Audit and feedback and clinical practice guideline adherence: Making feedback actionable View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

Sylvia J Hysong, Richard G Best, Jacqueline A Pugh

ABSTRACT

BACKGROUND: As a strategy for improving clinical practice guideline (CPG) adherence, audit and feedback (A&F) has been found to be variably effective, yet A&F research has not investigated the impact of feedback characteristics on its effectiveness. This paper explores how high performing facilities (HPF) and low performing facilities (LPF) differ in the way they use clinical audit data for feedback purposes. METHOD: Descriptive, qualitative, cross-sectional study of a purposeful sample of six Veterans Affairs Medical Centers (VAMCs) with high and low adherence to six CPGs, as measured by external chart review audits. One-hundred and two employees involved with outpatient CPG implementation across the six facilities participated in one-hour semi-structured interviews where they discussed strategies, facilitators and barriers to implementing CPGs. Interviews were analyzed using techniques from the grounded theory method. RESULTS: High performers provided timely, individualized, non-punitive feedback to providers, whereas low performers were more variable in their timeliness and non-punitiveness and relied on more standardized, facility-level reports. The concept of actionable feedback emerged as the core category from the data, around which timeliness, individualization, non-punitiveness, and customizability can be hierarchically ordered. CONCLUSION: Facilities with a successful record of guideline adherence tend to deliver more timely, individualized and non-punitive feedback to providers about their adherence than facilities with a poor record of guideline adherence. Consistent with findings from organizational research, feedback intervention characteristics may influence the feedback's effectiveness at changing desired behaviors. More... »

PAGES

9

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1748-5908-1-9

DOI

http://dx.doi.org/10.1186/1748-5908-1-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005418827

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16722539


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Baylor College of Medicine", 
          "id": "https://www.grid.ac/institutes/grid.39382.33", 
          "name": [
            "Houston Center for Quality of Care and Utilization Studies, Michael E. DeBakey VA Medical Center, Houston, Texas, USA", 
            "Department of Medicine \u2013 Health Services Research Section, Baylor College of Medicine, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hysong", 
        "givenName": "Sylvia J", 
        "id": "sg:person.0647445061.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647445061.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Healthcare Solutions Division, Lockheed Martin Information Technology, San Antonio, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Best", 
        "givenName": "Richard G", 
        "id": "sg:person.0762701304.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762701304.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Health Science Center at San Antonio", 
          "id": "https://www.grid.ac/institutes/grid.267309.9", 
          "name": [
            "Veterans Evidence-Based Research Dissemination and Implementation Center, South Texas Veterans Health Care System, San Antonio, Texas, USA", 
            "Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pugh", 
        "givenName": "Jacqueline A", 
        "id": "sg:person.0723450320.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723450320.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/14651858.cd000259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005123041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1475-6773.2005.00387.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010694563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1475-6773.2005.00387.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010694563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005110-198607000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011232705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005110-198607000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011232705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1197/jamia.m1495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012160982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0021-9010.89.6.1057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013438114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0021-9010.89.6.1035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014457878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0277-9536(02)00151-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019245888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0018726701549002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023471928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0018726701549002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023471928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1445-5994.2004.00754.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026063043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0021-9010.84.5.806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028778527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0749-3797(00)00126-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034900532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00224545.1994.9922999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035087072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ahj.2004.12.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035175558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(00)04564-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036368294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/14651858.cd000260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036674668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0021-9010.89.6.1092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039100134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-2909.119.2.254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042173040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6963-5-50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046572915", 
          "https://doi.org/10.1186/1472-6963-5-50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jech.48.5.435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046889199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02813430310002995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050376880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/14651858.cd000259.pub2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050533833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/qhc.13.1.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062821544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/qshc.2002.4408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062821544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3310/hta8060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071139764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079863095", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "BACKGROUND: As a strategy for improving clinical practice guideline (CPG) adherence, audit and feedback (A&F) has been found to be variably effective, yet A&F research has not investigated the impact of feedback characteristics on its effectiveness. This paper explores how high performing facilities (HPF) and low performing facilities (LPF) differ in the way they use clinical audit data for feedback purposes.\nMETHOD: Descriptive, qualitative, cross-sectional study of a purposeful sample of six Veterans Affairs Medical Centers (VAMCs) with high and low adherence to six CPGs, as measured by external chart review audits. One-hundred and two employees involved with outpatient CPG implementation across the six facilities participated in one-hour semi-structured interviews where they discussed strategies, facilitators and barriers to implementing CPGs. Interviews were analyzed using techniques from the grounded theory method.\nRESULTS: High performers provided timely, individualized, non-punitive feedback to providers, whereas low performers were more variable in their timeliness and non-punitiveness and relied on more standardized, facility-level reports. The concept of actionable feedback emerged as the core category from the data, around which timeliness, individualization, non-punitiveness, and customizability can be hierarchically ordered.\nCONCLUSION: Facilities with a successful record of guideline adherence tend to deliver more timely, individualized and non-punitive feedback to providers about their adherence than facilities with a poor record of guideline adherence. Consistent with findings from organizational research, feedback intervention characteristics may influence the feedback's effectiveness at changing desired behaviors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1748-5908-1-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036000", 
        "issn": [
          "1748-5908"
        ], 
        "name": "Implementation Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Audit and feedback and clinical practice guideline adherence: Making feedback actionable", 
    "pagination": "9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "19d18b0b3a895e8b95fa365be3d70643230af2f102f30cd54eec9b0bfcb2cb88"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16722539"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101258411"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1748-5908-1-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005418827"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1748-5908-1-9", 
      "https://app.dimensions.ai/details/publication/pub.1005418827"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1748-5908-1-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1748-5908-1-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1748-5908-1-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1748-5908-1-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1748-5908-1-9'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1748-5908-1-9 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N07437996cc784d268c23a44e2bd1cb9c
4 schema:citation sg:pub.10.1186/1472-6963-5-50
5 https://app.dimensions.ai/details/publication/pub.1079863095
6 https://doi.org/10.1002/14651858.cd000259
7 https://doi.org/10.1002/14651858.cd000259.pub2
8 https://doi.org/10.1002/14651858.cd000260
9 https://doi.org/10.1016/j.ahj.2004.12.025
10 https://doi.org/10.1016/s0140-6736(00)04564-5
11 https://doi.org/10.1016/s0277-9536(02)00151-x
12 https://doi.org/10.1016/s0749-3797(00)00126-4
13 https://doi.org/10.1037/0021-9010.84.5.806
14 https://doi.org/10.1037/0021-9010.89.6.1035
15 https://doi.org/10.1037/0021-9010.89.6.1057
16 https://doi.org/10.1037/0021-9010.89.6.1092
17 https://doi.org/10.1037/0033-2909.119.2.254
18 https://doi.org/10.1080/00224545.1994.9922999
19 https://doi.org/10.1080/02813430310002995
20 https://doi.org/10.1097/00005110-198607000-00005
21 https://doi.org/10.1111/j.1445-5994.2004.00754.x
22 https://doi.org/10.1111/j.1475-6773.2005.00387.x
23 https://doi.org/10.1136/jech.48.5.435
24 https://doi.org/10.1136/qhc.13.1.26
25 https://doi.org/10.1136/qshc.2002.4408
26 https://doi.org/10.1177/0018726701549002
27 https://doi.org/10.1197/jamia.m1495
28 https://doi.org/10.3310/hta8060
29 schema:datePublished 2006-12
30 schema:datePublishedReg 2006-12-01
31 schema:description BACKGROUND: As a strategy for improving clinical practice guideline (CPG) adherence, audit and feedback (A&F) has been found to be variably effective, yet A&F research has not investigated the impact of feedback characteristics on its effectiveness. This paper explores how high performing facilities (HPF) and low performing facilities (LPF) differ in the way they use clinical audit data for feedback purposes. METHOD: Descriptive, qualitative, cross-sectional study of a purposeful sample of six Veterans Affairs Medical Centers (VAMCs) with high and low adherence to six CPGs, as measured by external chart review audits. One-hundred and two employees involved with outpatient CPG implementation across the six facilities participated in one-hour semi-structured interviews where they discussed strategies, facilitators and barriers to implementing CPGs. Interviews were analyzed using techniques from the grounded theory method. RESULTS: High performers provided timely, individualized, non-punitive feedback to providers, whereas low performers were more variable in their timeliness and non-punitiveness and relied on more standardized, facility-level reports. The concept of actionable feedback emerged as the core category from the data, around which timeliness, individualization, non-punitiveness, and customizability can be hierarchically ordered. CONCLUSION: Facilities with a successful record of guideline adherence tend to deliver more timely, individualized and non-punitive feedback to providers about their adherence than facilities with a poor record of guideline adherence. Consistent with findings from organizational research, feedback intervention characteristics may influence the feedback's effectiveness at changing desired behaviors.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N97fc52c642b449838f5326d723845fb0
36 Nb07dc55cd54143a28dfb857340fdb916
37 sg:journal.1036000
38 schema:name Audit and feedback and clinical practice guideline adherence: Making feedback actionable
39 schema:pagination 9
40 schema:productId N1f911656ab5a447a8ef98e1c6ae93d0c
41 N5a869c744f7a4ceab19ecd75b16d0a71
42 N6183d19e83e34bd688550b377a694887
43 N8822ca995b664adaa64b8ebd1f64ee8c
44 Neda28ffdaedd4ed9bd8ab29ed89e8ecd
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005418827
46 https://doi.org/10.1186/1748-5908-1-9
47 schema:sdDatePublished 2019-04-10T21:41
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Ne3d303cfb1eb420695f0cf760183f5e0
50 schema:url http://link.springer.com/10.1186%2F1748-5908-1-9
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N07437996cc784d268c23a44e2bd1cb9c rdf:first sg:person.0647445061.85
55 rdf:rest N73278ef0901b4d7faebfa26930860f48
56 N1f911656ab5a447a8ef98e1c6ae93d0c schema:name dimensions_id
57 schema:value pub.1005418827
58 rdf:type schema:PropertyValue
59 N5a869c744f7a4ceab19ecd75b16d0a71 schema:name doi
60 schema:value 10.1186/1748-5908-1-9
61 rdf:type schema:PropertyValue
62 N6183d19e83e34bd688550b377a694887 schema:name readcube_id
63 schema:value 19d18b0b3a895e8b95fa365be3d70643230af2f102f30cd54eec9b0bfcb2cb88
64 rdf:type schema:PropertyValue
65 N73278ef0901b4d7faebfa26930860f48 rdf:first sg:person.0762701304.46
66 rdf:rest Ne0b849b0922c4dca823c51b537d97f6b
67 N8071a5cc2c2c42eb9709438418393339 schema:name Healthcare Solutions Division, Lockheed Martin Information Technology, San Antonio, Texas, USA
68 rdf:type schema:Organization
69 N8822ca995b664adaa64b8ebd1f64ee8c schema:name pubmed_id
70 schema:value 16722539
71 rdf:type schema:PropertyValue
72 N97fc52c642b449838f5326d723845fb0 schema:volumeNumber 1
73 rdf:type schema:PublicationVolume
74 Nb07dc55cd54143a28dfb857340fdb916 schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 Ne0b849b0922c4dca823c51b537d97f6b rdf:first sg:person.0723450320.39
77 rdf:rest rdf:nil
78 Ne3d303cfb1eb420695f0cf760183f5e0 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Neda28ffdaedd4ed9bd8ab29ed89e8ecd schema:name nlm_unique_id
81 schema:value 101258411
82 rdf:type schema:PropertyValue
83 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
84 schema:name Medical and Health Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
87 schema:name Public Health and Health Services
88 rdf:type schema:DefinedTerm
89 sg:journal.1036000 schema:issn 1748-5908
90 schema:name Implementation Science
91 rdf:type schema:Periodical
92 sg:person.0647445061.85 schema:affiliation https://www.grid.ac/institutes/grid.39382.33
93 schema:familyName Hysong
94 schema:givenName Sylvia J
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647445061.85
96 rdf:type schema:Person
97 sg:person.0723450320.39 schema:affiliation https://www.grid.ac/institutes/grid.267309.9
98 schema:familyName Pugh
99 schema:givenName Jacqueline A
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723450320.39
101 rdf:type schema:Person
102 sg:person.0762701304.46 schema:affiliation N8071a5cc2c2c42eb9709438418393339
103 schema:familyName Best
104 schema:givenName Richard G
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762701304.46
106 rdf:type schema:Person
107 sg:pub.10.1186/1472-6963-5-50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046572915
108 https://doi.org/10.1186/1472-6963-5-50
109 rdf:type schema:CreativeWork
110 https://app.dimensions.ai/details/publication/pub.1079863095 schema:CreativeWork
111 https://doi.org/10.1002/14651858.cd000259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005123041
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1002/14651858.cd000259.pub2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050533833
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/14651858.cd000260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036674668
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.ahj.2004.12.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035175558
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0140-6736(00)04564-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036368294
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0277-9536(02)00151-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019245888
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/s0749-3797(00)00126-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034900532
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1037/0021-9010.84.5.806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028778527
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1037/0021-9010.89.6.1035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014457878
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1037/0021-9010.89.6.1057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013438114
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1037/0021-9010.89.6.1092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039100134
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1037/0033-2909.119.2.254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042173040
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1080/00224545.1994.9922999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035087072
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1080/02813430310002995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050376880
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1097/00005110-198607000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011232705
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1111/j.1445-5994.2004.00754.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026063043
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1111/j.1475-6773.2005.00387.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010694563
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1136/jech.48.5.435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046889199
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1136/qhc.13.1.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062821544
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1136/qshc.2002.4408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062821544
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1177/0018726701549002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023471928
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1197/jamia.m1495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012160982
154 rdf:type schema:CreativeWork
155 https://doi.org/10.3310/hta8060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071139764
156 rdf:type schema:CreativeWork
157 https://www.grid.ac/institutes/grid.267309.9 schema:alternateName The University of Texas Health Science Center at San Antonio
158 schema:name Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
159 Veterans Evidence-Based Research Dissemination and Implementation Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
160 rdf:type schema:Organization
161 https://www.grid.ac/institutes/grid.39382.33 schema:alternateName Baylor College of Medicine
162 schema:name Department of Medicine – Health Services Research Section, Baylor College of Medicine, Houston, Texas, USA
163 Houston Center for Quality of Care and Utilization Studies, Michael E. DeBakey VA Medical Center, Houston, Texas, USA
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...