A proof of the DBRF-MEGN method, an algorithm for deducing minimum equivalent gene networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Koji Kyoda, Kotaro Baba, Hiroaki Kitano, Shuichi Onami

ABSTRACT

BACKGROUND: We previously developed the DBRF-MEGN (difference-based regulation finding-minimum equivalent gene network) method, which deduces the most parsimonious signed directed graphs (SDGs) consistent with expression profiles of single-gene deletion mutants. However, until the present study, we have not presented the details of the method's algorithm or a proof of the algorithm. RESULTS: We describe in detail the algorithm of the DBRF-MEGN method and prove that the algorithm deduces all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants. CONCLUSIONS: The DBRF-MEGN method provides all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants. More... »

PAGES

12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1751-0473-6-12

DOI

http://dx.doi.org/10.1186/1751-0473-6-12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038141180

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21699737


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Japan Science and Technology Agency", 
          "id": "https://www.grid.ac/institutes/grid.419082.6", 
          "name": [
            "Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center, and Advanced Computational Sciences Department, RIKEN Advanced Science Institute, 1-7-22 Suehirocho, 230-0045, Tsurumi, Yokohama, Japan", 
            "Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, 223-8522, Kohoku, Yokohama, Japan", 
            "Kitano Symbiotic Systems Project, ERATO, Japan Science and Technology Corporation, M31 6A, 6-31-15 Jingumae, 150-0001, Shibuya, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kyoda", 
        "givenName": "Koji", 
        "id": "sg:person.0714516262.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714516262.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Agrobiological Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410590.9", 
          "name": [
            "The Systems Biology Institute, 5-6-9 Shirokanedai, 108-0071, Minato, Tokyo, Japan", 
            "National Institute of Agrobiological Sciences, 2-1-2 Kannondai, 305-8602, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baba", 
        "givenName": "Kotaro", 
        "id": "sg:person.01030744662.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030744662.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sony Computer Science Laboratories", 
          "id": "https://www.grid.ac/institutes/grid.452725.3", 
          "name": [
            "Kitano Symbiotic Systems Project, ERATO, Japan Science and Technology Corporation, M31 6A, 6-31-15 Jingumae, 150-0001, Shibuya, Tokyo, Japan", 
            "The Systems Biology Institute, 5-6-9 Shirokanedai, 108-0071, Minato, Tokyo, Japan", 
            "Sony Computer Science Laboratories, Inc, 3-14-13 Higashi-gotanda, 141-0022, Shinagawa, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kitano", 
        "givenName": "Hiroaki", 
        "id": "sg:person.01355755204.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355755204.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Systems Biology Institute", 
          "id": "https://www.grid.ac/institutes/grid.452864.9", 
          "name": [
            "Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center, and Advanced Computational Sciences Department, RIKEN Advanced Science Institute, 1-7-22 Suehirocho, 230-0045, Tsurumi, Yokohama, Japan", 
            "Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, 223-8522, Kohoku, Yokohama, Japan", 
            "The Systems Biology Institute, 5-6-9 Shirokanedai, 108-0071, Minato, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Onami", 
        "givenName": "Shuichi", 
        "id": "sg:person.01065410562.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065410562.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1075090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001953109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005200656", 
          "https://doi.org/10.1038/ng2012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005200656", 
          "https://doi.org/10.1038/ng2012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1296-1675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005458398", 
          "https://doi.org/10.1038/nbt1296-1675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/321105.321107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006574609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02253052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007563898", 
          "https://doi.org/10.1007/bf02253052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02253052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007563898", 
          "https://doi.org/10.1007/bf02253052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.091094198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010487631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015995329", 
          "https://doi.org/10.1038/nature00935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015995329", 
          "https://doi.org/10.1038/nature00935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.suppl_1.s215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020864922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.12.1183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022788321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.19.3.1720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025467756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)00015-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025640188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0605140103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025661857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.9.9.859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025812109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.suppl_2.s202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028093842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5429.901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032829879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033560229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2004-5-4-r29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035436295", 
          "https://doi.org/10.1186/gb-2004-5-4-r29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2006-7-5-r36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036826377", 
          "https://doi.org/10.1186/gb-2006-7-5-r36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/321526.321534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040716654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/321864.321866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045115864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045659858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2005.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046315384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.20.10614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046356338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.3230120202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046611109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/81576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049710401", 
          "https://doi.org/10.1038/81576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/81576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049710401", 
          "https://doi.org/10.1038/81576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1065810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050273151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2004.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050677146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2007.0015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2007.0085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.270.5235.467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062551475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5338.680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062558446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074670438", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074952321", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789814447331_0029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096094930"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "BACKGROUND: We previously developed the DBRF-MEGN (difference-based regulation finding-minimum equivalent gene network) method, which deduces the most parsimonious signed directed graphs (SDGs) consistent with expression profiles of single-gene deletion mutants. However, until the present study, we have not presented the details of the method's algorithm or a proof of the algorithm.\nRESULTS: We describe in detail the algorithm of the DBRF-MEGN method and prove that the algorithm deduces all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants.\nCONCLUSIONS: The DBRF-MEGN method provides all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1751-0473-6-12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1037006", 
        "issn": [
          "1751-0473"
        ], 
        "name": "Source Code for Biology and Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "A proof of the DBRF-MEGN method, an algorithm for deducing minimum equivalent gene networks", 
    "pagination": "12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b5b17985d265497e7bb6a867f8ee11eb067399b173332651651de48555e4dba7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21699737"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101276533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1751-0473-6-12"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038141180"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1751-0473-6-12", 
      "https://app.dimensions.ai/details/publication/pub.1038141180"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1751-0473-6-12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1751-0473-6-12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1751-0473-6-12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1751-0473-6-12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1751-0473-6-12'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1751-0473-6-12 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N3b90e6f2170d45cda0a45433b7abdb31
4 schema:citation sg:pub.10.1007/bf02253052
5 sg:pub.10.1038/81576
6 sg:pub.10.1038/nature00935
7 sg:pub.10.1038/nbt1296-1675
8 sg:pub.10.1038/ng2012
9 sg:pub.10.1186/gb-2004-5-4-r29
10 sg:pub.10.1186/gb-2006-7-5-r36
11 https://app.dimensions.ai/details/publication/pub.1074670438
12 https://app.dimensions.ai/details/publication/pub.1074952321
13 https://doi.org/10.1002/net.3230120202
14 https://doi.org/10.1016/j.cell.2004.06.013
15 https://doi.org/10.1016/j.molcel.2005.12.011
16 https://doi.org/10.1016/s0092-8674(00)00015-5
17 https://doi.org/10.1073/pnas.0605140103
18 https://doi.org/10.1073/pnas.091094198
19 https://doi.org/10.1073/pnas.93.20.10614
20 https://doi.org/10.1089/cmb.2007.0015
21 https://doi.org/10.1089/cmb.2007.0085
22 https://doi.org/10.1093/bioinformatics/17.12.1183
23 https://doi.org/10.1093/bioinformatics/17.suppl_1.s215
24 https://doi.org/10.1093/bioinformatics/18.suppl_2.s202
25 https://doi.org/10.1093/bioinformatics/bth306
26 https://doi.org/10.1093/bioinformatics/btq342
27 https://doi.org/10.1101/gr.9.9.859
28 https://doi.org/10.1126/science.1065810
29 https://doi.org/10.1126/science.1075090
30 https://doi.org/10.1126/science.270.5235.467
31 https://doi.org/10.1126/science.278.5338.680
32 https://doi.org/10.1126/science.285.5429.901
33 https://doi.org/10.1128/mcb.19.3.1720
34 https://doi.org/10.1142/9789814447331_0029
35 https://doi.org/10.1145/321105.321107
36 https://doi.org/10.1145/321526.321534
37 https://doi.org/10.1145/321864.321866
38 schema:datePublished 2011-12
39 schema:datePublishedReg 2011-12-01
40 schema:description BACKGROUND: We previously developed the DBRF-MEGN (difference-based regulation finding-minimum equivalent gene network) method, which deduces the most parsimonious signed directed graphs (SDGs) consistent with expression profiles of single-gene deletion mutants. However, until the present study, we have not presented the details of the method's algorithm or a proof of the algorithm. RESULTS: We describe in detail the algorithm of the DBRF-MEGN method and prove that the algorithm deduces all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants. CONCLUSIONS: The DBRF-MEGN method provides all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N78052a61830b4499a78171d911a033fe
45 Na3657cd0f7ff40c783830c11719246f0
46 sg:journal.1037006
47 schema:name A proof of the DBRF-MEGN method, an algorithm for deducing minimum equivalent gene networks
48 schema:pagination 12
49 schema:productId N09f3ecdfb4c446138d381ee33b52dddf
50 N3e3e8d4f26f04d62af2fa13c9aba237c
51 N580ac029c6244d1caad1bea69ccf4ed5
52 Ne2dc3356d40d4db0affc1c213e7143bc
53 Nfad6c86762d94b60b6348a5ef7d0c8fe
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038141180
55 https://doi.org/10.1186/1751-0473-6-12
56 schema:sdDatePublished 2019-04-10T15:56
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nd3d1bfbbf21a4fbe9edb2f8c03b041cb
59 schema:url http://link.springer.com/10.1186%2F1751-0473-6-12
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N09f3ecdfb4c446138d381ee33b52dddf schema:name doi
64 schema:value 10.1186/1751-0473-6-12
65 rdf:type schema:PropertyValue
66 N3b90e6f2170d45cda0a45433b7abdb31 rdf:first sg:person.0714516262.13
67 rdf:rest Nf719b60242b84ece889d95f8288b9137
68 N3e3e8d4f26f04d62af2fa13c9aba237c schema:name nlm_unique_id
69 schema:value 101276533
70 rdf:type schema:PropertyValue
71 N580ac029c6244d1caad1bea69ccf4ed5 schema:name dimensions_id
72 schema:value pub.1038141180
73 rdf:type schema:PropertyValue
74 N6f9363ebe054427382a4e8591735d470 rdf:first sg:person.01355755204.11
75 rdf:rest N97719b4a2ad0432aa54598693a9b8a0b
76 N78052a61830b4499a78171d911a033fe schema:issueNumber 1
77 rdf:type schema:PublicationIssue
78 N97719b4a2ad0432aa54598693a9b8a0b rdf:first sg:person.01065410562.04
79 rdf:rest rdf:nil
80 Na3657cd0f7ff40c783830c11719246f0 schema:volumeNumber 6
81 rdf:type schema:PublicationVolume
82 Nd3d1bfbbf21a4fbe9edb2f8c03b041cb schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Ne2dc3356d40d4db0affc1c213e7143bc schema:name readcube_id
85 schema:value b5b17985d265497e7bb6a867f8ee11eb067399b173332651651de48555e4dba7
86 rdf:type schema:PropertyValue
87 Nf719b60242b84ece889d95f8288b9137 rdf:first sg:person.01030744662.47
88 rdf:rest N6f9363ebe054427382a4e8591735d470
89 Nfad6c86762d94b60b6348a5ef7d0c8fe schema:name pubmed_id
90 schema:value 21699737
91 rdf:type schema:PropertyValue
92 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
93 schema:name Biological Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
96 schema:name Genetics
97 rdf:type schema:DefinedTerm
98 sg:journal.1037006 schema:issn 1751-0473
99 schema:name Source Code for Biology and Medicine
100 rdf:type schema:Periodical
101 sg:person.01030744662.47 schema:affiliation https://www.grid.ac/institutes/grid.410590.9
102 schema:familyName Baba
103 schema:givenName Kotaro
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030744662.47
105 rdf:type schema:Person
106 sg:person.01065410562.04 schema:affiliation https://www.grid.ac/institutes/grid.452864.9
107 schema:familyName Onami
108 schema:givenName Shuichi
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065410562.04
110 rdf:type schema:Person
111 sg:person.01355755204.11 schema:affiliation https://www.grid.ac/institutes/grid.452725.3
112 schema:familyName Kitano
113 schema:givenName Hiroaki
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355755204.11
115 rdf:type schema:Person
116 sg:person.0714516262.13 schema:affiliation https://www.grid.ac/institutes/grid.419082.6
117 schema:familyName Kyoda
118 schema:givenName Koji
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714516262.13
120 rdf:type schema:Person
121 sg:pub.10.1007/bf02253052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007563898
122 https://doi.org/10.1007/bf02253052
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/81576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049710401
125 https://doi.org/10.1038/81576
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nature00935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015995329
128 https://doi.org/10.1038/nature00935
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nbt1296-1675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005458398
131 https://doi.org/10.1038/nbt1296-1675
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/ng2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005200656
134 https://doi.org/10.1038/ng2012
135 rdf:type schema:CreativeWork
136 sg:pub.10.1186/gb-2004-5-4-r29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035436295
137 https://doi.org/10.1186/gb-2004-5-4-r29
138 rdf:type schema:CreativeWork
139 sg:pub.10.1186/gb-2006-7-5-r36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036826377
140 https://doi.org/10.1186/gb-2006-7-5-r36
141 rdf:type schema:CreativeWork
142 https://app.dimensions.ai/details/publication/pub.1074670438 schema:CreativeWork
143 https://app.dimensions.ai/details/publication/pub.1074952321 schema:CreativeWork
144 https://doi.org/10.1002/net.3230120202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046611109
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.cell.2004.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050677146
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.molcel.2005.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046315384
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0092-8674(00)00015-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025640188
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1073/pnas.0605140103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025661857
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1073/pnas.091094198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010487631
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1073/pnas.93.20.10614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046356338
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1089/cmb.2007.0015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245534
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1089/cmb.2007.0085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245559
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/bioinformatics/17.12.1183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022788321
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1093/bioinformatics/17.suppl_1.s215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020864922
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1093/bioinformatics/18.suppl_2.s202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028093842
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/bioinformatics/bth306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045659858
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/bioinformatics/btq342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033560229
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1101/gr.9.9.859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025812109
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1126/science.1065810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050273151
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1126/science.1075090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001953109
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1126/science.270.5235.467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062551475
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1126/science.278.5338.680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558446
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1126/science.285.5429.901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032829879
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1128/mcb.19.3.1720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025467756
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1142/9789814447331_0029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096094930
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1145/321105.321107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006574609
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1145/321526.321534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040716654
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1145/321864.321866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045115864
193 rdf:type schema:CreativeWork
194 https://www.grid.ac/institutes/grid.410590.9 schema:alternateName National Institute of Agrobiological Sciences
195 schema:name National Institute of Agrobiological Sciences, 2-1-2 Kannondai, 305-8602, Tsukuba, Ibaraki, Japan
196 The Systems Biology Institute, 5-6-9 Shirokanedai, 108-0071, Minato, Tokyo, Japan
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.419082.6 schema:alternateName Japan Science and Technology Agency
199 schema:name Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, 223-8522, Kohoku, Yokohama, Japan
200 Kitano Symbiotic Systems Project, ERATO, Japan Science and Technology Corporation, M31 6A, 6-31-15 Jingumae, 150-0001, Shibuya, Tokyo, Japan
201 Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center, and Advanced Computational Sciences Department, RIKEN Advanced Science Institute, 1-7-22 Suehirocho, 230-0045, Tsurumi, Yokohama, Japan
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.452725.3 schema:alternateName Sony Computer Science Laboratories
204 schema:name Kitano Symbiotic Systems Project, ERATO, Japan Science and Technology Corporation, M31 6A, 6-31-15 Jingumae, 150-0001, Shibuya, Tokyo, Japan
205 Sony Computer Science Laboratories, Inc, 3-14-13 Higashi-gotanda, 141-0022, Shinagawa, Tokyo, Japan
206 The Systems Biology Institute, 5-6-9 Shirokanedai, 108-0071, Minato, Tokyo, Japan
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.452864.9 schema:alternateName Systems Biology Institute
209 schema:name Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, 223-8522, Kohoku, Yokohama, Japan
210 Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center, and Advanced Computational Sciences Department, RIKEN Advanced Science Institute, 1-7-22 Suehirocho, 230-0045, Tsurumi, Yokohama, Japan
211 The Systems Biology Institute, 5-6-9 Shirokanedai, 108-0071, Minato, Tokyo, Japan
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...