Protein Structure Idealization: How accurately is it possible to model protein structures with dihedral angles? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Xuefeng Cui, Shuai Cheng Li, Dongbo Bu, Babak Alipanahi, Ming Li

ABSTRACT

: Previous studies show that the same type of bond lengths and angles fit Gaussian distributions well with small standard deviations on high resolution protein structure data. The mean values of these Gaussian distributions have been widely used as ideal bond lengths and angles in bioinformatics. However, we are not aware of any research done to evaluate how accurately we can model protein structures with dihedral angles and ideal bond lengths and angles.Here, we introduce the protein structure idealization problem. We focus on the protein backbone structure idealization. We describe a fast O(nm/ε) dynamic programming algorithm to find an idealized protein backbone structure that is approximately optimal according to our scoring function. The scoring function evaluates not only the free energy, but also the similarity with the target structure. Thus, the idealized protein structures found by our algorithm are guaranteed to be protein-like and close to the target protein structure.We have implemented our protein structure idealization algorithm and idealized the high resolution protein structures with low sequence identities of the CULLPDB_PC30_RES1.6_R0.25 data set. We demonstrate that idealized backbone structures always exist with small changes and significantly better free energy. We also applied our algorithm to refine protein pseudo-structures determined in NMR experiments. More... »

PAGES

5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1748-7188-8-5

DOI

http://dx.doi.org/10.1186/1748-7188-8-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008334227

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23442792


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "University of Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Xuefeng", 
        "id": "sg:person.0743012711.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743012711.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "City University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.35030.35", 
          "name": [
            "City University of Hong Kong, Hong Kong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Shuai Cheng", 
        "id": "sg:person.01314123720.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314123720.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.9227.e", 
          "name": [
            "Chinese Academy of Sciences, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bu", 
        "givenName": "Dongbo", 
        "id": "sg:person.01137000414.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137000414.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "University of Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alipanahi", 
        "givenName": "Babak", 
        "id": "sg:person.0754727434.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754727434.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "University of Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ming", 
        "id": "sg:person.0621576316.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621576316.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1107/s0021889892009944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003451988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0134(20000815)40:3<343::aid-prot10>3.0.co;2-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005952156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.4459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006368737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq1105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008072559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008954967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1997.1284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011642887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1997.0959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011896927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2011.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014820431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/gzg081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018746875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019181069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019181069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02192866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020727475", 
          "https://doi.org/10.1007/bf02192866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02192866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020727475", 
          "https://doi.org/10.1007/bf02192866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.036442.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023059483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340190403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027941628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340190403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027941628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030521598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5483/bmbrep.2005.38.5.550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032820852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035055456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmre.1996.1027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035342201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0108767391001071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036464667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.21968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039934588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s090744490700978x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040451335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5483/bmbrep.2005.38.4.500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040735163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560060807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042933715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s090744490604604x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043491637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/381272a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044595902", 
          "https://doi.org/10.1038/381272a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bip.360221211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045206155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.033480.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046149895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048177582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmre.1997.1116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048754314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.03154503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050369828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560050609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052000147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560050609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052000147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/csb.2005.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077182617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/csb.2005.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077182617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/97809553602060000695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088838734"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": ": Previous studies show that the same type of bond lengths and angles fit Gaussian distributions well with small standard deviations on high resolution protein structure data. The mean values of these Gaussian distributions have been widely used as ideal bond lengths and angles in bioinformatics. However, we are not aware of any research done to evaluate how accurately we can model protein structures with dihedral angles and ideal bond lengths and angles.Here, we introduce the protein structure idealization problem. We focus on the protein backbone structure idealization. We describe a fast O(nm/\u03b5) dynamic programming algorithm to find an idealized protein backbone structure that is approximately optimal according to our scoring function. The scoring function evaluates not only the free energy, but also the similarity with the target structure. Thus, the idealized protein structures found by our algorithm are guaranteed to be protein-like and close to the target protein structure.We have implemented our protein structure idealization algorithm and idealized the high resolution protein structures with low sequence identities of the CULLPDB_PC30_RES1.6_R0.25 data set. We demonstrate that idealized backbone structures always exist with small changes and significantly better free energy. We also applied our algorithm to refine protein pseudo-structures determined in NMR experiments.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1748-7188-8-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036449", 
        "issn": [
          "1748-7188"
        ], 
        "name": "Algorithms for Molecular Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Protein Structure Idealization: How accurately is it possible to model protein structures with dihedral angles?", 
    "pagination": "5", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "27b4a3a356a75e400736f1e2672a5d134c2ca383c5d673da7c5df57d173dead1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23442792"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101265088"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1748-7188-8-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008334227"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1748-7188-8-5", 
      "https://app.dimensions.ai/details/publication/pub.1008334227"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1748-7188-8-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1748-7188-8-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1748-7188-8-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1748-7188-8-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1748-7188-8-5'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      61 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1748-7188-8-5 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N229d093c2ee54243a17bb92f2cc8536e
4 schema:citation sg:pub.10.1007/bf02192866
5 sg:pub.10.1038/381272a0
6 https://doi.org/10.1002/1097-0134(20000815)40:3<343::aid-prot10>3.0.co;2-s
7 https://doi.org/10.1002/bip.360221211
8 https://doi.org/10.1002/pro.5560050609
9 https://doi.org/10.1002/pro.5560060807
10 https://doi.org/10.1002/prot.21968
11 https://doi.org/10.1002/prot.22488
12 https://doi.org/10.1002/prot.340190403
13 https://doi.org/10.1006/jmbi.1997.0959
14 https://doi.org/10.1006/jmbi.1997.1284
15 https://doi.org/10.1006/jmbi.2000.4459
16 https://doi.org/10.1006/jmre.1996.1027
17 https://doi.org/10.1006/jmre.1997.1116
18 https://doi.org/10.1016/j.str.2011.03.019
19 https://doi.org/10.1093/bioinformatics/btg224
20 https://doi.org/10.1093/bioinformatics/btr590
21 https://doi.org/10.1093/nar/28.1.235
22 https://doi.org/10.1093/nar/gki402
23 https://doi.org/10.1093/nar/gkq1105
24 https://doi.org/10.1093/protein/gzg081
25 https://doi.org/10.1107/97809553602060000695
26 https://doi.org/10.1107/s0021889892009944
27 https://doi.org/10.1107/s0108767391001071
28 https://doi.org/10.1107/s090744490604604x
29 https://doi.org/10.1107/s090744490700978x
30 https://doi.org/10.1109/csb.2005.9
31 https://doi.org/10.1110/ps.03154503
32 https://doi.org/10.1110/ps.033480.107
33 https://doi.org/10.1110/ps.036442.108
34 https://doi.org/10.5483/bmbrep.2005.38.4.500
35 https://doi.org/10.5483/bmbrep.2005.38.5.550
36 schema:datePublished 2013-12
37 schema:datePublishedReg 2013-12-01
38 schema:description : Previous studies show that the same type of bond lengths and angles fit Gaussian distributions well with small standard deviations on high resolution protein structure data. The mean values of these Gaussian distributions have been widely used as ideal bond lengths and angles in bioinformatics. However, we are not aware of any research done to evaluate how accurately we can model protein structures with dihedral angles and ideal bond lengths and angles.Here, we introduce the protein structure idealization problem. We focus on the protein backbone structure idealization. We describe a fast O(nm/ε) dynamic programming algorithm to find an idealized protein backbone structure that is approximately optimal according to our scoring function. The scoring function evaluates not only the free energy, but also the similarity with the target structure. Thus, the idealized protein structures found by our algorithm are guaranteed to be protein-like and close to the target protein structure.We have implemented our protein structure idealization algorithm and idealized the high resolution protein structures with low sequence identities of the CULLPDB_PC30_RES1.6_R0.25 data set. We demonstrate that idealized backbone structures always exist with small changes and significantly better free energy. We also applied our algorithm to refine protein pseudo-structures determined in NMR experiments.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N12d7ff52936c4ee0905a5566470f5284
43 N173540ac319c4c2683d1ece3996ce854
44 sg:journal.1036449
45 schema:name Protein Structure Idealization: How accurately is it possible to model protein structures with dihedral angles?
46 schema:pagination 5
47 schema:productId N6664d15ce6e54a38ade0f37747298f48
48 Na45acce7e45f4dd5bc3bba6676e8b4c9
49 Nab7e1a8052754bb4a76de211354274d8
50 Nc83aa4fb1c794bd3b47dc9fe97885589
51 Ndfb5bffed2b6465d85d9270c3da2ec29
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008334227
53 https://doi.org/10.1186/1748-7188-8-5
54 schema:sdDatePublished 2019-04-10T17:31
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N0e7b7bd694c64d8098d5f03a92552a94
57 schema:url http://link.springer.com/10.1186%2F1748-7188-8-5
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N067adad3e7bf40049652107dfdbd04e8 rdf:first sg:person.0621576316.79
62 rdf:rest rdf:nil
63 N0e7b7bd694c64d8098d5f03a92552a94 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N12d7ff52936c4ee0905a5566470f5284 schema:volumeNumber 8
66 rdf:type schema:PublicationVolume
67 N173540ac319c4c2683d1ece3996ce854 schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 N229d093c2ee54243a17bb92f2cc8536e rdf:first sg:person.0743012711.78
70 rdf:rest Ne08e7ae43d724663a752f30e9fe3b909
71 N417145cec005492fb71cbee80385975b rdf:first sg:person.01137000414.40
72 rdf:rest Nb688a08be64a479099deca96451ca5ea
73 N6664d15ce6e54a38ade0f37747298f48 schema:name dimensions_id
74 schema:value pub.1008334227
75 rdf:type schema:PropertyValue
76 Na45acce7e45f4dd5bc3bba6676e8b4c9 schema:name nlm_unique_id
77 schema:value 101265088
78 rdf:type schema:PropertyValue
79 Nab7e1a8052754bb4a76de211354274d8 schema:name pubmed_id
80 schema:value 23442792
81 rdf:type schema:PropertyValue
82 Nb688a08be64a479099deca96451ca5ea rdf:first sg:person.0754727434.08
83 rdf:rest N067adad3e7bf40049652107dfdbd04e8
84 Nc83aa4fb1c794bd3b47dc9fe97885589 schema:name doi
85 schema:value 10.1186/1748-7188-8-5
86 rdf:type schema:PropertyValue
87 Ndfb5bffed2b6465d85d9270c3da2ec29 schema:name readcube_id
88 schema:value 27b4a3a356a75e400736f1e2672a5d134c2ca383c5d673da7c5df57d173dead1
89 rdf:type schema:PropertyValue
90 Ne08e7ae43d724663a752f30e9fe3b909 rdf:first sg:person.01314123720.90
91 rdf:rest N417145cec005492fb71cbee80385975b
92 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
93 schema:name Physical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
96 schema:name Other Physical Sciences
97 rdf:type schema:DefinedTerm
98 sg:journal.1036449 schema:issn 1748-7188
99 schema:name Algorithms for Molecular Biology
100 rdf:type schema:Periodical
101 sg:person.01137000414.40 schema:affiliation https://www.grid.ac/institutes/grid.9227.e
102 schema:familyName Bu
103 schema:givenName Dongbo
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137000414.40
105 rdf:type schema:Person
106 sg:person.01314123720.90 schema:affiliation https://www.grid.ac/institutes/grid.35030.35
107 schema:familyName Li
108 schema:givenName Shuai Cheng
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314123720.90
110 rdf:type schema:Person
111 sg:person.0621576316.79 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
112 schema:familyName Li
113 schema:givenName Ming
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621576316.79
115 rdf:type schema:Person
116 sg:person.0743012711.78 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
117 schema:familyName Cui
118 schema:givenName Xuefeng
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743012711.78
120 rdf:type schema:Person
121 sg:person.0754727434.08 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
122 schema:familyName Alipanahi
123 schema:givenName Babak
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754727434.08
125 rdf:type schema:Person
126 sg:pub.10.1007/bf02192866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020727475
127 https://doi.org/10.1007/bf02192866
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/381272a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044595902
130 https://doi.org/10.1038/381272a0
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/1097-0134(20000815)40:3<343::aid-prot10>3.0.co;2-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1005952156
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/bip.360221211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045206155
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/pro.5560050609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052000147
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/pro.5560060807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042933715
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/prot.21968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039934588
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/prot.22488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019181069
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/prot.340190403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027941628
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1006/jmbi.1997.0959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011896927
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1006/jmbi.1997.1284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011642887
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1006/jmbi.2000.4459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006368737
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1006/jmre.1996.1027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035342201
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1006/jmre.1997.1116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048754314
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.str.2011.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014820431
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/bioinformatics/btg224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030521598
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1093/bioinformatics/btr590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048177582
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1093/nar/28.1.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035055456
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1093/nar/gki402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008954967
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1093/nar/gkq1105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008072559
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/protein/gzg081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018746875
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1107/97809553602060000695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088838734
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1107/s0021889892009944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003451988
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1107/s0108767391001071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036464667
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1107/s090744490604604x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043491637
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1107/s090744490700978x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040451335
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/csb.2005.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077182617
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1110/ps.03154503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050369828
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1110/ps.033480.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046149895
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1110/ps.036442.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023059483
187 rdf:type schema:CreativeWork
188 https://doi.org/10.5483/bmbrep.2005.38.4.500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040735163
189 rdf:type schema:CreativeWork
190 https://doi.org/10.5483/bmbrep.2005.38.5.550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032820852
191 rdf:type schema:CreativeWork
192 https://www.grid.ac/institutes/grid.35030.35 schema:alternateName City University of Hong Kong
193 schema:name City University of Hong Kong, Hong Kong, China
194 rdf:type schema:Organization
195 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
196 schema:name University of Waterloo, Ontario, Canada
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.9227.e schema:alternateName Chinese Academy of Sciences
199 schema:name Chinese Academy of Sciences, Beijing, China
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...