6768adb3293b8bc
16 Nf108ae2d9ea84b9a83196e8121df6c2d
17 anzsrc-for:06
18 anzsrc-for:0604
19 schema:author N84f2ca36c63b43cbb5cde313cafc6893
20 schema:citation sg:pub.10.1007/bf00290916
21 sg:pub.10.1007/s00248-003-0004-4
22 sg:pub.10.1023/a:1020454831407
23 sg:pub.10.1038/339297a0
24 sg:pub.10.1038/nature03661
25 sg:pub.10.1038/nrmicro1442
26 sg:pub.10.1186/1471-2164-8-180
27 sg:pub.10.1186/gb-2003-4-9-r54
28 https://app.dimensions.ai/details/publication/pub.1077157346
29 https://app.dimensions.ai/details/publication/pub.1077157636
30 https://app.dimensions.ai/details/publication/pub.1077158244
31 https://app.dimensions.ai/details/publication/pub.1082399300
32 https://doi.org/10.1016/j.copbio.2006.04.006
33 https://doi.org/10.1016/j.ymben.2008.06.005
34 https://doi.org/10.1016/s0065-2911(04)49005-5
35 https://doi.org/10.1016/s0968-0004(00)01754-0
36 https://doi.org/10.1038/msb4100155
37 https://doi.org/10.1038/msb4100162
38 https://doi.org/10.1073/pnas.97.10.5528
39 https://doi.org/10.1074/jbc.m703759200
40 https://doi.org/10.1080/014904502317246200
41 https://doi.org/10.1099/ijs.0.63417-0
42 https://doi.org/10.1099/ijs.0.64221-0
43 https://doi.org/10.1101/gr.2546004
44 https://doi.org/10.1111/j.1365-2958.2005.04909.x
45 https://doi.org/10.1111/j.1432-1033.1997.00840.x
46 https://doi.org/10.1111/j.1462-2920.2005.00731.x
47 https://doi.org/10.1126/science.1066771
48 https://doi.org/10.1128/aem.01444-06
49 https://doi.org/10.1128/aem.02986-06
50 https://doi.org/10.1128/aem.66.9.3743-3749.2000
51 https://doi.org/10.1128/aem.67.8.3750-3752.2001
52 https://doi.org/10.1128/aem.69.3.1548-1555.2003
53 https://doi.org/10.1128/aem.70.5.3091-3095.2004
54 https://doi.org/10.1128/aem.72.2.1558-1568.2006
55 https://doi.org/10.1128/jb.00260-07
56 https://doi.org/10.1128/jb.186.9.2897-2899.2004
57 https://doi.org/10.1128/jb.188.2.450-455.2006
58 schema:datePublished 2009-12
59 schema:datePublishedReg 2009-12-01
60 schema:description BACKGROUND: Geobacter metallireducens was the first organism that can be grown in pure culture to completely oxidize organic compounds with Fe(III) oxide serving as electron acceptor. Geobacter species, including G. sulfurreducens and G. metallireducens, are used for bioremediation and electricity generation from waste organic matter and renewable biomass. The constraint-based modeling approach enables the development of genome-scale in silico models that can predict the behavior of complex biological systems and their responses to the environments. Such a modeling approach was applied to provide physiological and ecological insights on the metabolism of G. metallireducens. RESULTS: The genome-scale metabolic model of G. metallireducens was constructed to include 747 genes and 697 reactions. Compared to the G. sulfurreducens model, the G. metallireducens metabolic model contains 118 unique reactions that reflect many of G. metallireducens' specific metabolic capabilities. Detailed examination of the G. metallireducens model suggests that its central metabolism contains several energy-inefficient reactions that are not present in the G. sulfurreducens model. Experimental biomass yield of G. metallireducens growing on pyruvate was lower than the predicted optimal biomass yield. Microarray data of G. metallireducens growing with benzoate and acetate indicated that genes encoding these energy-inefficient reactions were up-regulated by benzoate. These results suggested that the energy-inefficient reactions were likely turned off during G. metallireducens growth with acetate for optimal biomass yield, but were up-regulated during growth with complex electron donors such as benzoate for rapid energy generation. Furthermore, several computational modeling approaches were applied to accelerate G. metallireducens research. For example, growth of G. metallireducens with different electron donors and electron acceptors were studied using the genome-scale metabolic model, which provided a fast and cost-effective way to understand the metabolism of G. metallireducens. CONCLUSION: We have developed a genome-scale metabolic model for G. metallireducens that features both metabolic similarities and differences to the published model for its close relative, G. sulfurreducens. Together these metabolic models provide an important resource for improving strategies on bioremediation and bioenergy generation.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf Ne919e58a386248c58c50c757591135dd
65 Nf15e967d12564db989bd77f6396a21fc
66 sg:journal.1327442
67 schema:name Genome-scale constraint-based modeling of Geobacter metallireducens
68 schema:pagination 15
69 schema:productId N47129c25cd28452f9b832c3b97a5474f
70 N4919d8f782684a1caa93c74c80afd7e9
71 N4c6240cf6ca64d36afb679c04278e446
72 N8a03147279714e9b8d4b9a5c24a2cfb1
73 Nf618e575c376441ab611212b81a76a5b
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024079562
75 https://doi.org/10.1186/1752-0509-3-15
76 schema:sdDatePublished 2019-04-10T16:42
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N7454f3087b734da382c6c0b3689021d8
79 schema:url http://link.springer.com/10.1186%2F1752-0509-3-15
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N0cc2a497ffe246edbc4599365e3ffea8 rdf:first sg:person.0710465122.89
84 rdf:rest Nf629654eecd94be7a40b41629a6ef6a4
85 N1836344ff6e844d7b4d697c602dff990 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Genome, Bacterial
87 rdf:type schema:DefinedTerm
88 N332f3be0460840768fad265eca742d57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Electron Transport
90 rdf:type schema:DefinedTerm
91 N448109c1b4af4f1da5e986cc04f9848d rdf:first sg:person.0644362024.25
92 rdf:rest N0cc2a497ffe246edbc4599365e3ffea8
93 N47129c25cd28452f9b832c3b97a5474f schema:name dimensions_id
94 schema:value pub.1024079562
95 rdf:type schema:PropertyValue
96 N4919d8f782684a1caa93c74c80afd7e9 schema:name nlm_unique_id
97 schema:value 101301827
98 rdf:type schema:PropertyValue
99 N4c6240cf6ca64d36afb679c04278e446 schema:name readcube_id
100 schema:value 72b89bc7c273197b45ba704c4200a688f17fb65973b68bc1aa740cec5949dd7b
101 rdf:type schema:PropertyValue
102 N51fae1903d514ae4bc91d791ad291059 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Phenotype
104 rdf:type schema:DefinedTerm
105 N59d5aebbd15a44a9bfb498c4451f8748 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Models, Biological
107 rdf:type schema:DefinedTerm
108 N645f5e1c8ea346bfa6e7a6915e65d553 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Ecosystem
110 rdf:type schema:DefinedTerm
111 N6d6c9f4fd2cf47f0aa2a25dbfda4868c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Geobacter
113 rdf:type schema:DefinedTerm
114 N6e473cf64d264bd6ba53dfff583d2a65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Iron
116 rdf:type schema:DefinedTerm
117 N7454f3087b734da382c6c0b3689021d8 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 N7797b3bd277746ab8febdd0656dd4572 rdf:first sg:person.0654236304.04
120 rdf:rest N9854763bdf6e479f903838d307246ac5
121 N7e161479021a44df9e3be7fd2473653e rdf:first sg:person.01321347464.04
122 rdf:rest Nf9b2367d2bac47d4843d5b10f4a58190
123 N80e3c5ab0d1845c18327dd172c497919 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Mutation
125 rdf:type schema:DefinedTerm
126 N84f2ca36c63b43cbb5cde313cafc6893 rdf:first sg:person.01137005664.45
127 rdf:rest N7797b3bd277746ab8febdd0656dd4572
128 N8a03147279714e9b8d4b9a5c24a2cfb1 schema:name doi
129 schema:value 10.1186/1752-0509-3-15
130 rdf:type schema:PropertyValue
131 N9854763bdf6e479f903838d307246ac5 rdf:first sg:person.0700566340.40
132 rdf:rest N7e161479021a44df9e3be7fd2473653e
133 N9bcbababcc3d4124912ba16a8ee0deb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Energy Metabolism
135 rdf:type schema:DefinedTerm
136 N9d5bfc2b4a8d40418949a3ac7921403c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Biomass
138 rdf:type schema:DefinedTerm
139 Nb73f11805f7e410fb588ca4694027569 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Models, Genetic
141 rdf:type schema:DefinedTerm
142 Nc847c296a6504241a949cf20ece011af rdf:first sg:person.01157655733.55
143 rdf:rest N448109c1b4af4f1da5e986cc04f9848d
144 Nca484baabe34454085bccbdd95962f32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Computer Simulation
146 rdf:type schema:DefinedTerm
147 Ndbf1bd73ca4545dbb819aa584ac73a05 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Systems Biology
149 rdf:type schema:DefinedTerm
150 Ndd7200503e9e494a8917b1ec06e60309 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Biodegradation, Environmental
152 rdf:type schema:DefinedTerm
153 Ne7cea10111d244d0b6768adb3293b8bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Metabolic Networks and Pathways
155 rdf:type schema:DefinedTerm
156 Ne919e58a386248c58c50c757591135dd schema:issueNumber 1
157 rdf:type schema:PublicationIssue
158 Nf108ae2d9ea84b9a83196e8121df6c2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Species Specificity
160 rdf:type schema:DefinedTerm
161 Nf15e967d12564db989bd77f6396a21fc schema:volumeNumber 3
162 rdf:type schema:PublicationVolume
163 Nf618e575c376441ab611212b81a76a5b schema:name pubmed_id
164 schema:value 19175927
165 rdf:type schema:PropertyValue
166 Nf629654eecd94be7a40b41629a6ef6a4 rdf:first sg:person.01317257247.81
167 rdf:rest rdf:nil
168 Nf9b2367d2bac47d4843d5b10f4a58190 rdf:first sg:person.01335712343.04
169 rdf:rest Nc847c296a6504241a949cf20ece011af
170 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
171 schema:name Biological Sciences
172 rdf:type schema:DefinedTerm
173 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
174 schema:name Genetics
175 rdf:type schema:DefinedTerm
176 sg:grant.4122941 http://pending.schema.org/fundedItem sg:pub.10.1186/1752-0509-3-15
177 rdf:type schema:MonetaryGrant
178 sg:journal.1327442 schema:issn 1752-0509
179 schema:name BMC Systems Biology
180 rdf:type schema:Periodical
181 sg:person.01137005664.45 schema:affiliation https://www.grid.ac/institutes/grid.420355.5
182 schema:familyName Sun
183 schema:givenName Jun
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137005664.45
185 rdf:type schema:Person
186 sg:person.01157655733.55 schema:affiliation https://www.grid.ac/institutes/grid.420355.5
187 schema:familyName Famili
188 schema:givenName Iman
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157655733.55
190 rdf:type schema:Person
191 sg:person.01317257247.81 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
192 schema:familyName Mahadevan
193 schema:givenName Radhakrishnan
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317257247.81
195 rdf:type schema:Person
196 sg:person.01321347464.04 schema:affiliation https://www.grid.ac/institutes/grid.420355.5
197 schema:familyName Pharkya
198 schema:givenName Priti
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321347464.04
200 rdf:type schema:Person
201 sg:person.01335712343.04 schema:affiliation https://www.grid.ac/institutes/grid.420355.5
202 schema:familyName Fahland
203 schema:givenName Tom R
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335712343.04
205 rdf:type schema:Person
206 sg:person.0644362024.25 schema:affiliation https://www.grid.ac/institutes/grid.420355.5
207 schema:familyName Schilling
208 schema:givenName Christophe H
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644362024.25
210 rdf:type schema:Person
211 sg:person.0654236304.04 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
212 schema:familyName Sayyar
213 schema:givenName Bahareh
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654236304.04
215 rdf:type schema:Person
216 sg:person.0700566340.40 schema:affiliation https://www.grid.ac/institutes/grid.266683.f
217 schema:familyName Butler
218 schema:givenName Jessica E
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700566340.40
220 rdf:type schema:Person
221 sg:person.0710465122.89 schema:affiliation https://www.grid.ac/institutes/grid.266683.f
222 schema:familyName Lovley
223 schema:givenName Derek R
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710465122.89
225 rdf:type schema:Person
226 sg:pub.10.1007/bf00290916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009864620
227 https://doi.org/10.1007/bf00290916
228 rdf:type schema:CreativeWork
229 sg:pub.10.1007/s00248-003-0004-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001221949
230 https://doi.org/10.1007/s00248-003-0004-4
231 rdf:type schema:CreativeWork
232 sg:pub.10.1023/a:1020454831407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029780451
233 https://doi.org/10.1023/a:1020454831407
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/339297a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041930656
236 https://doi.org/10.1038/339297a0
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nature03661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039118797
239 https://doi.org/10.1038/nature03661
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nrmicro1442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001987331
242 https://doi.org/10.1038/nrmicro1442
243 rdf:type schema:CreativeWork
244 sg:pub.10.1186/1471-2164-8-180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019660727
245 https://doi.org/10.1186/1471-2164-8-180
246 rdf:type schema:CreativeWork
247 sg:pub.10.1186/gb-2003-4-9-r54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027511348
248 https://doi.org/10.1186/gb-2003-4-9-r54
249 rdf:type schema:CreativeWork
250 https://app.dimensions.ai/details/publication/pub.1077157346 schema:CreativeWork
251 https://app.dimensions.ai/details/publication/pub.1077157636 schema:CreativeWork
252 https://app.dimensions.ai/details/publication/pub.1077158244 schema:CreativeWork
253 https://app.dimensions.ai/details/publication/pub.1082399300 schema:CreativeWork
254 https://doi.org/10.1016/j.copbio.2006.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038265415
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/j.ymben.2008.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033857783
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/s0065-2911(04)49005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001585076
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/s0968-0004(00)01754-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031798241
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1038/msb4100155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042206621
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1038/msb4100162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007246617
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1073/pnas.97.10.5528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005244921
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1074/jbc.m703759200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043652954
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1080/014904502317246200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037309861
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1099/ijs.0.63417-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030869038
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1099/ijs.0.64221-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015624533
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1101/gr.2546004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020145522
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1111/j.1365-2958.2005.04909.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019671288
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1111/j.1432-1033.1997.00840.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034011826
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1111/j.1462-2920.2005.00731.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045341777
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1126/science.1066771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044161557
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1128/aem.01444-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003741781
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1128/aem.02986-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013737693
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1128/aem.66.9.3743-3749.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020229604
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1128/aem.67.8.3750-3752.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035086625
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1128/aem.69.3.1548-1555.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030014633
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1128/aem.70.5.3091-3095.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014558332
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1128/aem.72.2.1558-1568.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019088985
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1128/jb.00260-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044667147
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1128/jb.186.9.2897-2899.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018914223
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1128/jb.188.2.450-455.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021130738
305 rdf:type schema:CreativeWork
306 https://www.grid.ac/institutes/grid.17063.33 schema:alternateName University of Toronto
307 schema:name Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
308 rdf:type schema:Organization
309 https://www.grid.ac/institutes/grid.266683.f schema:alternateName University of Massachusetts Amherst
310 schema:name Department of Microbiology, University of Massachusetts, Amherst, MA, USA
311 rdf:type schema:Organization
312 https://www.grid.ac/institutes/grid.420355.5 schema:alternateName Genomatica (United States)
313 schema:name Genomatica Inc, 10520 Wateridge Circle, San Diego, CA, USA
314 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...