Population pharmacokinetics and pharmacodynamics of hydroxyurea in sickle cell anemia patients, a basis for optimizing the dosing regimen View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-05-28

AUTHORS

Ines Paule, Hind Sassi, Anoosha Habibi, Kim PD Pham, Dora Bachir, Frédéric Galactéros, Pascal Girard, Anne Hulin, Michel Tod

ABSTRACT

BackgroundHydroxyurea (HU) is the first approved pharmacological treatment of sickle cell anemia (SCA). The objectives of this study were to develop population pharmacokinetic(PK)-pharmacodynamic(PD) models for HU in order to characterize the exposure-efficacy relationships and their variability, compare two dosing regimens by simulations and develop some recommendations for monitoring the treatment.MethodsThe models were built using population modelling software NONMEM VII based on data from two clinical studies of SCA adult patients receiving 500-2000 mg of HU once daily. Fetal hemoglobin percentage (HbF%) and mean corpuscular volume (MCV) were used as biomarkers for response. A sequential modelling approach was applied. Models were evaluated using simulation-based techniques. Comparisons of two dosing regimens were performed by simulating 10000 patients in each arm during 12 months.ResultsThe PK profiles were described by a bicompartmental model. The median (and interindividual coefficient of variation (CV)) of clearance was 11.6 L/h (30%), the central volume was 45.3 L (35%). PK steady-state was reached in about 35 days. For a given dosing regimen, HU exposure varied approximately fivefold among patients. The dynamics of HbF% and MCV were described by turnover models with inhibition of elimination of response. In the studied range of drug exposures, the effect of HU on HbF% was at its maximum (median Imax was 0.57, CV was 27%); the effect on MCV was close to its maximum, with median value of 0.14 and CV of 49%. Simulations showed that 95% of the steady-state levels of HbF% and MCV need 26 months and 3 months to be reached, respectively. The CV of the steady-state value of HbF% was about 7 times larger than that of MCV. Simulations with two different dosing regimens showed that continuous dosing led to a stronger HbF% increase in some patients.ConclusionsThe high variability of response to HU was related in part to pharmacokinetics and to pharmacodynamics. The steady-state value of MCV at month 3 is not predictive of the HbF% value at month 26. Hence, HbF% level may be a better biomarker for monitoring HU treatment. Continuous dosing might be more advantageous in terms of HbF% for patients who have a strong response to HU.Trial RegistrationThe clinical studies whose data are analysed and reported in this work were not required to be registered in France at their time. Both studies were approved by local ethics committees (of Mondor Hospital and of Kremlin-Bicetre Hospital) and written informed consent was obtained from each patient. More... »

PAGES

30

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1750-1172-6-30

DOI

http://dx.doi.org/10.1186/1750-1172-6-30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015504519

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21619673


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anemia, Sickle Cell", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Administration Schedule", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydroxyurea", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "EMR3738 CTO, Facult\u00e9 de M\u00e9decine Lyon-Sud, Universit\u00e9 Lyon 1, Oullins, France", 
          "id": "http://www.grid.ac/institutes/grid.7849.2", 
          "name": [
            "Universit\u00e9 de Lyon, Lyon, France", 
            "EMR3738 CTO, Facult\u00e9 de M\u00e9decine Lyon-Sud, Universit\u00e9 Lyon 1, Oullins, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paule", 
        "givenName": "Ines", 
        "id": "sg:person.0715576221.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715576221.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Pharmacologie, AP-HP, GH H. Mondor, Universit\u00e9 Paris Est-Cr\u00e9teil, Cr\u00e9teil, France", 
          "id": "http://www.grid.ac/institutes/grid.50550.35", 
          "name": [
            "Laboratoire de Pharmacologie, AP-HP, GH H. Mondor, Universit\u00e9 Paris Est-Cr\u00e9teil, Cr\u00e9teil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sassi", 
        "givenName": "Hind", 
        "id": "sg:person.0605314241.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605314241.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre de r\u00e9f\u00e9rence pour les syndromes dr\u00e9panocytaires majeurs, AP-HP, GH H. Mondor, Universit\u00e9 Paris Est-Cr\u00e9teil, Cr\u00e9teil, France", 
          "id": "http://www.grid.ac/institutes/grid.50550.35", 
          "name": [
            "Centre de r\u00e9f\u00e9rence pour les syndromes dr\u00e9panocytaires majeurs, AP-HP, GH H. Mondor, Universit\u00e9 Paris Est-Cr\u00e9teil, Cr\u00e9teil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Habibi", 
        "givenName": "Anoosha", 
        "id": "sg:person.01263510274.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263510274.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Pharmacologie, AP-HP, GH H. Mondor, Universit\u00e9 Paris Est-Cr\u00e9teil, Cr\u00e9teil, France", 
          "id": "http://www.grid.ac/institutes/grid.50550.35", 
          "name": [
            "Laboratoire de Pharmacologie, AP-HP, GH H. Mondor, Universit\u00e9 Paris Est-Cr\u00e9teil, Cr\u00e9teil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pham", 
        "givenName": "Kim PD", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre de r\u00e9f\u00e9rence pour les syndromes dr\u00e9panocytaires majeurs, AP-HP, GH H. Mondor, Universit\u00e9 Paris Est-Cr\u00e9teil, Cr\u00e9teil, France", 
          "id": "http://www.grid.ac/institutes/grid.50550.35", 
          "name": [
            "Centre de r\u00e9f\u00e9rence pour les syndromes dr\u00e9panocytaires majeurs, AP-HP, GH H. Mondor, Universit\u00e9 Paris Est-Cr\u00e9teil, Cr\u00e9teil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bachir", 
        "givenName": "Dora", 
        "id": "sg:person.0765032213.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765032213.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre de r\u00e9f\u00e9rence pour les syndromes dr\u00e9panocytaires majeurs, AP-HP, GH H. Mondor, Universit\u00e9 Paris Est-Cr\u00e9teil, Cr\u00e9teil, France", 
          "id": "http://www.grid.ac/institutes/grid.50550.35", 
          "name": [
            "Centre de r\u00e9f\u00e9rence pour les syndromes dr\u00e9panocytaires majeurs, AP-HP, GH H. Mondor, Universit\u00e9 Paris Est-Cr\u00e9teil, Cr\u00e9teil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galact\u00e9ros", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "id": "sg:person.0742246051.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742246051.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "EMR3738 CTO, Facult\u00e9 de M\u00e9decine Lyon-Sud, Universit\u00e9 Lyon 1, Oullins, France", 
          "id": "http://www.grid.ac/institutes/grid.7849.2", 
          "name": [
            "Universit\u00e9 de Lyon, Lyon, France", 
            "EMR3738 CTO, Facult\u00e9 de M\u00e9decine Lyon-Sud, Universit\u00e9 Lyon 1, Oullins, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Girard", 
        "givenName": "Pascal", 
        "id": "sg:person.012661201622.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661201622.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Pharmacologie, AP-HP, GH H. Mondor, Universit\u00e9 Paris Est-Cr\u00e9teil, Cr\u00e9teil, France", 
          "id": "http://www.grid.ac/institutes/grid.50550.35", 
          "name": [
            "Laboratoire de Pharmacologie, AP-HP, GH H. Mondor, Universit\u00e9 Paris Est-Cr\u00e9teil, Cr\u00e9teil, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hulin", 
        "givenName": "Anne", 
        "id": "sg:person.01022667652.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022667652.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "H\u00f4pital Croix-Rousse, Hospices Civils de Lyon, Lyon, France", 
          "id": "http://www.grid.ac/institutes/grid.413306.3", 
          "name": [
            "Universit\u00e9 de Lyon, Lyon, France", 
            "EMR3738 CTO, Facult\u00e9 de M\u00e9decine Lyon-Sud, Universit\u00e9 Lyon 1, Oullins, France", 
            "H\u00f4pital Croix-Rousse, Hospices Civils de Lyon, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tod", 
        "givenName": "Michel", 
        "id": "sg:person.0763711421.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763711421.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1021060000789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049682405", 
          "https://doi.org/10.1023/a:1021060000789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.tpj.6500433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035169150", 
          "https://doi.org/10.1038/sj.tpj.6500433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012299115260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050934479", 
          "https://doi.org/10.1023/a:1012299115260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11095-006-9067-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007463799", 
          "https://doi.org/10.1007/s11095-006-9067-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00003088-199834050-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002543845", 
          "https://doi.org/10.2165/00003088-199834050-00002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1208/s12248-011-9255-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035687095", 
          "https://doi.org/10.1208/s12248-011-9255-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012394158", 
          "https://doi.org/10.1038/nature01626"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-05-28", 
    "datePublishedReg": "2011-05-28", 
    "description": "BackgroundHydroxyurea (HU) is the first approved pharmacological treatment of sickle cell anemia (SCA). The objectives of this study were to develop population pharmacokinetic(PK)-pharmacodynamic(PD) models for HU in order to characterize the exposure-efficacy relationships and their variability, compare two dosing regimens by simulations and develop some recommendations for monitoring the treatment.MethodsThe models were built using population modelling software NONMEM VII based on data from two clinical studies of SCA adult patients receiving 500-2000 mg of HU once daily. Fetal hemoglobin percentage (HbF%) and mean corpuscular volume (MCV) were used as biomarkers for response. A sequential modelling approach was applied. Models were evaluated using simulation-based techniques. Comparisons of two dosing regimens were performed by simulating 10000 patients in each arm during 12 months.ResultsThe PK profiles were described by a bicompartmental model. The median (and interindividual coefficient of variation (CV)) of clearance was 11.6 L/h (30%), the central volume was 45.3 L (35%). PK steady-state was reached in about 35 days. For a given dosing regimen, HU exposure varied approximately fivefold among patients. The dynamics of HbF% and MCV were described by turnover models with inhibition of elimination of response. In the studied range of drug exposures, the effect of HU on HbF% was at its maximum (median Imax was 0.57, CV was 27%); the effect on MCV was close to its maximum, with median value of 0.14 and CV of 49%. Simulations showed that 95% of the steady-state levels of HbF% and MCV need 26 months and 3 months to be reached, respectively. The CV of the steady-state value of HbF% was about 7 times larger than that of MCV. Simulations with two different dosing regimens showed that continuous dosing led to a stronger HbF% increase in some patients.ConclusionsThe high variability of response to HU was related in part to pharmacokinetics and to pharmacodynamics. The steady-state value of MCV at month 3 is not predictive of the HbF% value at month 26. Hence, HbF% level may be a better biomarker for monitoring HU treatment. Continuous dosing might be more advantageous in terms of HbF% for patients who have a strong response to HU.Trial RegistrationThe clinical studies whose data are analysed and reported in this work were not required to be registered in France at their time. Both studies were approved by local ethics committees (of Mondor Hospital and of Kremlin-Bicetre Hospital) and written informed consent was obtained from each patient.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1750-1172-6-30", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036535", 
        "issn": [
          "1750-1172"
        ], 
        "name": "Orphanet Journal of Rare Diseases", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "sickle cell anemia", 
      "clinical studies", 
      "continuous dosing", 
      "fetal hemoglobin percentage", 
      "sickle cell anemia patients", 
      "exposure-efficacy relationship", 
      "different dosing regimens", 
      "inhibition of elimination", 
      "local ethics committee", 
      "adult patients", 
      "month 3", 
      "dosing regimens", 
      "pharmacological treatment", 
      "population pharmacokinetics", 
      "drug exposure", 
      "month 26", 
      "hemoglobin percentage", 
      "anemia patients", 
      "patients", 
      "NONMEM VII", 
      "cell anemia", 
      "PK profiles", 
      "central volume", 
      "corpuscular volume", 
      "good biomarker", 
      "regimens", 
      "informed consent", 
      "Ethics Committee", 
      "bicompartmental model", 
      "MCV", 
      "months", 
      "regimen", 
      "HU treatment", 
      "pharmacodynamics", 
      "dosing", 
      "pharmacokinetics", 
      "treatment", 
      "median value", 
      "steady-state levels", 
      "HU exposure", 
      "biomarkers", 
      "effect of HU", 
      "MethodsThe model", 
      "exposure", 
      "response", 
      "HU", 
      "anemia", 
      "study", 
      "clearance", 
      "median", 
      "levels", 
      "consent", 
      "hydroxyurea", 
      "inhibition", 
      "strong response", 
      "days", 
      "effect", 
      "volume", 
      "arm", 
      "population", 
      "percentage", 
      "data", 
      "recommendations", 
      "high variability", 
      "Committee", 
      "elimination", 
      "time", 
      "PK", 
      "variability", 
      "profile", 
      "values", 
      "objective", 
      "turnover model", 
      "model", 
      "relationship", 
      "sequential modelling approach", 
      "comparison", 
      "cv", 
      "steady-state value", 
      "part", 
      "basis", 
      "France", 
      "technique", 
      "approach", 
      "range", 
      "terms", 
      "maximum", 
      "order", 
      "work", 
      "modelling approach", 
      "dynamics", 
      "studied range", 
      "simulation-based techniques", 
      "simulations"
    ], 
    "name": "Population pharmacokinetics and pharmacodynamics of hydroxyurea in sickle cell anemia patients, a basis for optimizing the dosing regimen", 
    "pagination": "30", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015504519"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1750-1172-6-30"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21619673"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1750-1172-6-30", 
      "https://app.dimensions.ai/details/publication/pub.1015504519"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_553.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1750-1172-6-30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1750-1172-6-30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1750-1172-6-30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1750-1172-6-30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1750-1172-6-30'


 

This table displays all metadata directly associated to this object as RDF triples.

296 TRIPLES      21 PREDICATES      138 URIs      123 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1750-1172-6-30 schema:about N0ca6a7ee0aea406b8571244f8fca6251
2 N0fc04cf2c1e649eb945bf2f3f1a5b0da
3 N1a01d8f2c3244275b25d9db708721252
4 N58afc403aef14cc7adb728afb8199b0f
5 N740e16d6f1d94bc5a19e07c70b1d2767
6 N8b59766c515c4258992c3d3e23cca993
7 Nb35c5f33af2c4565a41bbfece62b4577
8 Nb3d8c3e29f9941548bead6df319bf912
9 Nb62b0e94d4134de5a4f57ddac771f7da
10 Nd36ad1eaf50c438dbb63e59f15465288
11 Nd5632217ad9d4cfaa68acc62df065713
12 Ne1ba4b95615c4e9a95637feccf419f63
13 anzsrc-for:11
14 anzsrc-for:1117
15 schema:author Nac27c6e881e94fda849ede0ffa710651
16 schema:citation sg:pub.10.1007/s11095-006-9067-5
17 sg:pub.10.1023/a:1012299115260
18 sg:pub.10.1023/a:1021060000789
19 sg:pub.10.1038/nature01626
20 sg:pub.10.1038/sj.tpj.6500433
21 sg:pub.10.1208/s12248-011-9255-z
22 sg:pub.10.2165/00003088-199834050-00002
23 schema:datePublished 2011-05-28
24 schema:datePublishedReg 2011-05-28
25 schema:description BackgroundHydroxyurea (HU) is the first approved pharmacological treatment of sickle cell anemia (SCA). The objectives of this study were to develop population pharmacokinetic(PK)-pharmacodynamic(PD) models for HU in order to characterize the exposure-efficacy relationships and their variability, compare two dosing regimens by simulations and develop some recommendations for monitoring the treatment.MethodsThe models were built using population modelling software NONMEM VII based on data from two clinical studies of SCA adult patients receiving 500-2000 mg of HU once daily. Fetal hemoglobin percentage (HbF%) and mean corpuscular volume (MCV) were used as biomarkers for response. A sequential modelling approach was applied. Models were evaluated using simulation-based techniques. Comparisons of two dosing regimens were performed by simulating 10000 patients in each arm during 12 months.ResultsThe PK profiles were described by a bicompartmental model. The median (and interindividual coefficient of variation (CV)) of clearance was 11.6 L/h (30%), the central volume was 45.3 L (35%). PK steady-state was reached in about 35 days. For a given dosing regimen, HU exposure varied approximately fivefold among patients. The dynamics of HbF% and MCV were described by turnover models with inhibition of elimination of response. In the studied range of drug exposures, the effect of HU on HbF% was at its maximum (median Imax was 0.57, CV was 27%); the effect on MCV was close to its maximum, with median value of 0.14 and CV of 49%. Simulations showed that 95% of the steady-state levels of HbF% and MCV need 26 months and 3 months to be reached, respectively. The CV of the steady-state value of HbF% was about 7 times larger than that of MCV. Simulations with two different dosing regimens showed that continuous dosing led to a stronger HbF% increase in some patients.ConclusionsThe high variability of response to HU was related in part to pharmacokinetics and to pharmacodynamics. The steady-state value of MCV at month 3 is not predictive of the HbF% value at month 26. Hence, HbF% level may be a better biomarker for monitoring HU treatment. Continuous dosing might be more advantageous in terms of HbF% for patients who have a strong response to HU.Trial RegistrationThe clinical studies whose data are analysed and reported in this work were not required to be registered in France at their time. Both studies were approved by local ethics committees (of Mondor Hospital and of Kremlin-Bicetre Hospital) and written informed consent was obtained from each patient.
26 schema:genre article
27 schema:isAccessibleForFree true
28 schema:isPartOf N101f9dffc5ac41d69c2154ab233e24ec
29 N8033a1e89404458e88e990dfa5086c33
30 sg:journal.1036535
31 schema:keywords Committee
32 Ethics Committee
33 France
34 HU
35 HU exposure
36 HU treatment
37 MCV
38 MethodsThe model
39 NONMEM VII
40 PK
41 PK profiles
42 adult patients
43 anemia
44 anemia patients
45 approach
46 arm
47 basis
48 bicompartmental model
49 biomarkers
50 cell anemia
51 central volume
52 clearance
53 clinical studies
54 comparison
55 consent
56 continuous dosing
57 corpuscular volume
58 cv
59 data
60 days
61 different dosing regimens
62 dosing
63 dosing regimens
64 drug exposure
65 dynamics
66 effect
67 effect of HU
68 elimination
69 exposure
70 exposure-efficacy relationship
71 fetal hemoglobin percentage
72 good biomarker
73 hemoglobin percentage
74 high variability
75 hydroxyurea
76 informed consent
77 inhibition
78 inhibition of elimination
79 levels
80 local ethics committee
81 maximum
82 median
83 median value
84 model
85 modelling approach
86 month 26
87 month 3
88 months
89 objective
90 order
91 part
92 patients
93 percentage
94 pharmacodynamics
95 pharmacokinetics
96 pharmacological treatment
97 population
98 population pharmacokinetics
99 profile
100 range
101 recommendations
102 regimen
103 regimens
104 relationship
105 response
106 sequential modelling approach
107 sickle cell anemia
108 sickle cell anemia patients
109 simulation-based techniques
110 simulations
111 steady-state levels
112 steady-state value
113 strong response
114 studied range
115 study
116 technique
117 terms
118 time
119 treatment
120 turnover model
121 values
122 variability
123 volume
124 work
125 schema:name Population pharmacokinetics and pharmacodynamics of hydroxyurea in sickle cell anemia patients, a basis for optimizing the dosing regimen
126 schema:pagination 30
127 schema:productId N20242944608049ccb9675a02d2f08df8
128 N9866b2d0562748eaae6a77f56c0d88a3
129 Nc3fad0cdff1f47fbb80a4107849e3c56
130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015504519
131 https://doi.org/10.1186/1750-1172-6-30
132 schema:sdDatePublished 2022-09-02T15:55
133 schema:sdLicense https://scigraph.springernature.com/explorer/license/
134 schema:sdPublisher Nefd0e894b2024793969e894d8b1c8b8c
135 schema:url https://doi.org/10.1186/1750-1172-6-30
136 sgo:license sg:explorer/license/
137 sgo:sdDataset articles
138 rdf:type schema:ScholarlyArticle
139 N03581b79639e42758bb0b535641cc2a3 rdf:first sg:person.0742246051.44
140 rdf:rest N55e0a63462b34b82afc0b777be1d2233
141 N0ca6a7ee0aea406b8571244f8fca6251 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Male
143 rdf:type schema:DefinedTerm
144 N0fc04cf2c1e649eb945bf2f3f1a5b0da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Middle Aged
146 rdf:type schema:DefinedTerm
147 N101f9dffc5ac41d69c2154ab233e24ec schema:volumeNumber 6
148 rdf:type schema:PublicationVolume
149 N110cd6b7014748f9afbf99981d60a059 rdf:first sg:person.01263510274.18
150 rdf:rest N6eddf3fc43ab4724b9573dffe64de062
151 N1a01d8f2c3244275b25d9db708721252 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Computer Simulation
153 rdf:type schema:DefinedTerm
154 N20242944608049ccb9675a02d2f08df8 schema:name dimensions_id
155 schema:value pub.1015504519
156 rdf:type schema:PropertyValue
157 N2931d38f76d54481b6d5108b40122589 rdf:first sg:person.0605314241.82
158 rdf:rest N110cd6b7014748f9afbf99981d60a059
159 N55e0a63462b34b82afc0b777be1d2233 rdf:first sg:person.012661201622.56
160 rdf:rest Nb5b329ee96f1405180c92de22d6dbd17
161 N58afc403aef14cc7adb728afb8199b0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Young Adult
163 rdf:type schema:DefinedTerm
164 N6a9529439a404089b37bb9badbda55e4 schema:affiliation grid-institutes:grid.50550.35
165 schema:familyName Pham
166 schema:givenName Kim PD
167 rdf:type schema:Person
168 N6eddf3fc43ab4724b9573dffe64de062 rdf:first N6a9529439a404089b37bb9badbda55e4
169 rdf:rest Ncc7bae76f1f843838b7897e0573a8f5b
170 N740e16d6f1d94bc5a19e07c70b1d2767 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Humans
172 rdf:type schema:DefinedTerm
173 N8033a1e89404458e88e990dfa5086c33 schema:issueNumber 1
174 rdf:type schema:PublicationIssue
175 N8b59766c515c4258992c3d3e23cca993 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Adult
177 rdf:type schema:DefinedTerm
178 N9866b2d0562748eaae6a77f56c0d88a3 schema:name pubmed_id
179 schema:value 21619673
180 rdf:type schema:PropertyValue
181 Nac27c6e881e94fda849ede0ffa710651 rdf:first sg:person.0715576221.23
182 rdf:rest N2931d38f76d54481b6d5108b40122589
183 Nb35c5f33af2c4565a41bbfece62b4577 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Female
185 rdf:type schema:DefinedTerm
186 Nb3d8c3e29f9941548bead6df319bf912 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Adolescent
188 rdf:type schema:DefinedTerm
189 Nb5b329ee96f1405180c92de22d6dbd17 rdf:first sg:person.01022667652.59
190 rdf:rest Neabe716963f24f99ad3dfcac49ec7fc4
191 Nb62b0e94d4134de5a4f57ddac771f7da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Hydroxyurea
193 rdf:type schema:DefinedTerm
194 Nc3fad0cdff1f47fbb80a4107849e3c56 schema:name doi
195 schema:value 10.1186/1750-1172-6-30
196 rdf:type schema:PropertyValue
197 Ncc7bae76f1f843838b7897e0573a8f5b rdf:first sg:person.0765032213.75
198 rdf:rest N03581b79639e42758bb0b535641cc2a3
199 Nd36ad1eaf50c438dbb63e59f15465288 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Anemia, Sickle Cell
201 rdf:type schema:DefinedTerm
202 Nd5632217ad9d4cfaa68acc62df065713 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Models, Biological
204 rdf:type schema:DefinedTerm
205 Ne1ba4b95615c4e9a95637feccf419f63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Drug Administration Schedule
207 rdf:type schema:DefinedTerm
208 Neabe716963f24f99ad3dfcac49ec7fc4 rdf:first sg:person.0763711421.46
209 rdf:rest rdf:nil
210 Nefd0e894b2024793969e894d8b1c8b8c schema:name Springer Nature - SN SciGraph project
211 rdf:type schema:Organization
212 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
213 schema:name Medical and Health Sciences
214 rdf:type schema:DefinedTerm
215 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
216 schema:name Public Health and Health Services
217 rdf:type schema:DefinedTerm
218 sg:journal.1036535 schema:issn 1750-1172
219 schema:name Orphanet Journal of Rare Diseases
220 schema:publisher Springer Nature
221 rdf:type schema:Periodical
222 sg:person.01022667652.59 schema:affiliation grid-institutes:grid.50550.35
223 schema:familyName Hulin
224 schema:givenName Anne
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022667652.59
226 rdf:type schema:Person
227 sg:person.01263510274.18 schema:affiliation grid-institutes:grid.50550.35
228 schema:familyName Habibi
229 schema:givenName Anoosha
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263510274.18
231 rdf:type schema:Person
232 sg:person.012661201622.56 schema:affiliation grid-institutes:grid.7849.2
233 schema:familyName Girard
234 schema:givenName Pascal
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012661201622.56
236 rdf:type schema:Person
237 sg:person.0605314241.82 schema:affiliation grid-institutes:grid.50550.35
238 schema:familyName Sassi
239 schema:givenName Hind
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605314241.82
241 rdf:type schema:Person
242 sg:person.0715576221.23 schema:affiliation grid-institutes:grid.7849.2
243 schema:familyName Paule
244 schema:givenName Ines
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715576221.23
246 rdf:type schema:Person
247 sg:person.0742246051.44 schema:affiliation grid-institutes:grid.50550.35
248 schema:familyName Galactéros
249 schema:givenName Frédéric
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742246051.44
251 rdf:type schema:Person
252 sg:person.0763711421.46 schema:affiliation grid-institutes:grid.413306.3
253 schema:familyName Tod
254 schema:givenName Michel
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763711421.46
256 rdf:type schema:Person
257 sg:person.0765032213.75 schema:affiliation grid-institutes:grid.50550.35
258 schema:familyName Bachir
259 schema:givenName Dora
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765032213.75
261 rdf:type schema:Person
262 sg:pub.10.1007/s11095-006-9067-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007463799
263 https://doi.org/10.1007/s11095-006-9067-5
264 rdf:type schema:CreativeWork
265 sg:pub.10.1023/a:1012299115260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050934479
266 https://doi.org/10.1023/a:1012299115260
267 rdf:type schema:CreativeWork
268 sg:pub.10.1023/a:1021060000789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049682405
269 https://doi.org/10.1023/a:1021060000789
270 rdf:type schema:CreativeWork
271 sg:pub.10.1038/nature01626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012394158
272 https://doi.org/10.1038/nature01626
273 rdf:type schema:CreativeWork
274 sg:pub.10.1038/sj.tpj.6500433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035169150
275 https://doi.org/10.1038/sj.tpj.6500433
276 rdf:type schema:CreativeWork
277 sg:pub.10.1208/s12248-011-9255-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1035687095
278 https://doi.org/10.1208/s12248-011-9255-z
279 rdf:type schema:CreativeWork
280 sg:pub.10.2165/00003088-199834050-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002543845
281 https://doi.org/10.2165/00003088-199834050-00002
282 rdf:type schema:CreativeWork
283 grid-institutes:grid.413306.3 schema:alternateName Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
284 schema:name EMR3738 CTO, Faculté de Médecine Lyon-Sud, Université Lyon 1, Oullins, France
285 Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
286 Université de Lyon, Lyon, France
287 rdf:type schema:Organization
288 grid-institutes:grid.50550.35 schema:alternateName Centre de référence pour les syndromes drépanocytaires majeurs, AP-HP, GH H. Mondor, Université Paris Est-Créteil, Créteil, France
289 Laboratoire de Pharmacologie, AP-HP, GH H. Mondor, Université Paris Est-Créteil, Créteil, France
290 schema:name Centre de référence pour les syndromes drépanocytaires majeurs, AP-HP, GH H. Mondor, Université Paris Est-Créteil, Créteil, France
291 Laboratoire de Pharmacologie, AP-HP, GH H. Mondor, Université Paris Est-Créteil, Créteil, France
292 rdf:type schema:Organization
293 grid-institutes:grid.7849.2 schema:alternateName EMR3738 CTO, Faculté de Médecine Lyon-Sud, Université Lyon 1, Oullins, France
294 schema:name EMR3738 CTO, Faculté de Médecine Lyon-Sud, Université Lyon 1, Oullins, France
295 Université de Lyon, Lyon, France
296 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...