High frequency, cell type-specific visualization of fluorescent-tagged genomic sites in interphase and mitotic cells of living Arabidopsis plants View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-01-19

AUTHORS

Antonius JM Matzke, Koichi Watanabe, Johannes van der Winden, Ulf Naumann, Marjori Matzke

ABSTRACT

BackgroundInterphase chromosome organization and dynamics can be studied in living cells using fluorescent tagging techniques that exploit bacterial operator/repressor systems and auto-fluorescent proteins. A nuclear-localized Repressor Protein-Fluorescent Protein (RP-FP) fusion protein binds to operator repeats integrated as transgene arrays at defined locations in the genome. Under a fluorescence microscope, the tagged sites appear as bright fluorescent dots in living cells. This technique has been used successfully in plants, but is often hampered by low expression of genes encoding RP-FP fusion proteins, perhaps owing to one or more gene silencing mechanisms that are prevalent in plant cells.ResultsWe used two approaches to overcome this problem. First, we tested mutations in four factors involved in different types of gene silencing and/or epigenetic modifications for their effects on nuclear fluorescence. Only mutations in DDM1, a chromatin remodelling ATPase involved in repeat-induced heterochromatin formation and DNA methylation, released silencing of the RP-FP fusion protein. This result suggested that the operator repeats can trigger silencing of the adjacent gene encoding the RP-FP fusion protein. In the second approach, we transformed the tagged lines with a second T-DNA encoding the RP-FP fusion protein but lacking operator repeats. This strategy avoided operator repeat-induced gene silencing and increased the number of interphase nuclei displaying fluorescent dots. In a further extension of the technique, we show that green fluorescent-tagged sites can be visualized on moving mitotic chromosomes stained with red fluorescent-labelled histone H2B.ConclusionsThe results illustrate the propensity of operator repeat arrays to form heterochromatin that can silence the neighbouring gene encoding the RP-FP fusion protein. Supplying the RP-FP fusion protein in trans from a second T-DNA largely alleviates this problem. Depending on the promoter used to drive expression of the RP-FP fusion protein gene, the fluorescent tagged sites can be visualized at high frequency in different cell types. The ability to observe fluorescent dots on both interphase and mitotic chromosomes allows tagged sites to be tracked throughout the cell cycle. These improvements enhance the versatility of the fluorescent tagging technique for future studies of chromosome arrangement and dynamics in living plants. More... »

PAGES

2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1746-4811-6-2

DOI

http://dx.doi.org/10.1186/1746-4811-6-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027302611

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20148117


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.24194.3a", 
          "name": [
            "Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matzke", 
        "givenName": "Antonius JM", 
        "id": "sg:person.0604170460.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604170460.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leibniz-Institut f\u00fcr Pflanzengenetik und Kulturpflanzenforschung (IPK), Correnstrasse 3, D-O6466, Gatersleben, Germany", 
          "id": "http://www.grid.ac/institutes/grid.418934.3", 
          "name": [
            "Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030, Vienna, Austria", 
            "Leibniz-Institut f\u00fcr Pflanzengenetik und Kulturpflanzenforschung (IPK), Correnstrasse 3, D-O6466, Gatersleben, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Koichi", 
        "id": "sg:person.01241005766.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241005766.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.24194.3a", 
          "name": [
            "Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van der Winden", 
        "givenName": "Johannes", 
        "id": "sg:person.0671734571.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671734571.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.24194.3a", 
          "name": [
            "Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naumann", 
        "givenName": "Ulf", 
        "id": "sg:person.01165436365.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165436365.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.24194.3a", 
          "name": [
            "Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matzke", 
        "givenName": "Marjori", 
        "id": "sg:person.01366677656.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366677656.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrm2640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027263588", 
          "https://doi.org/10.1038/nrm2640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10577-008-1240-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037251372", 
          "https://doi.org/10.1007/s10577-008-1240-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00412-007-0146-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022739427", 
          "https://doi.org/10.1007/s00412-007-0146-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02773392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051010080", 
          "https://doi.org/10.1007/bf02773392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1746-4811-4-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009268246", 
          "https://doi.org/10.1186/1746-4811-4-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-59745-406-3_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045831480", 
          "https://doi.org/10.1007/978-1-59745-406-3_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-60327-563-7_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034573317", 
          "https://doi.org/10.1007/978-1-60327-563-7_7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-01-19", 
    "datePublishedReg": "2010-01-19", 
    "description": "BackgroundInterphase chromosome organization and dynamics can be studied in living cells using fluorescent tagging techniques that exploit bacterial operator/repressor systems and auto-fluorescent proteins. A nuclear-localized Repressor Protein-Fluorescent Protein (RP-FP) fusion protein binds to operator repeats integrated as transgene arrays at defined locations in the genome. Under a fluorescence microscope, the tagged sites appear as bright fluorescent dots in living cells. This technique has been used successfully in plants, but is often hampered by low expression of genes encoding RP-FP fusion proteins, perhaps owing to one or more gene silencing mechanisms that are prevalent in plant cells.ResultsWe used two approaches to overcome this problem. First, we tested mutations in four factors involved in different types of gene silencing and/or epigenetic modifications for their effects on nuclear fluorescence. Only mutations in DDM1, a chromatin remodelling ATPase involved in repeat-induced heterochromatin formation and DNA methylation, released silencing of the RP-FP fusion protein. This result suggested that the operator repeats can trigger silencing of the adjacent gene encoding the RP-FP fusion protein. In the second approach, we transformed the tagged lines with a second T-DNA encoding the RP-FP fusion protein but lacking operator repeats. This strategy avoided operator repeat-induced gene silencing and increased the number of interphase nuclei displaying fluorescent dots. In a further extension of the technique, we show that green fluorescent-tagged sites can be visualized on moving mitotic chromosomes stained with red fluorescent-labelled histone H2B.ConclusionsThe results illustrate the propensity of operator repeat arrays to form heterochromatin that can silence the neighbouring gene encoding the RP-FP fusion protein. Supplying the RP-FP fusion protein in trans from a second T-DNA largely alleviates this problem. Depending on the promoter used to drive expression of the RP-FP fusion protein gene, the fluorescent tagged sites can be visualized at high frequency in different cell types. The ability to observe fluorescent dots on both interphase and mitotic chromosomes allows tagged sites to be tracked throughout the cell cycle. These improvements enhance the versatility of the fluorescent tagging technique for future studies of chromosome arrangement and dynamics in living plants.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1746-4811-6-2", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6195395", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1035309", 
        "issn": [
          "1746-4811"
        ], 
        "name": "Plant Methods", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "second T-DNA", 
      "fusion protein", 
      "T-DNA", 
      "mitotic chromosomes", 
      "living cells", 
      "repeat-induced gene", 
      "fusion protein binds", 
      "fluorescent dots", 
      "fusion protein gene", 
      "auto-fluorescent proteins", 
      "different cell types", 
      "bright fluorescent dots", 
      "Arabidopsis plants", 
      "heterochromatin formation", 
      "chromosome organization", 
      "plant cells", 
      "chromosome arrangement", 
      "genomic sites", 
      "adjacent genes", 
      "protein binds", 
      "epigenetic modifications", 
      "DNA methylation", 
      "repressor system", 
      "protein gene", 
      "more genes", 
      "interphase nuclei", 
      "tagged site", 
      "transgene array", 
      "mitotic cells", 
      "cell cycle", 
      "genes", 
      "cell types", 
      "only mutation", 
      "protein", 
      "repeats", 
      "nuclear fluorescence", 
      "plants", 
      "chromosomes", 
      "fluorescence microscope", 
      "mutations", 
      "cells", 
      "low expression", 
      "expression", 
      "DDM1", 
      "fluorescent", 
      "heterochromatin", 
      "chromatin", 
      "genome", 
      "sites", 
      "interphase", 
      "methylation", 
      "promoter", 
      "binds", 
      "ATPase", 
      "high frequency", 
      "future studies", 
      "fluorescence", 
      "nucleus", 
      "dynamics", 
      "mechanism", 
      "lines", 
      "trans", 
      "modification", 
      "cycle", 
      "array", 
      "types", 
      "formation", 
      "ability", 
      "propensity", 
      "versatility", 
      "factors", 
      "different types", 
      "number", 
      "results", 
      "ResultsWe", 
      "organization", 
      "location", 
      "arrangement", 
      "strategies", 
      "effect", 
      "study", 
      "approach", 
      "frequency", 
      "microscope", 
      "visualization", 
      "system", 
      "second approach", 
      "technique", 
      "extension", 
      "further extension", 
      "dots", 
      "improvement", 
      "problem", 
      "operators"
    ], 
    "name": "High frequency, cell type-specific visualization of fluorescent-tagged genomic sites in interphase and mitotic cells of living Arabidopsis plants", 
    "pagination": "2", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027302611"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1746-4811-6-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20148117"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1746-4811-6-2", 
      "https://app.dimensions.ai/details/publication/pub.1027302611"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1746-4811-6-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1746-4811-6-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1746-4811-6-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1746-4811-6-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1746-4811-6-2'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      127 URIs      111 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1746-4811-6-2 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 anzsrc-for:0604
4 schema:author Nab6f255dea7a4d0ebec1a952ba02bee1
5 schema:citation sg:pub.10.1007/978-1-59745-406-3_16
6 sg:pub.10.1007/978-1-60327-563-7_7
7 sg:pub.10.1007/bf02773392
8 sg:pub.10.1007/s00412-007-0146-0
9 sg:pub.10.1007/s10577-008-1240-8
10 sg:pub.10.1038/nrm2640
11 sg:pub.10.1186/1746-4811-4-6
12 schema:datePublished 2010-01-19
13 schema:datePublishedReg 2010-01-19
14 schema:description BackgroundInterphase chromosome organization and dynamics can be studied in living cells using fluorescent tagging techniques that exploit bacterial operator/repressor systems and auto-fluorescent proteins. A nuclear-localized Repressor Protein-Fluorescent Protein (RP-FP) fusion protein binds to operator repeats integrated as transgene arrays at defined locations in the genome. Under a fluorescence microscope, the tagged sites appear as bright fluorescent dots in living cells. This technique has been used successfully in plants, but is often hampered by low expression of genes encoding RP-FP fusion proteins, perhaps owing to one or more gene silencing mechanisms that are prevalent in plant cells.ResultsWe used two approaches to overcome this problem. First, we tested mutations in four factors involved in different types of gene silencing and/or epigenetic modifications for their effects on nuclear fluorescence. Only mutations in DDM1, a chromatin remodelling ATPase involved in repeat-induced heterochromatin formation and DNA methylation, released silencing of the RP-FP fusion protein. This result suggested that the operator repeats can trigger silencing of the adjacent gene encoding the RP-FP fusion protein. In the second approach, we transformed the tagged lines with a second T-DNA encoding the RP-FP fusion protein but lacking operator repeats. This strategy avoided operator repeat-induced gene silencing and increased the number of interphase nuclei displaying fluorescent dots. In a further extension of the technique, we show that green fluorescent-tagged sites can be visualized on moving mitotic chromosomes stained with red fluorescent-labelled histone H2B.ConclusionsThe results illustrate the propensity of operator repeat arrays to form heterochromatin that can silence the neighbouring gene encoding the RP-FP fusion protein. Supplying the RP-FP fusion protein in trans from a second T-DNA largely alleviates this problem. Depending on the promoter used to drive expression of the RP-FP fusion protein gene, the fluorescent tagged sites can be visualized at high frequency in different cell types. The ability to observe fluorescent dots on both interphase and mitotic chromosomes allows tagged sites to be tracked throughout the cell cycle. These improvements enhance the versatility of the fluorescent tagging technique for future studies of chromosome arrangement and dynamics in living plants.
15 schema:genre article
16 schema:isAccessibleForFree true
17 schema:isPartOf N6549c65afd754145ab585734f0bde711
18 N7364db5e0e844323bdb6a8ed5adc098e
19 sg:journal.1035309
20 schema:keywords ATPase
21 Arabidopsis plants
22 DDM1
23 DNA methylation
24 ResultsWe
25 T-DNA
26 ability
27 adjacent genes
28 approach
29 arrangement
30 array
31 auto-fluorescent proteins
32 binds
33 bright fluorescent dots
34 cell cycle
35 cell types
36 cells
37 chromatin
38 chromosome arrangement
39 chromosome organization
40 chromosomes
41 cycle
42 different cell types
43 different types
44 dots
45 dynamics
46 effect
47 epigenetic modifications
48 expression
49 extension
50 factors
51 fluorescence
52 fluorescence microscope
53 fluorescent
54 fluorescent dots
55 formation
56 frequency
57 further extension
58 fusion protein
59 fusion protein binds
60 fusion protein gene
61 future studies
62 genes
63 genome
64 genomic sites
65 heterochromatin
66 heterochromatin formation
67 high frequency
68 improvement
69 interphase
70 interphase nuclei
71 lines
72 living cells
73 location
74 low expression
75 mechanism
76 methylation
77 microscope
78 mitotic cells
79 mitotic chromosomes
80 modification
81 more genes
82 mutations
83 nuclear fluorescence
84 nucleus
85 number
86 only mutation
87 operators
88 organization
89 plant cells
90 plants
91 problem
92 promoter
93 propensity
94 protein
95 protein binds
96 protein gene
97 repeat-induced gene
98 repeats
99 repressor system
100 results
101 second T-DNA
102 second approach
103 sites
104 strategies
105 study
106 system
107 tagged site
108 technique
109 trans
110 transgene array
111 types
112 versatility
113 visualization
114 schema:name High frequency, cell type-specific visualization of fluorescent-tagged genomic sites in interphase and mitotic cells of living Arabidopsis plants
115 schema:pagination 2
116 schema:productId N20cf41a8763f4fc2a94c83be673a8b09
117 N65691580b5b2493291c1d92a89ec7855
118 Nff1c526b1b68482bb541435f0913f898
119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027302611
120 https://doi.org/10.1186/1746-4811-6-2
121 schema:sdDatePublished 2022-12-01T06:28
122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
123 schema:sdPublisher N0cd4d58a0f3649ae9a4d657d31a48c1d
124 schema:url https://doi.org/10.1186/1746-4811-6-2
125 sgo:license sg:explorer/license/
126 sgo:sdDataset articles
127 rdf:type schema:ScholarlyArticle
128 N0c929179214643ebb179bd22853f77b1 rdf:first sg:person.0671734571.95
129 rdf:rest N9d17f128180743d284a115470e663ab6
130 N0cd4d58a0f3649ae9a4d657d31a48c1d schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 N20cf41a8763f4fc2a94c83be673a8b09 schema:name pubmed_id
133 schema:value 20148117
134 rdf:type schema:PropertyValue
135 N6549c65afd754145ab585734f0bde711 schema:volumeNumber 6
136 rdf:type schema:PublicationVolume
137 N65691580b5b2493291c1d92a89ec7855 schema:name dimensions_id
138 schema:value pub.1027302611
139 rdf:type schema:PropertyValue
140 N7364db5e0e844323bdb6a8ed5adc098e schema:issueNumber 1
141 rdf:type schema:PublicationIssue
142 N75c8dfac0e5d4894b864f024608b0d61 rdf:first sg:person.01241005766.75
143 rdf:rest N0c929179214643ebb179bd22853f77b1
144 N9d17f128180743d284a115470e663ab6 rdf:first sg:person.01165436365.15
145 rdf:rest Nc975f21b524e45d8988e8b7a6429f4cb
146 Nab6f255dea7a4d0ebec1a952ba02bee1 rdf:first sg:person.0604170460.05
147 rdf:rest N75c8dfac0e5d4894b864f024608b0d61
148 Nc975f21b524e45d8988e8b7a6429f4cb rdf:first sg:person.01366677656.47
149 rdf:rest rdf:nil
150 Nff1c526b1b68482bb541435f0913f898 schema:name doi
151 schema:value 10.1186/1746-4811-6-2
152 rdf:type schema:PropertyValue
153 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
154 schema:name Biological Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
157 schema:name Biochemistry and Cell Biology
158 rdf:type schema:DefinedTerm
159 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
160 schema:name Genetics
161 rdf:type schema:DefinedTerm
162 sg:grant.6195395 http://pending.schema.org/fundedItem sg:pub.10.1186/1746-4811-6-2
163 rdf:type schema:MonetaryGrant
164 sg:journal.1035309 schema:issn 1746-4811
165 schema:name Plant Methods
166 schema:publisher Springer Nature
167 rdf:type schema:Periodical
168 sg:person.01165436365.15 schema:affiliation grid-institutes:grid.24194.3a
169 schema:familyName Naumann
170 schema:givenName Ulf
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165436365.15
172 rdf:type schema:Person
173 sg:person.01241005766.75 schema:affiliation grid-institutes:grid.418934.3
174 schema:familyName Watanabe
175 schema:givenName Koichi
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241005766.75
177 rdf:type schema:Person
178 sg:person.01366677656.47 schema:affiliation grid-institutes:grid.24194.3a
179 schema:familyName Matzke
180 schema:givenName Marjori
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366677656.47
182 rdf:type schema:Person
183 sg:person.0604170460.05 schema:affiliation grid-institutes:grid.24194.3a
184 schema:familyName Matzke
185 schema:givenName Antonius JM
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604170460.05
187 rdf:type schema:Person
188 sg:person.0671734571.95 schema:affiliation grid-institutes:grid.24194.3a
189 schema:familyName van der Winden
190 schema:givenName Johannes
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671734571.95
192 rdf:type schema:Person
193 sg:pub.10.1007/978-1-59745-406-3_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045831480
194 https://doi.org/10.1007/978-1-59745-406-3_16
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/978-1-60327-563-7_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034573317
197 https://doi.org/10.1007/978-1-60327-563-7_7
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/bf02773392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051010080
200 https://doi.org/10.1007/bf02773392
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s00412-007-0146-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022739427
203 https://doi.org/10.1007/s00412-007-0146-0
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s10577-008-1240-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037251372
206 https://doi.org/10.1007/s10577-008-1240-8
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nrm2640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027263588
209 https://doi.org/10.1038/nrm2640
210 rdf:type schema:CreativeWork
211 sg:pub.10.1186/1746-4811-4-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009268246
212 https://doi.org/10.1186/1746-4811-4-6
213 rdf:type schema:CreativeWork
214 grid-institutes:grid.24194.3a schema:alternateName Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030, Vienna, Austria
215 schema:name Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030, Vienna, Austria
216 rdf:type schema:Organization
217 grid-institutes:grid.418934.3 schema:alternateName Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Correnstrasse 3, D-O6466, Gatersleben, Germany
218 schema:name Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, A-1030, Vienna, Austria
219 Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Correnstrasse 3, D-O6466, Gatersleben, Germany
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...