High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Céline Rousseau, Etienne Belin, Edouard Bove, David Rousseau, Frédéric Fabre, Romain Berruyer, Jacky Guillaumès, Charles Manceau, Marie-Agnès Jacques, Tristan Boureau

ABSTRACT

BACKGROUND: In order to select for quantitative plant resistance to pathogens, high throughput approaches that can precisely quantify disease severity are needed. Automation and use of calibrated image analysis should provide more accurate, objective and faster analyses than visual assessments. In contrast to conventional visible imaging, chlorophyll fluorescence imaging is not sensitive to environmental light variations and provides single-channel images prone to a segmentation analysis by simple thresholding approaches. Among the various parameters used in chlorophyll fluorescence imaging, the maximum quantum yield of photosystem II photochemistry (Fv/Fm) is well adapted to phenotyping disease severity. Fv/Fm is an indicator of plant stress that displays a robust contrast between infected and healthy tissues. In the present paper, we aimed at the segmentation of Fv/Fm images to quantify disease severity. RESULTS: Based on the Fv/Fm values of each pixel of the image, a thresholding approach was developed to delimit diseased areas. A first step consisted in setting up thresholds to reproduce visual observations by trained raters of symptoms caused by Xanthomonas fuscans subsp. fuscans (Xff) CFBP4834-R on Phaseolus vulgaris cv. Flavert. In order to develop a thresholding approach valuable on any cultivars or species, a second step was based on modeling pixel-wise Fv/Fm-distributions as mixtures of Gaussian distributions. Such a modeling may discriminate various stages of the symptom development but over-weights artifacts that can occur on mock-inoculated samples. Therefore, we developed a thresholding approach based on the probability of misclassification of a healthy pixel. Then, a clustering step is performed on the diseased areas to discriminate between various stages of alteration of plant tissues. Notably, the use of chlorophyll fluorescence imaging could detect pre-symptomatic area. The interest of this image analysis procedure for assessing the levels of quantitative resistance is illustrated with the quantitation of disease severity on five commercial varieties of bean inoculated with Xff CFBP4834-R. CONCLUSIONS: In this paper, we describe an image analysis procedure for quantifying the leaf area impacted by the pathogen. In a perspective of high throughput phenotyping, the procedure was automated with the software R downloadable at http://www.r-project.org/. The R script is available at http://lisa.univ-angers.fr/PHENOTIC/telechargements.html. More... »

PAGES

17

References to SciGraph publications

  • 2007-10. Contamination of bean seeds by Xanthomonas axonopodis pv. phaseoli associated with low bacterial densities in the phyllosphere under field and greenhouse conditions in EUROPEAN JOURNAL OF PLANT PATHOLOGY
  • 1987-04. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins in PLANTA
  • 2000-08. Postharvest Imaging of Chlorophyll Fluorescence from Lemons Can Be Used to Predict Fruit Quality in PHOTOSYNTHETICA
  • 2006-12. Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves in PLANTA
  • 2012-09. Identification of genes involved in a water stress response in timothy and mapping of orthologous loci in perennial ryegrass in BIOLOGIA PLANTARUM
  • 2009-02. Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves in PRECISION AGRICULTURE
  • 2006-11. Imaging viral infection: studies on Nicotiana benthamiana plants infected with the pepper mild mottle tobamovirus in PHOTOSYNTHESIS RESEARCH
  • 2003-05. Beans (Phaseolus spp.) – model food legumes in PLANT AND SOIL
  • 2012-12. PhenoPhyte: a flexible affordable method to quantify 2D phenotypes from imagery in PLANT METHODS
  • 2010-04. Methods for merging Gaussian mixture components in ADVANCES IN DATA ANALYSIS AND CLASSIFICATION
  • 2009-08. Effect of downy mildew disease on photosynthesis and chlorophyll fluorescence in Plantago ovata Forsk in JOURNAL OF PLANT DISEASES AND PROTECTION
  • 2006-12. Case study of combinatorial imaging: What protocol and what chlorophyll fluorescence image to use when visualizing infection of Arabidopsis thaliana by Pseudomonas syringae? in PHOTOSYNTHESIS RESEARCH
  • 2008-12. A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence in PLANT METHODS
  • 2010-12. Chlorophyll fluorescence imaging of plant–pathogen interactions in PROTOPLASMA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1746-4811-9-17

    DOI

    http://dx.doi.org/10.1186/1746-4811-9-17

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1043689764

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23758798


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Agrocampus Ouest", 
              "id": "https://www.grid.ac/institutes/grid.424765.6", 
              "name": [
                "INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouz\u00e9, France", 
                "UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L\u2019UNAM, Universit\u00e9 d\u2019Angers, F-49045, Angers, France", 
                "AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rousseau", 
            "givenName": "C\u00e9line", 
            "id": "sg:person.01237367614.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237367614.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Angers", 
              "id": "https://www.grid.ac/institutes/grid.7252.2", 
              "name": [
                "Universit\u00e9 d\u2019Angers, Laboratoire d\u2019Ing\u00e9nierie des Syst\u00e8mes Automatis\u00e9s (LISA), F- 49000, Angers, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Belin", 
            "givenName": "Etienne", 
            "id": "sg:person.01353616214.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353616214.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agrocampus Ouest", 
              "id": "https://www.grid.ac/institutes/grid.424765.6", 
              "name": [
                "INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouz\u00e9, France", 
                "UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L\u2019UNAM, Universit\u00e9 d\u2019Angers, F-49045, Angers, France", 
                "AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bove", 
            "givenName": "Edouard", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre de Recherche en Acquisition et Traitement de l'Image pour la Sant\u00e9", 
              "id": "https://www.grid.ac/institutes/grid.462859.4", 
              "name": [
                "Universit\u00e9 d\u2019Angers, Laboratoire d\u2019Ing\u00e9nierie des Syst\u00e8mes Automatis\u00e9s (LISA), F- 49000, Angers, France", 
                "CREATIS; CNRS UMR5220; INSERM U630, Universit\u00e9 de Lyon, F-69621, Villeurbanne, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rousseau", 
            "givenName": "David", 
            "id": "sg:person.01362274431.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362274431.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Institute for Agricultural Research", 
              "id": "https://www.grid.ac/institutes/grid.414548.8", 
              "name": [
                "INRA, UR0407 Pathologie V\u00e9g\u00e9tale, F-84140, Montfavet, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fabre", 
            "givenName": "Fr\u00e9d\u00e9ric", 
            "id": "sg:person.0765211175.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765211175.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agrocampus Ouest", 
              "id": "https://www.grid.ac/institutes/grid.424765.6", 
              "name": [
                "INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouz\u00e9, France", 
                "UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L\u2019UNAM, Universit\u00e9 d\u2019Angers, F-49045, Angers, France", 
                "AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Berruyer", 
            "givenName": "Romain", 
            "id": "sg:person.01244324771.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244324771.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agrocampus Ouest", 
              "id": "https://www.grid.ac/institutes/grid.424765.6", 
              "name": [
                "INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouz\u00e9, France", 
                "UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L\u2019UNAM, Universit\u00e9 d\u2019Angers, F-49045, Angers, France", 
                "AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guillaum\u00e8s", 
            "givenName": "Jacky", 
            "id": "sg:person.01357457314.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357457314.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "ANSES, Direction de la Sant\u00e9 des V\u00e9g\u00e9taux, Angers, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Manceau", 
            "givenName": "Charles", 
            "id": "sg:person.01033402633.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033402633.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agrocampus Ouest", 
              "id": "https://www.grid.ac/institutes/grid.424765.6", 
              "name": [
                "INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouz\u00e9, France", 
                "UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L\u2019UNAM, Universit\u00e9 d\u2019Angers, F-49045, Angers, France", 
                "AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jacques", 
            "givenName": "Marie-Agn\u00e8s", 
            "id": "sg:person.0640032774.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640032774.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Angers", 
              "id": "https://www.grid.ac/institutes/grid.7252.2", 
              "name": [
                "INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouz\u00e9, France", 
                "UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L\u2019UNAM, Universit\u00e9 d\u2019Angers, F-49045, Angers, France", 
                "AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France", 
                "Universit\u00e9 d\u2019ANgers, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouz\u00e9, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Boureau", 
            "givenName": "Tristan", 
            "id": "sg:person.0577441054.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577441054.53"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0098-8472(03)00019-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001058619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0098-8472(03)00019-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001058619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1746-4811-8-45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001648317", 
              "https://doi.org/10.1186/1746-4811-8-45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compag.2012.09.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002239188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1024146710611", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002247135", 
              "https://doi.org/10.1023/a:1024146710611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-006-0303-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002468766", 
              "https://doi.org/10.1007/s00425-006-0303-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00425-006-0303-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002468766", 
              "https://doi.org/10.1007/s00425-006-0303-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1746-4811-4-27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003139232", 
              "https://doi.org/10.1186/1746-4811-4-27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00709-010-0203-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004668682", 
              "https://doi.org/10.1007/s00709-010-0203-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00709-010-0203-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004668682", 
              "https://doi.org/10.1007/s00709-010-0203-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-8137.2009.03049.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006481249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-8137.2009.03049.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006481249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-006-9120-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006898023", 
              "https://doi.org/10.1007/s11120-006-9120-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.arplant.59.032607.092759", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007572125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jplph.2011.06.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010762044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.copbio.2011.10.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011018395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11634-010-0058-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015305267", 
              "https://doi.org/10.1007/s11634-010-0058-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11634-010-0058-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015305267", 
              "https://doi.org/10.1007/s11634-010-0058-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/07352681003617285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015916643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.pp.29.060178.002021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016770774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/treephys/25.8.1085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018856904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jxb/erl208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019500215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019678614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s110403765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019819071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cem.721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022416732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1012413524395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027680864", 
              "https://doi.org/10.1023/a:1012413524395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1012413524395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027680864", 
              "https://doi.org/10.1023/a:1012413524395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03356305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029373351", 
              "https://doi.org/10.1007/bf03356305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10658-007-9164-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030854668", 
              "https://doi.org/10.1007/s10658-007-9164-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00402983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031221929", 
              "https://doi.org/10.1007/bf00402983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00402983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031221929", 
              "https://doi.org/10.1007/bf00402983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scienta.2012.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031981375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-3040.2010.02167.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034001818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-3040.2010.02167.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034001818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-3059.2012.02592.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035097878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036287859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11119-008-9082-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038518207", 
              "https://doi.org/10.1007/s11119-008-9082-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/pcp/pch097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038606478"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1364-3703.2012.00834.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039679944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cub.2007.02.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041587215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1104/pp.112.202762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041609295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biosystemseng.2008.09.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042032414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-4781(01)00238-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042778318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-8137.2009.02827.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043250250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-8137.2009.02827.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043250250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s120100784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043910783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10535-012-0110-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046004808", 
              "https://doi.org/10.1007/s10535-012-0110-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-006-9098-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047295130", 
              "https://doi.org/10.1007/s11120-006-9098-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compag.2010.02.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051346044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mimet.2008.03.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051527025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1364-3703.2008.00519.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052512845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.pmpp.2005.08.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052697378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1034/j.1399-3054.2003.00119.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053470938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jexbot/51.345.659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053523575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/mpmi-18-1161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060078304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/pdis-92-4-0530", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060093569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/pdis-92-4-0530", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060093569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/phyto-03-10-0087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060099007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/phyto-03-10-0095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060099011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/phyto-06-11-0175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060099265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/phyto-73-173", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060106898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/009053605000000417", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064388825"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-12", 
        "datePublishedReg": "2013-12-01", 
        "description": "BACKGROUND: In order to select for quantitative plant resistance to pathogens, high throughput approaches that can precisely quantify disease severity are needed. Automation and use of calibrated image analysis should provide more accurate, objective and faster analyses than visual assessments. In contrast to conventional visible imaging, chlorophyll fluorescence imaging is not sensitive to environmental light variations and provides single-channel images prone to a segmentation analysis by simple thresholding approaches. Among the various parameters used in chlorophyll fluorescence imaging, the maximum quantum yield of photosystem II photochemistry (Fv/Fm) is well adapted to phenotyping disease severity. Fv/Fm is an indicator of plant stress that displays a robust contrast between infected and healthy tissues. In the present paper, we aimed at the segmentation of Fv/Fm images to quantify disease severity.\nRESULTS: Based on the Fv/Fm values of each pixel of the image, a thresholding approach was developed to delimit diseased areas. A first step consisted in setting up thresholds to reproduce visual observations by trained raters of symptoms caused by Xanthomonas fuscans subsp. fuscans (Xff) CFBP4834-R on Phaseolus vulgaris cv. Flavert. In order to develop a thresholding approach valuable on any cultivars or species, a second step was based on modeling pixel-wise Fv/Fm-distributions as mixtures of Gaussian distributions. Such a modeling may discriminate various stages of the symptom development but over-weights artifacts that can occur on mock-inoculated samples. Therefore, we developed a thresholding approach based on the probability of misclassification of a healthy pixel. Then, a clustering step is performed on the diseased areas to discriminate between various stages of alteration of plant tissues. Notably, the use of chlorophyll fluorescence imaging could detect pre-symptomatic area. The interest of this image analysis procedure for assessing the levels of quantitative resistance is illustrated with the quantitation of disease severity on five commercial varieties of bean inoculated with Xff CFBP4834-R.\nCONCLUSIONS: In this paper, we describe an image analysis procedure for quantifying the leaf area impacted by the pathogen. In a perspective of high throughput phenotyping, the procedure was automated with the software R downloadable at http://www.r-project.org/. The R script is available at http://lisa.univ-angers.fr/PHENOTIC/telechargements.html.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1186/1746-4811-9-17", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1035309", 
            "issn": [
              "1746-4811"
            ], 
            "name": "Plant Methods", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis", 
        "pagination": "17", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d01c646636e52233ec8e97441f41b87995202eea9fb4a465d8ae1e8bd0099905"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23758798"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101245798"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1746-4811-9-17"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1043689764"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1746-4811-9-17", 
          "https://app.dimensions.ai/details/publication/pub.1043689764"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000515.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1186%2F1746-4811-9-17"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1746-4811-9-17'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1746-4811-9-17'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1746-4811-9-17'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1746-4811-9-17'


     

    This table displays all metadata directly associated to this object as RDF triples.

    318 TRIPLES      21 PREDICATES      81 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1746-4811-9-17 schema:about anzsrc-for:06
    2 anzsrc-for:0607
    3 schema:author N790fd62b24374cffb2c34811e237d6a3
    4 schema:citation sg:pub.10.1007/bf00402983
    5 sg:pub.10.1007/bf03356305
    6 sg:pub.10.1007/s00425-006-0303-3
    7 sg:pub.10.1007/s00709-010-0203-z
    8 sg:pub.10.1007/s10535-012-0110-6
    9 sg:pub.10.1007/s10658-007-9164-2
    10 sg:pub.10.1007/s11119-008-9082-0
    11 sg:pub.10.1007/s11120-006-9098-0
    12 sg:pub.10.1007/s11120-006-9120-6
    13 sg:pub.10.1007/s11634-010-0058-3
    14 sg:pub.10.1023/a:1012413524395
    15 sg:pub.10.1023/a:1024146710611
    16 sg:pub.10.1186/1746-4811-4-27
    17 sg:pub.10.1186/1746-4811-8-45
    18 https://doi.org/10.1002/cem.721
    19 https://doi.org/10.1016/j.biosystemseng.2008.09.030
    20 https://doi.org/10.1016/j.compag.2010.02.007
    21 https://doi.org/10.1016/j.compag.2012.09.014
    22 https://doi.org/10.1016/j.copbio.2011.10.006
    23 https://doi.org/10.1016/j.cub.2007.02.028
    24 https://doi.org/10.1016/j.jplph.2011.06.013
    25 https://doi.org/10.1016/j.mimet.2008.03.008
    26 https://doi.org/10.1016/j.pmpp.2005.08.007
    27 https://doi.org/10.1016/j.scienta.2012.02.002
    28 https://doi.org/10.1016/s0098-8472(03)00019-4
    29 https://doi.org/10.1016/s0167-4781(01)00238-x
    30 https://doi.org/10.1034/j.1399-3054.2003.00119.x
    31 https://doi.org/10.1080/07352681003617285
    32 https://doi.org/10.1093/bioinformatics/bti447
    33 https://doi.org/10.1093/bioinformatics/btq046
    34 https://doi.org/10.1093/jexbot/51.345.659
    35 https://doi.org/10.1093/jxb/erl208
    36 https://doi.org/10.1093/pcp/pch097
    37 https://doi.org/10.1093/treephys/25.8.1085
    38 https://doi.org/10.1094/mpmi-18-1161
    39 https://doi.org/10.1094/pdis-92-4-0530
    40 https://doi.org/10.1094/phyto-03-10-0087
    41 https://doi.org/10.1094/phyto-03-10-0095
    42 https://doi.org/10.1094/phyto-06-11-0175
    43 https://doi.org/10.1094/phyto-73-173
    44 https://doi.org/10.1104/pp.112.202762
    45 https://doi.org/10.1111/j.1364-3703.2008.00519.x
    46 https://doi.org/10.1111/j.1364-3703.2012.00834.x
    47 https://doi.org/10.1111/j.1365-3040.2010.02167.x
    48 https://doi.org/10.1111/j.1365-3059.2012.02592.x
    49 https://doi.org/10.1111/j.1469-8137.2009.02827.x
    50 https://doi.org/10.1111/j.1469-8137.2009.03049.x
    51 https://doi.org/10.1146/annurev.arplant.59.032607.092759
    52 https://doi.org/10.1146/annurev.pp.29.060178.002021
    53 https://doi.org/10.1214/009053605000000417
    54 https://doi.org/10.3390/s110403765
    55 https://doi.org/10.3390/s120100784
    56 schema:datePublished 2013-12
    57 schema:datePublishedReg 2013-12-01
    58 schema:description BACKGROUND: In order to select for quantitative plant resistance to pathogens, high throughput approaches that can precisely quantify disease severity are needed. Automation and use of calibrated image analysis should provide more accurate, objective and faster analyses than visual assessments. In contrast to conventional visible imaging, chlorophyll fluorescence imaging is not sensitive to environmental light variations and provides single-channel images prone to a segmentation analysis by simple thresholding approaches. Among the various parameters used in chlorophyll fluorescence imaging, the maximum quantum yield of photosystem II photochemistry (Fv/Fm) is well adapted to phenotyping disease severity. Fv/Fm is an indicator of plant stress that displays a robust contrast between infected and healthy tissues. In the present paper, we aimed at the segmentation of Fv/Fm images to quantify disease severity. RESULTS: Based on the Fv/Fm values of each pixel of the image, a thresholding approach was developed to delimit diseased areas. A first step consisted in setting up thresholds to reproduce visual observations by trained raters of symptoms caused by Xanthomonas fuscans subsp. fuscans (Xff) CFBP4834-R on Phaseolus vulgaris cv. Flavert. In order to develop a thresholding approach valuable on any cultivars or species, a second step was based on modeling pixel-wise Fv/Fm-distributions as mixtures of Gaussian distributions. Such a modeling may discriminate various stages of the symptom development but over-weights artifacts that can occur on mock-inoculated samples. Therefore, we developed a thresholding approach based on the probability of misclassification of a healthy pixel. Then, a clustering step is performed on the diseased areas to discriminate between various stages of alteration of plant tissues. Notably, the use of chlorophyll fluorescence imaging could detect pre-symptomatic area. The interest of this image analysis procedure for assessing the levels of quantitative resistance is illustrated with the quantitation of disease severity on five commercial varieties of bean inoculated with Xff CFBP4834-R. CONCLUSIONS: In this paper, we describe an image analysis procedure for quantifying the leaf area impacted by the pathogen. In a perspective of high throughput phenotyping, the procedure was automated with the software R downloadable at http://www.r-project.org/. The R script is available at http://lisa.univ-angers.fr/PHENOTIC/telechargements.html.
    59 schema:genre research_article
    60 schema:inLanguage en
    61 schema:isAccessibleForFree true
    62 schema:isPartOf N0959a168ccba45199815e3416fa0634d
    63 Nc9ced4335455409794a75f71e433cf8e
    64 sg:journal.1035309
    65 schema:name High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis
    66 schema:pagination 17
    67 schema:productId N08b31c189b9442ee88c88894aab45793
    68 N12e170aaebe04cff85686b0ef24353ae
    69 N8b59e627d3e54389951edb49023b7134
    70 Na9dc28071663488eb06610d87418d519
    71 Nd5e464ceee00419e9c75627ef01eb2b7
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043689764
    73 https://doi.org/10.1186/1746-4811-9-17
    74 schema:sdDatePublished 2019-04-10T22:32
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher N15aa55af16164fdeabdb7d70e76d1cc7
    77 schema:url http://link.springer.com/10.1186%2F1746-4811-9-17
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N08b31c189b9442ee88c88894aab45793 schema:name readcube_id
    82 schema:value d01c646636e52233ec8e97441f41b87995202eea9fb4a465d8ae1e8bd0099905
    83 rdf:type schema:PropertyValue
    84 N0959a168ccba45199815e3416fa0634d schema:volumeNumber 9
    85 rdf:type schema:PublicationVolume
    86 N0de6f3abe4f84a439fddd66678a08ae4 rdf:first sg:person.01353616214.51
    87 rdf:rest Na95dbd84e06042bbaff3b9d13796b769
    88 N12e170aaebe04cff85686b0ef24353ae schema:name nlm_unique_id
    89 schema:value 101245798
    90 rdf:type schema:PropertyValue
    91 N15aa55af16164fdeabdb7d70e76d1cc7 schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 N3dde3df0ab76406f8f7043c1be8ec180 rdf:first sg:person.01033402633.09
    94 rdf:rest N5ecce31f01cd42a484a1947cbf0c1214
    95 N523301097e68442fb0eb0a3cae14300a rdf:first sg:person.0765211175.31
    96 rdf:rest Nd727eccfbc8a4b75bcef3d2ebf1d4d07
    97 N5ecce31f01cd42a484a1947cbf0c1214 rdf:first sg:person.0640032774.29
    98 rdf:rest N7b9ba7daf63c444ab11b58bee23cab1d
    99 N790fd62b24374cffb2c34811e237d6a3 rdf:first sg:person.01237367614.02
    100 rdf:rest N0de6f3abe4f84a439fddd66678a08ae4
    101 N7b9ba7daf63c444ab11b58bee23cab1d rdf:first sg:person.0577441054.53
    102 rdf:rest rdf:nil
    103 N8abcf7e3d2e74375893fd17f6c020560 rdf:first sg:person.01357457314.19
    104 rdf:rest N3dde3df0ab76406f8f7043c1be8ec180
    105 N8b59e627d3e54389951edb49023b7134 schema:name dimensions_id
    106 schema:value pub.1043689764
    107 rdf:type schema:PropertyValue
    108 N9195d435f7c6476ba46d1527e06c8ff3 rdf:first sg:person.01362274431.66
    109 rdf:rest N523301097e68442fb0eb0a3cae14300a
    110 Na95dbd84e06042bbaff3b9d13796b769 rdf:first Nc51bee1effb948b78798acc0345352fc
    111 rdf:rest N9195d435f7c6476ba46d1527e06c8ff3
    112 Na9dc28071663488eb06610d87418d519 schema:name doi
    113 schema:value 10.1186/1746-4811-9-17
    114 rdf:type schema:PropertyValue
    115 Nc51bee1effb948b78798acc0345352fc schema:affiliation https://www.grid.ac/institutes/grid.424765.6
    116 schema:familyName Bove
    117 schema:givenName Edouard
    118 rdf:type schema:Person
    119 Nc9ced4335455409794a75f71e433cf8e schema:issueNumber 1
    120 rdf:type schema:PublicationIssue
    121 Nd5e464ceee00419e9c75627ef01eb2b7 schema:name pubmed_id
    122 schema:value 23758798
    123 rdf:type schema:PropertyValue
    124 Nd727eccfbc8a4b75bcef3d2ebf1d4d07 rdf:first sg:person.01244324771.72
    125 rdf:rest N8abcf7e3d2e74375893fd17f6c020560
    126 Ne0c3993603e7484f9ad024b403d374a0 schema:name ANSES, Direction de la Santé des Végétaux, Angers, France
    127 rdf:type schema:Organization
    128 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Biological Sciences
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Plant Biology
    133 rdf:type schema:DefinedTerm
    134 sg:journal.1035309 schema:issn 1746-4811
    135 schema:name Plant Methods
    136 rdf:type schema:Periodical
    137 sg:person.01033402633.09 schema:affiliation Ne0c3993603e7484f9ad024b403d374a0
    138 schema:familyName Manceau
    139 schema:givenName Charles
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033402633.09
    141 rdf:type schema:Person
    142 sg:person.01237367614.02 schema:affiliation https://www.grid.ac/institutes/grid.424765.6
    143 schema:familyName Rousseau
    144 schema:givenName Céline
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237367614.02
    146 rdf:type schema:Person
    147 sg:person.01244324771.72 schema:affiliation https://www.grid.ac/institutes/grid.424765.6
    148 schema:familyName Berruyer
    149 schema:givenName Romain
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244324771.72
    151 rdf:type schema:Person
    152 sg:person.01353616214.51 schema:affiliation https://www.grid.ac/institutes/grid.7252.2
    153 schema:familyName Belin
    154 schema:givenName Etienne
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353616214.51
    156 rdf:type schema:Person
    157 sg:person.01357457314.19 schema:affiliation https://www.grid.ac/institutes/grid.424765.6
    158 schema:familyName Guillaumès
    159 schema:givenName Jacky
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357457314.19
    161 rdf:type schema:Person
    162 sg:person.01362274431.66 schema:affiliation https://www.grid.ac/institutes/grid.462859.4
    163 schema:familyName Rousseau
    164 schema:givenName David
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362274431.66
    166 rdf:type schema:Person
    167 sg:person.0577441054.53 schema:affiliation https://www.grid.ac/institutes/grid.7252.2
    168 schema:familyName Boureau
    169 schema:givenName Tristan
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577441054.53
    171 rdf:type schema:Person
    172 sg:person.0640032774.29 schema:affiliation https://www.grid.ac/institutes/grid.424765.6
    173 schema:familyName Jacques
    174 schema:givenName Marie-Agnès
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640032774.29
    176 rdf:type schema:Person
    177 sg:person.0765211175.31 schema:affiliation https://www.grid.ac/institutes/grid.414548.8
    178 schema:familyName Fabre
    179 schema:givenName Frédéric
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765211175.31
    181 rdf:type schema:Person
    182 sg:pub.10.1007/bf00402983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031221929
    183 https://doi.org/10.1007/bf00402983
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/bf03356305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029373351
    186 https://doi.org/10.1007/bf03356305
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s00425-006-0303-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002468766
    189 https://doi.org/10.1007/s00425-006-0303-3
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s00709-010-0203-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1004668682
    192 https://doi.org/10.1007/s00709-010-0203-z
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s10535-012-0110-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046004808
    195 https://doi.org/10.1007/s10535-012-0110-6
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s10658-007-9164-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030854668
    198 https://doi.org/10.1007/s10658-007-9164-2
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s11119-008-9082-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038518207
    201 https://doi.org/10.1007/s11119-008-9082-0
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s11120-006-9098-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047295130
    204 https://doi.org/10.1007/s11120-006-9098-0
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s11120-006-9120-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006898023
    207 https://doi.org/10.1007/s11120-006-9120-6
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s11634-010-0058-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015305267
    210 https://doi.org/10.1007/s11634-010-0058-3
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1023/a:1012413524395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027680864
    213 https://doi.org/10.1023/a:1012413524395
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1023/a:1024146710611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002247135
    216 https://doi.org/10.1023/a:1024146710611
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1186/1746-4811-4-27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003139232
    219 https://doi.org/10.1186/1746-4811-4-27
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1186/1746-4811-8-45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001648317
    222 https://doi.org/10.1186/1746-4811-8-45
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1002/cem.721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022416732
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/j.biosystemseng.2008.09.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042032414
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.compag.2010.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051346044
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.compag.2012.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002239188
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.copbio.2011.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011018395
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/j.cub.2007.02.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041587215
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1016/j.jplph.2011.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010762044
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1016/j.mimet.2008.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051527025
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1016/j.pmpp.2005.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052697378
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1016/j.scienta.2012.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031981375
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1016/s0098-8472(03)00019-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001058619
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1016/s0167-4781(01)00238-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042778318
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1034/j.1399-3054.2003.00119.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053470938
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1080/07352681003617285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015916643
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1093/bioinformatics/bti447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019678614
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1093/bioinformatics/btq046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036287859
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1093/jexbot/51.345.659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053523575
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1093/jxb/erl208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019500215
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1093/pcp/pch097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038606478
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1093/treephys/25.8.1085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018856904
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1094/mpmi-18-1161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060078304
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1094/pdis-92-4-0530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060093569
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1094/phyto-03-10-0087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060099007
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1094/phyto-03-10-0095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060099011
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1094/phyto-06-11-0175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060099265
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1094/phyto-73-173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060106898
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1104/pp.112.202762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041609295
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1111/j.1364-3703.2008.00519.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052512845
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1111/j.1364-3703.2012.00834.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039679944
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1111/j.1365-3040.2010.02167.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034001818
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1111/j.1365-3059.2012.02592.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035097878
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1111/j.1469-8137.2009.02827.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043250250
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1111/j.1469-8137.2009.03049.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006481249
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1146/annurev.arplant.59.032607.092759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007572125
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1146/annurev.pp.29.060178.002021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016770774
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1214/009053605000000417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064388825
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.3390/s110403765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019819071
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.3390/s120100784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043910783
    299 rdf:type schema:CreativeWork
    300 https://www.grid.ac/institutes/grid.414548.8 schema:alternateName French National Institute for Agricultural Research
    301 schema:name INRA, UR0407 Pathologie Végétale, F-84140, Montfavet, France
    302 rdf:type schema:Organization
    303 https://www.grid.ac/institutes/grid.424765.6 schema:alternateName Agrocampus Ouest
    304 schema:name AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France
    305 INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouzé, France
    306 UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L’UNAM, Université d’Angers, F-49045, Angers, France
    307 rdf:type schema:Organization
    308 https://www.grid.ac/institutes/grid.462859.4 schema:alternateName Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé
    309 schema:name CREATIS; CNRS UMR5220; INSERM U630, Université de Lyon, F-69621, Villeurbanne, France
    310 Université d’Angers, Laboratoire d’Ingénierie des Systèmes Automatisés (LISA), F- 49000, Angers, France
    311 rdf:type schema:Organization
    312 https://www.grid.ac/institutes/grid.7252.2 schema:alternateName University of Angers
    313 schema:name AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences, F-49045, Angers, France
    314 INRA, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouzé, France
    315 UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, PRES L’UNAM, Université d’Angers, F-49045, Angers, France
    316 Université d’ANgers, UMR1345 Institut de Recherche en Horticulture et Semences, F-49071, Beaucouzé, France
    317 Université d’Angers, Laboratoire d’Ingénierie des Systèmes Automatisés (LISA), F- 49000, Angers, France
    318 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...