RNA Accessibility in cubic time View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Stephan H Bernhart, Ullrike Mückstein, Ivo L Hofacker

ABSTRACT

BACKGROUND: The accessibility of RNA binding motifs controls the efficacy of many biological processes. Examples are the binding of miRNA, siRNA or bacterial sRNA to their respective targets. Similarly, the accessibility of the Shine-Dalgarno sequence is essential for translation to start in prokaryotes. Furthermore, many classes of RNA binding proteins require the binding site to be single-stranded. RESULTS: We introduce a way to compute the accessibility of all intervals within an RNA sequence in (n3) time. This improves on previous implementations where only intervals of one defined length were computed in the same time. While the algorithm is in the same efficiency class as sampling approaches, the results, especially if the probabilities get small, are much more exact. CONCLUSIONS: Our algorithm significantly speeds up methods for the prediction of RNA-RNA interactions and other applications that require the accessibility of RNA molecules. The algorithm is already available in the program RNAplfold of the ViennaRNA package. More... »

PAGES

3

References to SciGraph publications

Journal

TITLE

Algorithms for Molecular Biology

ISSUE

1

VOLUME

6

Author Affiliations

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1748-7188-6-3

    DOI

    http://dx.doi.org/10.1186/1748-7188-6-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030765364

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21388531


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Vienna", 
              "id": "https://www.grid.ac/institutes/grid.10420.37", 
              "name": [
                "Theoretical Biochemistry group, Institute for theoretical chemistry, University of Vienna, W\u00e4hringerstrasse 17, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bernhart", 
            "givenName": "Stephan H", 
            "id": "sg:person.0753447607.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753447607.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Vienna", 
              "id": "https://www.grid.ac/institutes/grid.10420.37", 
              "name": [
                "Theoretical Biochemistry group, Institute for theoretical chemistry, University of Vienna, W\u00e4hringerstrasse 17, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "M\u00fcckstein", 
            "givenName": "Ullrike", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Vienna", 
              "id": "https://www.grid.ac/institutes/grid.10420.37", 
              "name": [
                "Theoretical Biochemistry group, Institute for theoretical chemistry, University of Vienna, W\u00e4hringerstrasse 17, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hofacker", 
            "givenName": "Ivo L", 
            "id": "sg:person.01222322364.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222322364.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-70600-7_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002627539", 
              "https://doi.org/10.1007/978-3-540-70600-7_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/29.5.1034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005082622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006264760", 
              "https://doi.org/10.1038/ng2135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkg938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007345576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009835795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gene.2004.11.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018808147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020366060", 
              "https://doi.org/10.1038/nbt1404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq642", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028273918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bip.360290621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032289021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00818163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032495505", 
              "https://doi.org/10.1007/bf00818163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-2836(92)90462-s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032577752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034369308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn544", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034710642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkp892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040470105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chembiol.2004.11.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044483835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-007-0107-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045280692", 
              "https://doi.org/10.1007/s00285-007-0107-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-007-0107-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045280692", 
              "https://doi.org/10.1007/s00285-007-0107-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-12", 
        "datePublishedReg": "2011-12-01", 
        "description": "BACKGROUND: The accessibility of RNA binding motifs controls the efficacy of many biological processes. Examples are the binding of miRNA, siRNA or bacterial sRNA to their respective targets. Similarly, the accessibility of the Shine-Dalgarno sequence is essential for translation to start in prokaryotes. Furthermore, many classes of RNA binding proteins require the binding site to be single-stranded.\nRESULTS: We introduce a way to compute the accessibility of all intervals within an RNA sequence in (n3) time. This improves on previous implementations where only intervals of one defined length were computed in the same time. While the algorithm is in the same efficiency class as sampling approaches, the results, especially if the probabilities get small, are much more exact.\nCONCLUSIONS: Our algorithm significantly speeds up methods for the prediction of RNA-RNA interactions and other applications that require the accessibility of RNA molecules. The algorithm is already available in the program RNAplfold of the ViennaRNA package.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1748-7188-6-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7580380", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1036449", 
            "issn": [
              "1748-7188"
            ], 
            "name": "Algorithms for Molecular Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "RNA Accessibility in cubic time", 
        "pagination": "3", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "928fa2e5b48ef3df35093f2844c786924ffba138dcfe04221d3d8db9ab481696"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21388531"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101265088"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1748-7188-6-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030765364"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1748-7188-6-3", 
          "https://app.dimensions.ai/details/publication/pub.1030765364"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000513.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1748-7188-6-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1748-7188-6-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1748-7188-6-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1748-7188-6-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1748-7188-6-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    136 TRIPLES      21 PREDICATES      45 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1748-7188-6-3 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N1137fb97cbcd4bc3a562662013f82915
    4 schema:citation sg:pub.10.1007/978-3-540-70600-7_9
    5 sg:pub.10.1007/bf00818163
    6 sg:pub.10.1007/s00285-007-0107-5
    7 sg:pub.10.1038/nbt1404
    8 sg:pub.10.1038/ng2135
    9 https://doi.org/10.1002/bip.360290621
    10 https://doi.org/10.1016/0022-2836(92)90462-s
    11 https://doi.org/10.1016/j.chembiol.2004.11.018
    12 https://doi.org/10.1016/j.gene.2004.11.043
    13 https://doi.org/10.1093/bioinformatics/btl024
    14 https://doi.org/10.1093/bioinformatics/btn544
    15 https://doi.org/10.1093/bioinformatics/btq642
    16 https://doi.org/10.1093/bioinformatics/btr281
    17 https://doi.org/10.1093/nar/29.5.1034
    18 https://doi.org/10.1093/nar/gkg938
    19 https://doi.org/10.1093/nar/gkp892
    20 schema:datePublished 2011-12
    21 schema:datePublishedReg 2011-12-01
    22 schema:description BACKGROUND: The accessibility of RNA binding motifs controls the efficacy of many biological processes. Examples are the binding of miRNA, siRNA or bacterial sRNA to their respective targets. Similarly, the accessibility of the Shine-Dalgarno sequence is essential for translation to start in prokaryotes. Furthermore, many classes of RNA binding proteins require the binding site to be single-stranded. RESULTS: We introduce a way to compute the accessibility of all intervals within an RNA sequence in (n3) time. This improves on previous implementations where only intervals of one defined length were computed in the same time. While the algorithm is in the same efficiency class as sampling approaches, the results, especially if the probabilities get small, are much more exact. CONCLUSIONS: Our algorithm significantly speeds up methods for the prediction of RNA-RNA interactions and other applications that require the accessibility of RNA molecules. The algorithm is already available in the program RNAplfold of the ViennaRNA package.
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree true
    26 schema:isPartOf Na759ecd3de614978ad592649279227ef
    27 Nee5e41e9e1f34e28b0441986f2eb34b2
    28 sg:journal.1036449
    29 schema:name RNA Accessibility in cubic time
    30 schema:pagination 3
    31 schema:productId N5bd4e530cd62428abddb9cdb27275d2e
    32 N805b7e9808914a9b843290217d406e05
    33 Ne9bd4b8740574ffe9a6399f6db272b12
    34 Nf04dc90b8b9c4aad80a992e2ca913e15
    35 Nf7fef47d05334ccd836c7dd27d5a56d2
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030765364
    37 https://doi.org/10.1186/1748-7188-6-3
    38 schema:sdDatePublished 2019-04-10T22:32
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher N577cca93553a494299ba1cbf8591ffbb
    41 schema:url http://link.springer.com/10.1186%2F1748-7188-6-3
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N0fdb1610aaee4b929711747b62835840 rdf:first Nf7d8270a8d3d4c629b2ed4d3723b7929
    46 rdf:rest N81188d4359cb4282abf7fccc5c67880f
    47 N1137fb97cbcd4bc3a562662013f82915 rdf:first sg:person.0753447607.17
    48 rdf:rest N0fdb1610aaee4b929711747b62835840
    49 N577cca93553a494299ba1cbf8591ffbb schema:name Springer Nature - SN SciGraph project
    50 rdf:type schema:Organization
    51 N5bd4e530cd62428abddb9cdb27275d2e schema:name nlm_unique_id
    52 schema:value 101265088
    53 rdf:type schema:PropertyValue
    54 N805b7e9808914a9b843290217d406e05 schema:name readcube_id
    55 schema:value 928fa2e5b48ef3df35093f2844c786924ffba138dcfe04221d3d8db9ab481696
    56 rdf:type schema:PropertyValue
    57 N81188d4359cb4282abf7fccc5c67880f rdf:first sg:person.01222322364.52
    58 rdf:rest rdf:nil
    59 Na759ecd3de614978ad592649279227ef schema:issueNumber 1
    60 rdf:type schema:PublicationIssue
    61 Ne9bd4b8740574ffe9a6399f6db272b12 schema:name doi
    62 schema:value 10.1186/1748-7188-6-3
    63 rdf:type schema:PropertyValue
    64 Nee5e41e9e1f34e28b0441986f2eb34b2 schema:volumeNumber 6
    65 rdf:type schema:PublicationVolume
    66 Nf04dc90b8b9c4aad80a992e2ca913e15 schema:name pubmed_id
    67 schema:value 21388531
    68 rdf:type schema:PropertyValue
    69 Nf7d8270a8d3d4c629b2ed4d3723b7929 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
    70 schema:familyName Mückstein
    71 schema:givenName Ullrike
    72 rdf:type schema:Person
    73 Nf7fef47d05334ccd836c7dd27d5a56d2 schema:name dimensions_id
    74 schema:value pub.1030765364
    75 rdf:type schema:PropertyValue
    76 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Biological Sciences
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Genetics
    81 rdf:type schema:DefinedTerm
    82 sg:grant.7580380 http://pending.schema.org/fundedItem sg:pub.10.1186/1748-7188-6-3
    83 rdf:type schema:MonetaryGrant
    84 sg:journal.1036449 schema:issn 1748-7188
    85 schema:name Algorithms for Molecular Biology
    86 rdf:type schema:Periodical
    87 sg:person.01222322364.52 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
    88 schema:familyName Hofacker
    89 schema:givenName Ivo L
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222322364.52
    91 rdf:type schema:Person
    92 sg:person.0753447607.17 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
    93 schema:familyName Bernhart
    94 schema:givenName Stephan H
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753447607.17
    96 rdf:type schema:Person
    97 sg:pub.10.1007/978-3-540-70600-7_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002627539
    98 https://doi.org/10.1007/978-3-540-70600-7_9
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/bf00818163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032495505
    101 https://doi.org/10.1007/bf00818163
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s00285-007-0107-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045280692
    104 https://doi.org/10.1007/s00285-007-0107-5
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1038/nbt1404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020366060
    107 https://doi.org/10.1038/nbt1404
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1038/ng2135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006264760
    110 https://doi.org/10.1038/ng2135
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1002/bip.360290621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032289021
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/0022-2836(92)90462-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1032577752
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.chembiol.2004.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044483835
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.gene.2004.11.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018808147
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1093/bioinformatics/btl024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034369308
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1093/bioinformatics/btn544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034710642
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1093/bioinformatics/btq642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028273918
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1093/bioinformatics/btr281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009835795
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1093/nar/29.5.1034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005082622
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1093/nar/gkg938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007345576
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1093/nar/gkp892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040470105
    133 rdf:type schema:CreativeWork
    134 https://www.grid.ac/institutes/grid.10420.37 schema:alternateName University of Vienna
    135 schema:name Theoretical Biochemistry group, Institute for theoretical chemistry, University of Vienna, Währingerstrasse 17, Vienna, Austria
    136 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...