A Dominated Coupling From The Past algorithm for the stochastic simulation of networks of biochemical reactions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Martin Hemberg, Mauricio Barahona

ABSTRACT

BACKGROUND: In recent years, stochastic descriptions of biochemical reactions based on the Master Equation (ME) have become widespread. These are especially relevant for models involving gene regulation. Gillespie's Stochastic Simulation Algorithm (SSA) is the most widely used method for the numerical evaluation of these models. The SSA produces exact samples from the distribution of the ME for finite times. However, if the stationary distribution is of interest, the SSA provides no information about convergence or how long the algorithm needs to be run to sample from the stationary distribution with given accuracy. RESULTS: We present a proof and numerical characterization of a Perfect Sampling algorithm for the ME of networks of biochemical reactions prevalent in gene regulation and enzymatic catalysis. Our algorithm combines the SSA with Dominated Coupling From The Past (DCFTP) techniques to provide guaranteed sampling from the stationary distribution. The resulting DCFTP-SSA is applicable to networks of reactions with uni-molecular stoichiometries and sub-linear, (anti-) monotone propensity functions. We showcase its applicability studying steady-state properties of stochastic regulatory networks of relevance in synthetic and systems biology. CONCLUSION: The DCFTP-SSA provides an extension to Gillespie's SSA with guaranteed sampling from the stationary solution of the ME for a broad class of stochastic biochemical networks. More... »

PAGES

42

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1752-0509-2-42

DOI

http://dx.doi.org/10.1186/1752-0509-2-42

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009258303

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18466612


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Networks and Pathways", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Systems Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Bioengineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hemberg", 
        "givenName": "Martin", 
        "id": "sg:person.0777452173.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777452173.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Bioengineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK", 
            "Institute for Mathematical Sciences, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barahona", 
        "givenName": "Mauricio", 
        "id": "sg:person.01367710045.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367710045.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35002131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002786107", 
          "https://doi.org/10.1038/35002131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35002131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002786107", 
          "https://doi.org/10.1038/35002131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1945-0013857-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014072736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1098641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014554361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35002125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016534270", 
          "https://doi.org/10.1038/35002125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35002125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016534270", 
          "https://doi.org/10.1038/35002125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2767625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017563704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.3.814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019128746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2007.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020048222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.106.099390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020132670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(76)90041-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020380039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1070919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021654569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0001867800010284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027306156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(92)90283-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030775693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(92)90283-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030775693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031369938", 
          "https://doi.org/10.1038/nature01259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031369938", 
          "https://doi.org/10.1038/nature01259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031369938", 
          "https://doi.org/10.1038/nature01259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0040309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031857499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033172724", 
          "https://doi.org/10.1038/nature02257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033172724", 
          "https://doi.org/10.1038/nature02257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1098-2418(199608/09)9:1/2<223::aid-rsa14>3.0.co;2-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033977441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-006-0035-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037409881", 
          "https://doi.org/10.1007/s00285-006-0035-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-006-0035-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037409881", 
          "https://doi.org/10.1007/s00285-006-0035-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45043-2_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042161769", 
          "https://doi.org/10.1007/3-540-45043-2_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45043-2_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042161769", 
          "https://doi.org/10.1007/3-540-45043-2_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.bulm.2004.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049587360", 
          "https://doi.org/10.1016/j.bulm.2004.09.009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.bulm.2004.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049587360", 
          "https://doi.org/10.1016/j.bulm.2004.09.009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.bulm.2004.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049587360", 
          "https://doi.org/10.1016/j.bulm.2004.09.009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9574.00090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050799351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9574.00090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050799351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1545446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057718929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1239/aap/1013540247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064440323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1990339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069686993"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: In recent years, stochastic descriptions of biochemical reactions based on the Master Equation (ME) have become widespread. These are especially relevant for models involving gene regulation. Gillespie's Stochastic Simulation Algorithm (SSA) is the most widely used method for the numerical evaluation of these models. The SSA produces exact samples from the distribution of the ME for finite times. However, if the stationary distribution is of interest, the SSA provides no information about convergence or how long the algorithm needs to be run to sample from the stationary distribution with given accuracy.\nRESULTS: We present a proof and numerical characterization of a Perfect Sampling algorithm for the ME of networks of biochemical reactions prevalent in gene regulation and enzymatic catalysis. Our algorithm combines the SSA with Dominated Coupling From The Past (DCFTP) techniques to provide guaranteed sampling from the stationary distribution. The resulting DCFTP-SSA is applicable to networks of reactions with uni-molecular stoichiometries and sub-linear, (anti-) monotone propensity functions. We showcase its applicability studying steady-state properties of stochastic regulatory networks of relevance in synthetic and systems biology.\nCONCLUSION: The DCFTP-SSA provides an extension to Gillespie's SSA with guaranteed sampling from the stationary solution of the ME for a broad class of stochastic biochemical networks.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1752-0509-2-42", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1327442", 
        "issn": [
          "1752-0509"
        ], 
        "name": "BMC Systems Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "A Dominated Coupling From The Past algorithm for the stochastic simulation of networks of biochemical reactions", 
    "pagination": "42", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2c1a6f5b3c8167ff598782f3a8dccb7372a880d3454222464a99029aafd6bd49"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18466612"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101301827"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1752-0509-2-42"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009258303"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1752-0509-2-42", 
      "https://app.dimensions.ai/details/publication/pub.1009258303"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1752-0509-2-42"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-2-42'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-2-42'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-2-42'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-2-42'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      58 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1752-0509-2-42 schema:about N418a556a6ea14ad79b0e21ad52172ee8
2 N4d73febf718545ec9997b81375a04944
3 N5deebb43d88149469bf327d89b096360
4 Na9671ba66ea14f8b8dbd0a329752e1d6
5 Nc88d2e78ce8e4871b221ec4ee86c3af7
6 Nd27a8503cf224d04ae184be309b291c6
7 anzsrc-for:01
8 anzsrc-for:0104
9 schema:author N6521ea0893fb4a72ba7867d2c937d156
10 schema:citation sg:pub.10.1007/3-540-45043-2_13
11 sg:pub.10.1007/s00285-006-0035-9
12 sg:pub.10.1016/j.bulm.2004.09.009
13 sg:pub.10.1038/35002125
14 sg:pub.10.1038/35002131
15 sg:pub.10.1038/nature01259
16 sg:pub.10.1038/nature02257
17 https://doi.org/10.1002/(sici)1098-2418(199608/09)9:1/2<223::aid-rsa14>3.0.co;2-o
18 https://doi.org/10.1016/0021-9991(76)90041-3
19 https://doi.org/10.1016/0378-4371(92)90283-v
20 https://doi.org/10.1016/j.jtbi.2007.01.004
21 https://doi.org/10.1017/s0001867800010284
22 https://doi.org/10.1063/1.1545446
23 https://doi.org/10.1063/1.2767625
24 https://doi.org/10.1073/pnas.94.3.814
25 https://doi.org/10.1090/s0002-9947-1945-0013857-4
26 https://doi.org/10.1111/1467-9574.00090
27 https://doi.org/10.1126/science.1070919
28 https://doi.org/10.1126/science.1098641
29 https://doi.org/10.1239/aap/1013540247
30 https://doi.org/10.1371/journal.pbio.0040309
31 https://doi.org/10.1529/biophysj.106.099390
32 https://doi.org/10.2307/1990339
33 schema:datePublished 2008-12
34 schema:datePublishedReg 2008-12-01
35 schema:description BACKGROUND: In recent years, stochastic descriptions of biochemical reactions based on the Master Equation (ME) have become widespread. These are especially relevant for models involving gene regulation. Gillespie's Stochastic Simulation Algorithm (SSA) is the most widely used method for the numerical evaluation of these models. The SSA produces exact samples from the distribution of the ME for finite times. However, if the stationary distribution is of interest, the SSA provides no information about convergence or how long the algorithm needs to be run to sample from the stationary distribution with given accuracy. RESULTS: We present a proof and numerical characterization of a Perfect Sampling algorithm for the ME of networks of biochemical reactions prevalent in gene regulation and enzymatic catalysis. Our algorithm combines the SSA with Dominated Coupling From The Past (DCFTP) techniques to provide guaranteed sampling from the stationary distribution. The resulting DCFTP-SSA is applicable to networks of reactions with uni-molecular stoichiometries and sub-linear, (anti-) monotone propensity functions. We showcase its applicability studying steady-state properties of stochastic regulatory networks of relevance in synthetic and systems biology. CONCLUSION: The DCFTP-SSA provides an extension to Gillespie's SSA with guaranteed sampling from the stationary solution of the ME for a broad class of stochastic biochemical networks.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N6b34916cbe684de584c7f62d52912d14
40 Nbc85c30d5b0446959c37866d8ecc3dd8
41 sg:journal.1327442
42 schema:name A Dominated Coupling From The Past algorithm for the stochastic simulation of networks of biochemical reactions
43 schema:pagination 42
44 schema:productId N28d45a172b0d4726bb638ee224de10b1
45 N320df03ba2b548eaba8d9d4f21912368
46 N79aec39aa3a0488fb1fe2acfb12ae61a
47 N833f57632a4e4ababece88c2a61d18fe
48 Nee0de5083c624afb81c196f86a2683d1
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009258303
50 https://doi.org/10.1186/1752-0509-2-42
51 schema:sdDatePublished 2019-04-10T21:36
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Ne6e69766c1074f858066dce9868cfe16
54 schema:url http://link.springer.com/10.1186%2F1752-0509-2-42
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N28d45a172b0d4726bb638ee224de10b1 schema:name nlm_unique_id
59 schema:value 101301827
60 rdf:type schema:PropertyValue
61 N320df03ba2b548eaba8d9d4f21912368 schema:name dimensions_id
62 schema:value pub.1009258303
63 rdf:type schema:PropertyValue
64 N418a556a6ea14ad79b0e21ad52172ee8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Gene Regulatory Networks
66 rdf:type schema:DefinedTerm
67 N4d73febf718545ec9997b81375a04944 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Models, Biological
69 rdf:type schema:DefinedTerm
70 N5deebb43d88149469bf327d89b096360 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Metabolic Networks and Pathways
72 rdf:type schema:DefinedTerm
73 N6521ea0893fb4a72ba7867d2c937d156 rdf:first sg:person.0777452173.73
74 rdf:rest Ne8700021578d478e86c4e30dff208eac
75 N6b34916cbe684de584c7f62d52912d14 schema:volumeNumber 2
76 rdf:type schema:PublicationVolume
77 N79aec39aa3a0488fb1fe2acfb12ae61a schema:name pubmed_id
78 schema:value 18466612
79 rdf:type schema:PropertyValue
80 N833f57632a4e4ababece88c2a61d18fe schema:name doi
81 schema:value 10.1186/1752-0509-2-42
82 rdf:type schema:PropertyValue
83 Na9671ba66ea14f8b8dbd0a329752e1d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Stochastic Processes
85 rdf:type schema:DefinedTerm
86 Nbc85c30d5b0446959c37866d8ecc3dd8 schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 Nc88d2e78ce8e4871b221ec4ee86c3af7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Systems Biology
90 rdf:type schema:DefinedTerm
91 Nd27a8503cf224d04ae184be309b291c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Algorithms
93 rdf:type schema:DefinedTerm
94 Ne6e69766c1074f858066dce9868cfe16 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 Ne8700021578d478e86c4e30dff208eac rdf:first sg:person.01367710045.15
97 rdf:rest rdf:nil
98 Nee0de5083c624afb81c196f86a2683d1 schema:name readcube_id
99 schema:value 2c1a6f5b3c8167ff598782f3a8dccb7372a880d3454222464a99029aafd6bd49
100 rdf:type schema:PropertyValue
101 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
102 schema:name Mathematical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
105 schema:name Statistics
106 rdf:type schema:DefinedTerm
107 sg:journal.1327442 schema:issn 1752-0509
108 schema:name BMC Systems Biology
109 rdf:type schema:Periodical
110 sg:person.01367710045.15 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
111 schema:familyName Barahona
112 schema:givenName Mauricio
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367710045.15
114 rdf:type schema:Person
115 sg:person.0777452173.73 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
116 schema:familyName Hemberg
117 schema:givenName Martin
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777452173.73
119 rdf:type schema:Person
120 sg:pub.10.1007/3-540-45043-2_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042161769
121 https://doi.org/10.1007/3-540-45043-2_13
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00285-006-0035-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037409881
124 https://doi.org/10.1007/s00285-006-0035-9
125 rdf:type schema:CreativeWork
126 sg:pub.10.1016/j.bulm.2004.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049587360
127 https://doi.org/10.1016/j.bulm.2004.09.009
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/35002125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016534270
130 https://doi.org/10.1038/35002125
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/35002131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002786107
133 https://doi.org/10.1038/35002131
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nature01259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031369938
136 https://doi.org/10.1038/nature01259
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nature02257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033172724
139 https://doi.org/10.1038/nature02257
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/(sici)1098-2418(199608/09)9:1/2<223::aid-rsa14>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1033977441
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/0021-9991(76)90041-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020380039
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/0378-4371(92)90283-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1030775693
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jtbi.2007.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020048222
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1017/s0001867800010284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027306156
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1063/1.1545446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057718929
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1063/1.2767625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017563704
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1073/pnas.94.3.814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019128746
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1090/s0002-9947-1945-0013857-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014072736
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1111/1467-9574.00090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050799351
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1126/science.1070919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021654569
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1126/science.1098641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014554361
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1239/aap/1013540247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064440323
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1371/journal.pbio.0040309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031857499
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1529/biophysj.106.099390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020132670
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2307/1990339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069686993
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
174 schema:name Department of Bioengineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK
175 Institute for Mathematical Sciences, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...