From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Rainer Opgen-Rhein, Korbinian Strimmer

ABSTRACT

BACKGROUND: The use of correlation networks is widespread in the analysis of gene expression and proteomics data, even though it is known that correlations not only confound direct and indirect associations but also provide no means to distinguish between cause and effect. For "causal" analysis typically the inference of a directed graphical model is required. However, this is rather difficult due to the curse of dimensionality. RESULTS: We propose a simple heuristic for the statistical learning of a high-dimensional "causal" network. The method first converts a correlation network into a partial correlation graph. Subsequently, a partial ordering of the nodes is established by multiple testing of the log-ratio of standardized partial variances. This allows identifying a directed acyclic causal network as a subgraph of the partial correlation network. We illustrate the approach by analyzing a large Arabidopsis thaliana expression data set. CONCLUSION: The proposed approach is a heuristic algorithm that is based on a number of approximations, such as substituting lower order partial correlations by full order partial correlations. Nevertheless, for small samples and for sparse networks the algorithm not only yield sensible first order approximations of the causal structure in high-dimensional genomic data but is also computationally highly efficient. AVAILABILITY AND REQUIREMENTS: The method is implemented in the "GeneNet" R package (version 1.2.0), available from CRAN and from http://strimmerlab.org/software/genets/. The software includes an R script for reproducing the network analysis of the Arabidopsis thaliana data. More... »

PAGES

37

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1752-0509-1-37

DOI

http://dx.doi.org/10.1186/1752-0509-1-37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027188239

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17683609


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Internet", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Statistics, Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, Ludwigstra\u00dfe 33, D-80539, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Opgen-Rhein", 
        "givenName": "Rainer", 
        "id": "sg:person.0727027436.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727027436.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leipzig University", 
          "id": "https://www.grid.ac/institutes/grid.9647.c", 
          "name": [
            "Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, H\u00e4rtelstr. 16-18, 04107, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strimmer", 
        "givenName": "Korbinian", 
        "id": "sg:person.01043623604.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043623604.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2202/1544-6115.1175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001122307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0500298102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001510611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0605938103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005680522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biostatistics/kxj008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009081402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018231980", 
          "https://doi.org/10.1038/nrg1272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018231980", 
          "https://doi.org/10.1038/nrg1272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.104.044347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018705774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.220392197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019479023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1073374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019781582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028321425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmva.2004.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030739729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031236162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2004.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039868349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-s2-s3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040099297", 
          "https://doi.org/10.1186/1471-2105-8-s2-s3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-006-6889-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042053186", 
          "https://doi.org/10.1007/s10994-006-6889-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-006-6889-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042053186", 
          "https://doi.org/10.1007/s10994-006-6889-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2004-00128-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042379987", 
          "https://doi.org/10.1140/epjb/e2004-00128-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043087632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2202/1544-6115.1170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045244720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbl009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045572849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049700263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1980.10477580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058302403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214504000000089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177010887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064409645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177013439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064410141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.35.5.527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064720573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v017.i01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672263"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "BACKGROUND: The use of correlation networks is widespread in the analysis of gene expression and proteomics data, even though it is known that correlations not only confound direct and indirect associations but also provide no means to distinguish between cause and effect. For \"causal\" analysis typically the inference of a directed graphical model is required. However, this is rather difficult due to the curse of dimensionality.\nRESULTS: We propose a simple heuristic for the statistical learning of a high-dimensional \"causal\" network. The method first converts a correlation network into a partial correlation graph. Subsequently, a partial ordering of the nodes is established by multiple testing of the log-ratio of standardized partial variances. This allows identifying a directed acyclic causal network as a subgraph of the partial correlation network. We illustrate the approach by analyzing a large Arabidopsis thaliana expression data set.\nCONCLUSION: The proposed approach is a heuristic algorithm that is based on a number of approximations, such as substituting lower order partial correlations by full order partial correlations. Nevertheless, for small samples and for sparse networks the algorithm not only yield sensible first order approximations of the causal structure in high-dimensional genomic data but is also computationally highly efficient. AVAILABILITY AND REQUIREMENTS: The method is implemented in the \"GeneNet\" R package (version 1.2.0), available from CRAN and from http://strimmerlab.org/software/genets/. The software includes an R script for reproducing the network analysis of the Arabidopsis thaliana data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1752-0509-1-37", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1327442", 
        "issn": [
          "1752-0509"
        ], 
        "name": "BMC Systems Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data", 
    "pagination": "37", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8183689d6804f963b84dff8694f77fdc16031507d64ad5fa8635bff8da1677f1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17683609"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101301827"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1752-0509-1-37"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027188239"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1752-0509-1-37", 
      "https://app.dimensions.ai/details/publication/pub.1027188239"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1752-0509-1-37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-1-37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-1-37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-1-37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1752-0509-1-37'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      61 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1752-0509-1-37 schema:about N5576d3b418c04f42b518e42864ca384b
2 N6946f9f2f0234bd085f6b0747e043187
3 N7c047f1afc154fa0a4d9c657233edda3
4 N86484098cf5745f8a16ef2b4672aa1e0
5 N9aa7a31dfb9d440990621438978551ab
6 Nca58f0e2184d4fce8343e94881561023
7 Nef8300cf87eb48fbb8e392c2d744cee3
8 anzsrc-for:01
9 anzsrc-for:0104
10 schema:author N248feed501924ba1af226a066592204f
11 schema:citation sg:pub.10.1007/s10994-006-6889-7
12 sg:pub.10.1038/nrg1272
13 sg:pub.10.1140/epjb/e2004-00128-7
14 sg:pub.10.1186/1471-2105-8-s2-s3
15 https://doi.org/10.1016/j.csda.2004.02.004
16 https://doi.org/10.1016/j.jmva.2004.02.009
17 https://doi.org/10.1073/pnas.0500298102
18 https://doi.org/10.1073/pnas.0605938103
19 https://doi.org/10.1073/pnas.220392197
20 https://doi.org/10.1080/01621459.1980.10477580
21 https://doi.org/10.1093/bib/bbl009
22 https://doi.org/10.1093/bioinformatics/btg364
23 https://doi.org/10.1093/bioinformatics/bth445
24 https://doi.org/10.1093/bioinformatics/bti062
25 https://doi.org/10.1093/bioinformatics/btl391
26 https://doi.org/10.1093/biostatistics/kxj008
27 https://doi.org/10.1104/pp.104.044347
28 https://doi.org/10.1126/science.1073374
29 https://doi.org/10.1198/016214504000000089
30 https://doi.org/10.1214/ss/1177010887
31 https://doi.org/10.1214/ss/1177013439
32 https://doi.org/10.1287/mnsc.35.5.527
33 https://doi.org/10.18637/jss.v017.i01
34 https://doi.org/10.2202/1544-6115.1170
35 https://doi.org/10.2202/1544-6115.1175
36 schema:datePublished 2007-12
37 schema:datePublishedReg 2007-12-01
38 schema:description BACKGROUND: The use of correlation networks is widespread in the analysis of gene expression and proteomics data, even though it is known that correlations not only confound direct and indirect associations but also provide no means to distinguish between cause and effect. For "causal" analysis typically the inference of a directed graphical model is required. However, this is rather difficult due to the curse of dimensionality. RESULTS: We propose a simple heuristic for the statistical learning of a high-dimensional "causal" network. The method first converts a correlation network into a partial correlation graph. Subsequently, a partial ordering of the nodes is established by multiple testing of the log-ratio of standardized partial variances. This allows identifying a directed acyclic causal network as a subgraph of the partial correlation network. We illustrate the approach by analyzing a large Arabidopsis thaliana expression data set. CONCLUSION: The proposed approach is a heuristic algorithm that is based on a number of approximations, such as substituting lower order partial correlations by full order partial correlations. Nevertheless, for small samples and for sparse networks the algorithm not only yield sensible first order approximations of the causal structure in high-dimensional genomic data but is also computationally highly efficient. AVAILABILITY AND REQUIREMENTS: The method is implemented in the "GeneNet" R package (version 1.2.0), available from CRAN and from http://strimmerlab.org/software/genets/. The software includes an R script for reproducing the network analysis of the Arabidopsis thaliana data.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N376631668290465bbc99efd3bb8b61fa
43 N84fe035f87f642419ed694bbbdf9babf
44 sg:journal.1327442
45 schema:name From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data
46 schema:pagination 37
47 schema:productId N65b09e2019974afa85a4138fac1a8752
48 N8a7db0feecd843a8ad7bfb5763cbc837
49 Nadf75fb139d846eeb0beb0c4bec2c75e
50 Nb5d18494393343de97e0d1b321698211
51 Nfc104f8b034e4a5d9ce597e2e7803b0b
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027188239
53 https://doi.org/10.1186/1752-0509-1-37
54 schema:sdDatePublished 2019-04-10T19:57
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N1780130ba2294fec9731edf230374718
57 schema:url http://link.springer.com/10.1186%2F1752-0509-1-37
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N170ee1c8786d4307a699654972295970 rdf:first sg:person.01043623604.29
62 rdf:rest rdf:nil
63 N1780130ba2294fec9731edf230374718 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N248feed501924ba1af226a066592204f rdf:first sg:person.0727027436.03
66 rdf:rest N170ee1c8786d4307a699654972295970
67 N376631668290465bbc99efd3bb8b61fa schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 N5576d3b418c04f42b518e42864ca384b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Arabidopsis
71 rdf:type schema:DefinedTerm
72 N65b09e2019974afa85a4138fac1a8752 schema:name pubmed_id
73 schema:value 17683609
74 rdf:type schema:PropertyValue
75 N6946f9f2f0234bd085f6b0747e043187 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Gene Expression Profiling
77 rdf:type schema:DefinedTerm
78 N7c047f1afc154fa0a4d9c657233edda3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Software
80 rdf:type schema:DefinedTerm
81 N84fe035f87f642419ed694bbbdf9babf schema:volumeNumber 1
82 rdf:type schema:PublicationVolume
83 N86484098cf5745f8a16ef2b4672aa1e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Genes, Plant
85 rdf:type schema:DefinedTerm
86 N8a7db0feecd843a8ad7bfb5763cbc837 schema:name doi
87 schema:value 10.1186/1752-0509-1-37
88 rdf:type schema:PropertyValue
89 N9aa7a31dfb9d440990621438978551ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Algorithms
91 rdf:type schema:DefinedTerm
92 Nadf75fb139d846eeb0beb0c4bec2c75e schema:name readcube_id
93 schema:value 8183689d6804f963b84dff8694f77fdc16031507d64ad5fa8635bff8da1677f1
94 rdf:type schema:PropertyValue
95 Nb5d18494393343de97e0d1b321698211 schema:name dimensions_id
96 schema:value pub.1027188239
97 rdf:type schema:PropertyValue
98 Nca58f0e2184d4fce8343e94881561023 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Internet
100 rdf:type schema:DefinedTerm
101 Nef8300cf87eb48fbb8e392c2d744cee3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Gene Expression Regulation, Plant
103 rdf:type schema:DefinedTerm
104 Nfc104f8b034e4a5d9ce597e2e7803b0b schema:name nlm_unique_id
105 schema:value 101301827
106 rdf:type schema:PropertyValue
107 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
108 schema:name Mathematical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
111 schema:name Statistics
112 rdf:type schema:DefinedTerm
113 sg:journal.1327442 schema:issn 1752-0509
114 schema:name BMC Systems Biology
115 rdf:type schema:Periodical
116 sg:person.01043623604.29 schema:affiliation https://www.grid.ac/institutes/grid.9647.c
117 schema:familyName Strimmer
118 schema:givenName Korbinian
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043623604.29
120 rdf:type schema:Person
121 sg:person.0727027436.03 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
122 schema:familyName Opgen-Rhein
123 schema:givenName Rainer
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727027436.03
125 rdf:type schema:Person
126 sg:pub.10.1007/s10994-006-6889-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042053186
127 https://doi.org/10.1007/s10994-006-6889-7
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nrg1272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018231980
130 https://doi.org/10.1038/nrg1272
131 rdf:type schema:CreativeWork
132 sg:pub.10.1140/epjb/e2004-00128-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042379987
133 https://doi.org/10.1140/epjb/e2004-00128-7
134 rdf:type schema:CreativeWork
135 sg:pub.10.1186/1471-2105-8-s2-s3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040099297
136 https://doi.org/10.1186/1471-2105-8-s2-s3
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.csda.2004.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039868349
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.jmva.2004.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030739729
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1073/pnas.0500298102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001510611
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1073/pnas.0605938103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005680522
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1073/pnas.220392197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019479023
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1080/01621459.1980.10477580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302403
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1093/bib/bbl009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045572849
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1093/bioinformatics/btg364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043087632
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1093/bioinformatics/bth445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049700263
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1093/bioinformatics/bti062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031236162
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/bioinformatics/btl391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028321425
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/biostatistics/kxj008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009081402
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1104/pp.104.044347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018705774
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1126/science.1073374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019781582
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1198/016214504000000089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198147
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1214/ss/1177010887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409645
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1214/ss/1177013439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064410141
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1287/mnsc.35.5.527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064720573
173 rdf:type schema:CreativeWork
174 https://doi.org/10.18637/jss.v017.i01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672263
175 rdf:type schema:CreativeWork
176 https://doi.org/10.2202/1544-6115.1170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045244720
177 rdf:type schema:CreativeWork
178 https://doi.org/10.2202/1544-6115.1175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001122307
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
181 schema:name Department of Statistics, Ludwig-Maximilians-Universität München, Ludwigstraße 33, D-80539, München, Germany
182 rdf:type schema:Organization
183 https://www.grid.ac/institutes/grid.9647.c schema:alternateName Leipzig University
184 schema:name Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Härtelstr. 16-18, 04107, Leipzig, Germany
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...