Towards a practical O(n logn) phylogeny algorithm View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Jakub Truszkowski, Yanqi Hao, Daniel G Brown

ABSTRACT

: Recently, we have identified a randomized quartet phylogeny algorithm that has O(nlogn) runtime with high probability, which is asymptotically optimal. Our algorithm has high probability of returning the correct phylogeny when quartet errors are independent and occur with known probability, and when the algorithm uses a guide tree on O(loglogn) taxa that is correct with high probability. In practice, none of these assumptions is correct: quartet errors are positively correlated and occur with unknown probability, and the guide tree is often error prone. Here, we bring our work out of the purely theoretical setting. We present a variety of extensions which, while only slowing the algorithm down by a constant factor, make its performance nearly comparable to that of Neighbour Joining , which requires Θ(n3) runtime in existing implementations. Our results suggest a new direction for quartet-based phylogenetic reconstruction that may yield striking speed improvements at minimal accuracy cost. An early prototype implementation of our software is available at http://www.cs.uwaterloo.ca/jmtruszk/qtree.tar.gz. More... »

PAGES

32

References to SciGraph publications

  • 2009. Phylogenies without Branch Bounds: Contracting the Short, Pruning the Deep in RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY
  • 2011. Fast Error-Tolerant Quartet Phylogeny Algorithms in COMBINATORIAL PATTERN MATCHING
  • 2005-12. Scoredist: A simple and robust protein sequence distance estimator in BMC BIOINFORMATICS
  • 2009. Large-Scale Neighbor-Joining with NINJA in ALGORITHMS IN BIOINFORMATICS
  • 2005. Fast Neighbor Joining in AUTOMATA, LANGUAGES AND PROGRAMMING
  • 2004-02. Computing the Quartet Distance between Evolutionary Trees in Time O(n log n) in ALGORITHMICA
  • 2011. Towards a Practical O(n logn) Phylogeny Algorithm in ALGORITHMS IN BIOINFORMATICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1748-7188-7-32

    DOI

    http://dx.doi.org/10.1186/1748-7188-7-32

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002393530

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23181935


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computer Software", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "David R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON N2L 3G1, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Truszkowski", 
            "givenName": "Jakub", 
            "id": "sg:person.01320220640.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320220640.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "David R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON N2L 3G1, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hao", 
            "givenName": "Yanqi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "David R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON N2L 3G1, Ontario, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brown", 
            "givenName": "Daniel G", 
            "id": "sg:person.0642727740.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642727740.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000153997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/279069.279105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000943105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ipl.2007.07.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002252868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11523468_102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004861745", 
              "https://doi.org/10.1007/11523468_102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11523468_102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004861745", 
              "https://doi.org/10.1007/11523468_102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-21458-5_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008082437", 
              "https://doi.org/10.1007/978-3-642-21458-5_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-21458-5_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008082437", 
              "https://doi.org/10.1007/978-3-642-21458-5_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/19.2.301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018196271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00453-003-1065-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021604411", 
              "https://doi.org/10.1007/s00453-003-1065-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/18.11.1546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024464903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/14.2.157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027219082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msp077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028540883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msp077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028540883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-3975(99)00028-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030334849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-04241-6_31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032768275", 
              "https://doi.org/10.1007/978-3-642-04241-6_31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.molbev.a025756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034694173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037048502", 
              "https://doi.org/10.1186/1471-2105-6-108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jagm.1996.0035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045540105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02008-7_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050043191", 
              "https://doi.org/10.1007/978-3-642-02008-7_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02008-7_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050043191", 
              "https://doi.org/10.1007/978-3-642-02008-7_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-23038-7_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050915819", 
              "https://doi.org/10.1007/978-3-642-23038-7_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-23038-7_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050915819", 
              "https://doi.org/10.1007/978-3-642-23038-7_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.molbev.a003881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052052269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1171243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053629872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/10665270252935467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059204929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/106652702761034136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059204960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/cmb.2007.0103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059245568"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-12", 
        "datePublishedReg": "2012-12-01", 
        "description": "  : Recently, we have identified a randomized quartet phylogeny algorithm that has O(nlogn) runtime with high probability, which is asymptotically optimal. Our algorithm has high probability of returning the correct phylogeny when quartet errors are independent and occur with known probability, and when the algorithm uses a guide tree on O(loglogn) taxa that is correct with high probability. In practice, none of these assumptions is correct: quartet errors are positively correlated and occur with unknown probability, and the guide tree is often error prone. Here, we bring our work out of the purely theoretical setting. We present a variety of extensions which, while only slowing the algorithm down by a constant factor, make its performance nearly comparable to that of Neighbour Joining , which requires \u0398(n3) runtime in existing implementations. Our results suggest a new direction for quartet-based phylogenetic reconstruction that may yield striking speed improvements at minimal accuracy cost. An early prototype implementation of our software is available at        http://www.cs.uwaterloo.ca/jmtruszk/qtree.tar.gz.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1748-7188-7-32", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1036449", 
            "issn": [
              "1748-7188"
            ], 
            "name": "Algorithms for Molecular Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Towards a practical O(n logn) phylogeny algorithm", 
        "pagination": "32", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0b65473b778cd0e27a5191bcc938dc4f697e07ceeb712b9d5e68fea693df66bd"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23181935"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101265088"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1748-7188-7-32"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002393530"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1748-7188-7-32", 
          "https://app.dimensions.ai/details/publication/pub.1002393530"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000509.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1748-7188-7-32"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1748-7188-7-32'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1748-7188-7-32'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1748-7188-7-32'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1748-7188-7-32'


     

    This table displays all metadata directly associated to this object as RDF triples.

    154 TRIPLES      21 PREDICATES      51 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1748-7188-7-32 schema:about anzsrc-for:08
    2 anzsrc-for:0803
    3 schema:author N202379a010ad475fb15021deb65ff932
    4 schema:citation sg:pub.10.1007/11523468_102
    5 sg:pub.10.1007/978-3-642-02008-7_32
    6 sg:pub.10.1007/978-3-642-04241-6_31
    7 sg:pub.10.1007/978-3-642-21458-5_14
    8 sg:pub.10.1007/978-3-642-23038-7_2
    9 sg:pub.10.1007/s00453-003-1065-y
    10 sg:pub.10.1186/1471-2105-6-108
    11 https://doi.org/10.1006/jagm.1996.0035
    12 https://doi.org/10.1016/j.ipl.2007.07.002
    13 https://doi.org/10.1016/s0304-3975(99)00028-6
    14 https://doi.org/10.1089/10665270252935467
    15 https://doi.org/10.1089/106652702761034136
    16 https://doi.org/10.1089/cmb.2007.0103
    17 https://doi.org/10.1093/bioinformatics/14.2.157
    18 https://doi.org/10.1093/bioinformatics/18.11.1546
    19 https://doi.org/10.1093/bioinformatics/19.2.301
    20 https://doi.org/10.1093/molbev/msp077
    21 https://doi.org/10.1093/oxfordjournals.molbev.a003881
    22 https://doi.org/10.1093/oxfordjournals.molbev.a025664
    23 https://doi.org/10.1093/oxfordjournals.molbev.a025756
    24 https://doi.org/10.1126/science.1171243
    25 https://doi.org/10.1145/279069.279105
    26 schema:datePublished 2012-12
    27 schema:datePublishedReg 2012-12-01
    28 schema:description : Recently, we have identified a randomized quartet phylogeny algorithm that has O(nlogn) runtime with high probability, which is asymptotically optimal. Our algorithm has high probability of returning the correct phylogeny when quartet errors are independent and occur with known probability, and when the algorithm uses a guide tree on O(loglogn) taxa that is correct with high probability. In practice, none of these assumptions is correct: quartet errors are positively correlated and occur with unknown probability, and the guide tree is often error prone. Here, we bring our work out of the purely theoretical setting. We present a variety of extensions which, while only slowing the algorithm down by a constant factor, make its performance nearly comparable to that of Neighbour Joining , which requires Θ(n3) runtime in existing implementations. Our results suggest a new direction for quartet-based phylogenetic reconstruction that may yield striking speed improvements at minimal accuracy cost. An early prototype implementation of our software is available at http://www.cs.uwaterloo.ca/jmtruszk/qtree.tar.gz.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N62c3ac443e834179ae96517a69aa6170
    33 Nd3f7795c28d840438d9c02be6580b613
    34 sg:journal.1036449
    35 schema:name Towards a practical O(n logn) phylogeny algorithm
    36 schema:pagination 32
    37 schema:productId N2f83281955624c6dbca652fa3734bd8f
    38 N8baa5b82a5b04efcaaa47e24db61c88a
    39 Nce36654f85824e8bad66cce04a506cb2
    40 Nd93f9237ca0b468f9a6d4ccb2a8c2f8f
    41 Nee25b89ef9124fbabd6d7402124043f3
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002393530
    43 https://doi.org/10.1186/1748-7188-7-32
    44 schema:sdDatePublished 2019-04-10T15:00
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher Nafe2fc70a7e845068853c29d0687d417
    47 schema:url http://link.springer.com/10.1186%2F1748-7188-7-32
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N202379a010ad475fb15021deb65ff932 rdf:first sg:person.01320220640.40
    52 rdf:rest N63644c9503a84e8abf550bf2731fbf8e
    53 N2f83281955624c6dbca652fa3734bd8f schema:name nlm_unique_id
    54 schema:value 101265088
    55 rdf:type schema:PropertyValue
    56 N62c3ac443e834179ae96517a69aa6170 schema:volumeNumber 7
    57 rdf:type schema:PublicationVolume
    58 N63644c9503a84e8abf550bf2731fbf8e rdf:first N8c11d8d4de434e86a8af34249fed0edb
    59 rdf:rest Nece004e05e7d4a988132b88dcd6a6163
    60 N8baa5b82a5b04efcaaa47e24db61c88a schema:name dimensions_id
    61 schema:value pub.1002393530
    62 rdf:type schema:PropertyValue
    63 N8c11d8d4de434e86a8af34249fed0edb schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    64 schema:familyName Hao
    65 schema:givenName Yanqi
    66 rdf:type schema:Person
    67 Nafe2fc70a7e845068853c29d0687d417 schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 Nce36654f85824e8bad66cce04a506cb2 schema:name doi
    70 schema:value 10.1186/1748-7188-7-32
    71 rdf:type schema:PropertyValue
    72 Nd3f7795c28d840438d9c02be6580b613 schema:issueNumber 1
    73 rdf:type schema:PublicationIssue
    74 Nd93f9237ca0b468f9a6d4ccb2a8c2f8f schema:name readcube_id
    75 schema:value 0b65473b778cd0e27a5191bcc938dc4f697e07ceeb712b9d5e68fea693df66bd
    76 rdf:type schema:PropertyValue
    77 Nece004e05e7d4a988132b88dcd6a6163 rdf:first sg:person.0642727740.54
    78 rdf:rest rdf:nil
    79 Nee25b89ef9124fbabd6d7402124043f3 schema:name pubmed_id
    80 schema:value 23181935
    81 rdf:type schema:PropertyValue
    82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Information and Computing Sciences
    84 rdf:type schema:DefinedTerm
    85 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Computer Software
    87 rdf:type schema:DefinedTerm
    88 sg:journal.1036449 schema:issn 1748-7188
    89 schema:name Algorithms for Molecular Biology
    90 rdf:type schema:Periodical
    91 sg:person.01320220640.40 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    92 schema:familyName Truszkowski
    93 schema:givenName Jakub
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320220640.40
    95 rdf:type schema:Person
    96 sg:person.0642727740.54 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    97 schema:familyName Brown
    98 schema:givenName Daniel G
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642727740.54
    100 rdf:type schema:Person
    101 sg:pub.10.1007/11523468_102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004861745
    102 https://doi.org/10.1007/11523468_102
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/978-3-642-02008-7_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050043191
    105 https://doi.org/10.1007/978-3-642-02008-7_32
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/978-3-642-04241-6_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032768275
    108 https://doi.org/10.1007/978-3-642-04241-6_31
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/978-3-642-21458-5_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008082437
    111 https://doi.org/10.1007/978-3-642-21458-5_14
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/978-3-642-23038-7_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050915819
    114 https://doi.org/10.1007/978-3-642-23038-7_2
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s00453-003-1065-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1021604411
    117 https://doi.org/10.1007/s00453-003-1065-y
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1186/1471-2105-6-108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037048502
    120 https://doi.org/10.1186/1471-2105-6-108
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1006/jagm.1996.0035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045540105
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.ipl.2007.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002252868
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/s0304-3975(99)00028-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030334849
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1089/10665270252935467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204929
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1089/106652702761034136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204960
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1089/cmb.2007.0103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245568
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1093/bioinformatics/14.2.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027219082
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1093/bioinformatics/18.11.1546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024464903
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1093/bioinformatics/19.2.301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018196271
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1093/molbev/msp077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028540883
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1093/oxfordjournals.molbev.a003881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052052269
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1093/oxfordjournals.molbev.a025664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000153997
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1093/oxfordjournals.molbev.a025756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034694173
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1126/science.1171243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053629872
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1145/279069.279105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000943105
    151 rdf:type schema:CreativeWork
    152 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
    153 schema:name David R. Cheriton School of Computer Science, University of Waterloo, Waterloo ON N2L 3G1, Ontario, Canada
    154 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...