A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Klementina Kakar, Maren Wandrey, Tomasz Czechowski, Tanja Gaertner, Wolf-Rüdiger Scheible, Mark Stitt, Ivone Torres-Jerez, Yongli Xiao, Julia C Redman, Hank C Wu, Foo Cheung, Christopher D Town, Michael K Udvardi

ABSTRACT

BACKGROUND: Medicago truncatula is a model legume species that is currently the focus of an international genome sequencing effort. Although several different oligonucleotide and cDNA arrays have been produced for genome-wide transcript analysis of this species, intrinsic limitations in the sensitivity of hybridization-based technologies mean that transcripts of genes expressed at low-levels cannot be measured accurately with these tools. Amongst such genes are many encoding transcription factors (TFs), which are arguably the most important class of regulatory proteins. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is the most sensitive method currently available for transcript quantification, and one that can be scaled up to analyze transcripts of thousands of genes in parallel. Thus, qRT-PCR is an ideal method to tackle the problem of TF transcript quantification in Medicago and other plants. RESULTS: We established a bioinformatics pipeline to identify putative TF genes in Medicago truncatula and to design gene-specific oligonucleotide primers for qRT-PCR analysis of TF transcripts. We validated the efficacy and gene-specificity of over 1000 TF primer pairs and utilized these to identify sets of organ-enhanced TF genes that may play important roles in organ development or differentiation in this species. This community resource will be developed further as more genome sequence becomes available, with the ultimate goal of producing validated, gene-specific primers for all Medicago TF genes. CONCLUSION: High-throughput qRT-PCR using a 384-well plate format enables rapid, flexible, and sensitive quantification of all predicted Medicago transcription factor mRNAs. This resource has been utilized recently by several groups in Europe, Australia, and the USA, and we expect that it will become the 'gold-standard' for TF transcript profiling in Medicago truncatula. More... »

PAGES

18

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1746-4811-4-18

DOI

http://dx.doi.org/10.1186/1746-4811-4-18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003942100

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18611268


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Molecular Plant Physiology", 
          "id": "https://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck Institute of Molecular Plant Physiology, Am M\u00fchlenberg 1, 14476, Potsdam-Golm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kakar", 
        "givenName": "Klementina", 
        "id": "sg:person.01316261653.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316261653.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Molecular Plant Physiology", 
          "id": "https://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck Institute of Molecular Plant Physiology, Am M\u00fchlenberg 1, 14476, Potsdam-Golm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wandrey", 
        "givenName": "Maren", 
        "id": "sg:person.01364375053.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364375053.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Molecular Plant Physiology", 
          "id": "https://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck Institute of Molecular Plant Physiology, Am M\u00fchlenberg 1, 14476, Potsdam-Golm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Czechowski", 
        "givenName": "Tomasz", 
        "id": "sg:person.01217406146.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217406146.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Molecular Plant Physiology", 
          "id": "https://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck Institute of Molecular Plant Physiology, Am M\u00fchlenberg 1, 14476, Potsdam-Golm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaertner", 
        "givenName": "Tanja", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Molecular Plant Physiology", 
          "id": "https://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck Institute of Molecular Plant Physiology, Am M\u00fchlenberg 1, 14476, Potsdam-Golm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scheible", 
        "givenName": "Wolf-R\u00fcdiger", 
        "id": "sg:person.0610230446.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610230446.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Molecular Plant Physiology", 
          "id": "https://www.grid.ac/institutes/grid.418390.7", 
          "name": [
            "Max-Planck Institute of Molecular Plant Physiology, Am M\u00fchlenberg 1, 14476, Potsdam-Golm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stitt", 
        "givenName": "Mark", 
        "id": "sg:person.01021103304.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021103304.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samuel Roberts Noble Foundation", 
          "id": "https://www.grid.ac/institutes/grid.419447.b", 
          "name": [
            "The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, 73401, Ardmore, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torres-Jerez", 
        "givenName": "Ivone", 
        "id": "sg:person.01171607522.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171607522.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "J. Craig Venter Institute", 
          "id": "https://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "The J. Craig Venter Institute, 9704 Medical Center Drive, 20850, Rockville, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Yongli", 
        "id": "sg:person.0745667774.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745667774.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "J. Craig Venter Institute", 
          "id": "https://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "The J. Craig Venter Institute, 9704 Medical Center Drive, 20850, Rockville, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Redman", 
        "givenName": "Julia C", 
        "id": "sg:person.0740332153.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740332153.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "J. Craig Venter Institute", 
          "id": "https://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "The J. Craig Venter Institute, 9704 Medical Center Drive, 20850, Rockville, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Hank C", 
        "id": "sg:person.01315733615.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315733615.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "J. Craig Venter Institute", 
          "id": "https://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "The J. Craig Venter Institute, 9704 Medical Center Drive, 20850, Rockville, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheung", 
        "givenName": "Foo", 
        "id": "sg:person.0775243742.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775243742.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "J. Craig Venter Institute", 
          "id": "https://www.grid.ac/institutes/grid.469946.0", 
          "name": [
            "The J. Craig Venter Institute, 9704 Medical Center Drive, 20850, Rockville, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Town", 
        "givenName": "Christopher D", 
        "id": "sg:person.01342147342.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342147342.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samuel Roberts Noble Foundation", 
          "id": "https://www.grid.ac/institutes/grid.419447.b", 
          "name": [
            "Max-Planck Institute of Molecular Plant Physiology, Am M\u00fchlenberg 1, 14476, Potsdam-Golm, Germany", 
            "The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, 73401, Ardmore, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Udvardi", 
        "givenName": "Michael K", 
        "id": "sg:person.01055601142.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055601142.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1104/pp.104.043612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002554290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.105.068544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002866426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003059579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.104.047019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005387725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1199/tab.0085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006699339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007370859", 
          "https://doi.org/10.1038/nrg1893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007370859", 
          "https://doi.org/10.1038/nrg1893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2004.02051.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008954850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3940(02)01423-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009175625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3940(02)01423-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009175625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00023399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009747798", 
          "https://doi.org/10.1007/bf00023399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00023399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009747798", 
          "https://doi.org/10.1007/bf00023399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.107.098061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012052632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1746-4811-3-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013018295", 
          "https://doi.org/10.1186/1746-4811-3-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.104.056572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013962553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.105.063743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014383374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-3040.2006.01608.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014553837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/46058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015791760", 
          "https://doi.org/10.1038/46058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/46058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015791760", 
          "https://doi.org/10.1038/46058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.106.048264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017973867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/1-59259-192-2:365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023668922", 
          "https://doi.org/10.1385/1-59259-192-2:365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2229-8-21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032952584", 
          "https://doi.org/10.1186/1471-2229-8-21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/dnares/dsi011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038411411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-7-research0034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039751959", 
          "https://doi.org/10.1186/gb-2002-3-7-research0034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5499.2105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040617236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023967214199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042256328", 
          "https://doi.org/10.1023/a:1023967214199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10142-002-0065-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042777972", 
          "https://doi.org/10.1007/s10142-002-0065-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.104.057034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044726361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.402806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044939355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.017004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046579069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.222302699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047157691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2008.03519.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048183131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1094/mpmi-20-8-0900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060078631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1110951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1111025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074544770", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074596291", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082935611", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "BACKGROUND: Medicago truncatula is a model legume species that is currently the focus of an international genome sequencing effort. Although several different oligonucleotide and cDNA arrays have been produced for genome-wide transcript analysis of this species, intrinsic limitations in the sensitivity of hybridization-based technologies mean that transcripts of genes expressed at low-levels cannot be measured accurately with these tools. Amongst such genes are many encoding transcription factors (TFs), which are arguably the most important class of regulatory proteins. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is the most sensitive method currently available for transcript quantification, and one that can be scaled up to analyze transcripts of thousands of genes in parallel. Thus, qRT-PCR is an ideal method to tackle the problem of TF transcript quantification in Medicago and other plants.\nRESULTS: We established a bioinformatics pipeline to identify putative TF genes in Medicago truncatula and to design gene-specific oligonucleotide primers for qRT-PCR analysis of TF transcripts. We validated the efficacy and gene-specificity of over 1000 TF primer pairs and utilized these to identify sets of organ-enhanced TF genes that may play important roles in organ development or differentiation in this species. This community resource will be developed further as more genome sequence becomes available, with the ultimate goal of producing validated, gene-specific primers for all Medicago TF genes.\nCONCLUSION: High-throughput qRT-PCR using a 384-well plate format enables rapid, flexible, and sensitive quantification of all predicted Medicago transcription factor mRNAs. This resource has been utilized recently by several groups in Europe, Australia, and the USA, and we expect that it will become the 'gold-standard' for TF transcript profiling in Medicago truncatula.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1746-4811-4-18", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1035309", 
        "issn": [
          "1746-4811"
        ], 
        "name": "Plant Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula", 
    "pagination": "18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "12c83a8aac5bfcd6e5c0e4305a7cf647177c738dc5f9b0b272f919b458069401"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18611268"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101245798"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1746-4811-4-18"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003942100"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1746-4811-4-18", 
      "https://app.dimensions.ai/details/publication/pub.1003942100"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1746-4811-4-18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1746-4811-4-18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1746-4811-4-18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1746-4811-4-18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1746-4811-4-18'


 

This table displays all metadata directly associated to this object as RDF triples.

266 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1746-4811-4-18 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Na2bf878ba2194fec9135a5241216b371
4 schema:citation sg:pub.10.1007/bf00023399
5 sg:pub.10.1007/s10142-002-0065-3
6 sg:pub.10.1023/a:1023967214199
7 sg:pub.10.1038/46058
8 sg:pub.10.1038/nrg1893
9 sg:pub.10.1186/1471-2229-8-21
10 sg:pub.10.1186/1746-4811-3-7
11 sg:pub.10.1186/gb-2002-3-7-research0034
12 sg:pub.10.1385/1-59259-192-2:365
13 https://app.dimensions.ai/details/publication/pub.1074544770
14 https://app.dimensions.ai/details/publication/pub.1074596291
15 https://app.dimensions.ai/details/publication/pub.1082935611
16 https://doi.org/10.1016/s0304-3940(02)01423-4
17 https://doi.org/10.1073/pnas.222302699
18 https://doi.org/10.1093/bioinformatics/bti334
19 https://doi.org/10.1093/dnares/dsi011
20 https://doi.org/10.1094/mpmi-20-8-0900
21 https://doi.org/10.1101/gad.402806
22 https://doi.org/10.1104/pp.017004
23 https://doi.org/10.1104/pp.104.043612
24 https://doi.org/10.1104/pp.104.047019
25 https://doi.org/10.1104/pp.104.056572
26 https://doi.org/10.1104/pp.104.057034
27 https://doi.org/10.1104/pp.105.063743
28 https://doi.org/10.1104/pp.105.068544
29 https://doi.org/10.1104/pp.107.098061
30 https://doi.org/10.1105/tpc.106.048264
31 https://doi.org/10.1111/j.1365-3040.2006.01608.x
32 https://doi.org/10.1111/j.1365-313x.2004.02051.x
33 https://doi.org/10.1111/j.1365-313x.2008.03519.x
34 https://doi.org/10.1126/science.1110951
35 https://doi.org/10.1126/science.1111025
36 https://doi.org/10.1126/science.290.5499.2105
37 https://doi.org/10.1199/tab.0085
38 schema:datePublished 2008-12
39 schema:datePublishedReg 2008-12-01
40 schema:description BACKGROUND: Medicago truncatula is a model legume species that is currently the focus of an international genome sequencing effort. Although several different oligonucleotide and cDNA arrays have been produced for genome-wide transcript analysis of this species, intrinsic limitations in the sensitivity of hybridization-based technologies mean that transcripts of genes expressed at low-levels cannot be measured accurately with these tools. Amongst such genes are many encoding transcription factors (TFs), which are arguably the most important class of regulatory proteins. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is the most sensitive method currently available for transcript quantification, and one that can be scaled up to analyze transcripts of thousands of genes in parallel. Thus, qRT-PCR is an ideal method to tackle the problem of TF transcript quantification in Medicago and other plants. RESULTS: We established a bioinformatics pipeline to identify putative TF genes in Medicago truncatula and to design gene-specific oligonucleotide primers for qRT-PCR analysis of TF transcripts. We validated the efficacy and gene-specificity of over 1000 TF primer pairs and utilized these to identify sets of organ-enhanced TF genes that may play important roles in organ development or differentiation in this species. This community resource will be developed further as more genome sequence becomes available, with the ultimate goal of producing validated, gene-specific primers for all Medicago TF genes. CONCLUSION: High-throughput qRT-PCR using a 384-well plate format enables rapid, flexible, and sensitive quantification of all predicted Medicago transcription factor mRNAs. This resource has been utilized recently by several groups in Europe, Australia, and the USA, and we expect that it will become the 'gold-standard' for TF transcript profiling in Medicago truncatula.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf Ne64ae3f3d7ce4ff1bf7541f3898015b3
45 Nf869bfbd19ae4efdbc08a2c0f210c40b
46 sg:journal.1035309
47 schema:name A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula
48 schema:pagination 18
49 schema:productId N1f8dd84f32f042c4b3603f8ca1c0ce7b
50 N3015fbe970114e7db5085d97ace7d8bc
51 N675032ad44054bc39ac9c38d4910b723
52 Neaeac8c501444e9498876a036a373dc2
53 Nf46fa44fc18c41cdbeff02fe7bb43817
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003942100
55 https://doi.org/10.1186/1746-4811-4-18
56 schema:sdDatePublished 2019-04-10T15:50
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N66996620a534466395450176da52c698
59 schema:url http://link.springer.com/10.1186%2F1746-4811-4-18
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N004d70f41bdc4f5d91a6b3530a4bb176 rdf:first sg:person.01217406146.17
64 rdf:rest N7fc2c87803ca4d9a93e592e7b106f739
65 N096f28667d964abebb5d409be6ce6337 rdf:first sg:person.01171607522.39
66 rdf:rest Nc6fffd886e014cab8b7451e53f83db48
67 N0a3bd7d3ad6d42b186b73ded627f4c10 rdf:first sg:person.0740332153.70
68 rdf:rest Nbed6a40809b24fb0b35c74c0d19b3352
69 N0d9906307e474ab6b9662aebf56c3864 rdf:first sg:person.01055601142.54
70 rdf:rest rdf:nil
71 N1f8dd84f32f042c4b3603f8ca1c0ce7b schema:name dimensions_id
72 schema:value pub.1003942100
73 rdf:type schema:PropertyValue
74 N3015fbe970114e7db5085d97ace7d8bc schema:name doi
75 schema:value 10.1186/1746-4811-4-18
76 rdf:type schema:PropertyValue
77 N36fbc06d6b7a45b386d9d5551f5bcf45 rdf:first sg:person.01364375053.23
78 rdf:rest N004d70f41bdc4f5d91a6b3530a4bb176
79 N416c1760e7c0406992745bff6c047df9 rdf:first sg:person.01342147342.20
80 rdf:rest N0d9906307e474ab6b9662aebf56c3864
81 N546294e8bf9f44bcb52bc24e49528377 rdf:first sg:person.0775243742.49
82 rdf:rest N416c1760e7c0406992745bff6c047df9
83 N66996620a534466395450176da52c698 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N675032ad44054bc39ac9c38d4910b723 schema:name nlm_unique_id
86 schema:value 101245798
87 rdf:type schema:PropertyValue
88 N7fc2c87803ca4d9a93e592e7b106f739 rdf:first N81bc2db870b0457e945c4c80c46d0f9f
89 rdf:rest N835cba5ea8894547bdd153cb715ddc8e
90 N81bc2db870b0457e945c4c80c46d0f9f schema:affiliation https://www.grid.ac/institutes/grid.418390.7
91 schema:familyName Gaertner
92 schema:givenName Tanja
93 rdf:type schema:Person
94 N835cba5ea8894547bdd153cb715ddc8e rdf:first sg:person.0610230446.29
95 rdf:rest Nd7072179c9f640f8b3ceed2b2bd443ef
96 Na2bf878ba2194fec9135a5241216b371 rdf:first sg:person.01316261653.29
97 rdf:rest N36fbc06d6b7a45b386d9d5551f5bcf45
98 Nbed6a40809b24fb0b35c74c0d19b3352 rdf:first sg:person.01315733615.97
99 rdf:rest N546294e8bf9f44bcb52bc24e49528377
100 Nc6fffd886e014cab8b7451e53f83db48 rdf:first sg:person.0745667774.72
101 rdf:rest N0a3bd7d3ad6d42b186b73ded627f4c10
102 Nd7072179c9f640f8b3ceed2b2bd443ef rdf:first sg:person.01021103304.09
103 rdf:rest N096f28667d964abebb5d409be6ce6337
104 Ne64ae3f3d7ce4ff1bf7541f3898015b3 schema:volumeNumber 4
105 rdf:type schema:PublicationVolume
106 Neaeac8c501444e9498876a036a373dc2 schema:name readcube_id
107 schema:value 12c83a8aac5bfcd6e5c0e4305a7cf647177c738dc5f9b0b272f919b458069401
108 rdf:type schema:PropertyValue
109 Nf46fa44fc18c41cdbeff02fe7bb43817 schema:name pubmed_id
110 schema:value 18611268
111 rdf:type schema:PropertyValue
112 Nf869bfbd19ae4efdbc08a2c0f210c40b schema:issueNumber 1
113 rdf:type schema:PublicationIssue
114 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
115 schema:name Biological Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
118 schema:name Genetics
119 rdf:type schema:DefinedTerm
120 sg:journal.1035309 schema:issn 1746-4811
121 schema:name Plant Methods
122 rdf:type schema:Periodical
123 sg:person.01021103304.09 schema:affiliation https://www.grid.ac/institutes/grid.418390.7
124 schema:familyName Stitt
125 schema:givenName Mark
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021103304.09
127 rdf:type schema:Person
128 sg:person.01055601142.54 schema:affiliation https://www.grid.ac/institutes/grid.419447.b
129 schema:familyName Udvardi
130 schema:givenName Michael K
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055601142.54
132 rdf:type schema:Person
133 sg:person.01171607522.39 schema:affiliation https://www.grid.ac/institutes/grid.419447.b
134 schema:familyName Torres-Jerez
135 schema:givenName Ivone
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171607522.39
137 rdf:type schema:Person
138 sg:person.01217406146.17 schema:affiliation https://www.grid.ac/institutes/grid.418390.7
139 schema:familyName Czechowski
140 schema:givenName Tomasz
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217406146.17
142 rdf:type schema:Person
143 sg:person.01315733615.97 schema:affiliation https://www.grid.ac/institutes/grid.469946.0
144 schema:familyName Wu
145 schema:givenName Hank C
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315733615.97
147 rdf:type schema:Person
148 sg:person.01316261653.29 schema:affiliation https://www.grid.ac/institutes/grid.418390.7
149 schema:familyName Kakar
150 schema:givenName Klementina
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316261653.29
152 rdf:type schema:Person
153 sg:person.01342147342.20 schema:affiliation https://www.grid.ac/institutes/grid.469946.0
154 schema:familyName Town
155 schema:givenName Christopher D
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342147342.20
157 rdf:type schema:Person
158 sg:person.01364375053.23 schema:affiliation https://www.grid.ac/institutes/grid.418390.7
159 schema:familyName Wandrey
160 schema:givenName Maren
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364375053.23
162 rdf:type schema:Person
163 sg:person.0610230446.29 schema:affiliation https://www.grid.ac/institutes/grid.418390.7
164 schema:familyName Scheible
165 schema:givenName Wolf-Rüdiger
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610230446.29
167 rdf:type schema:Person
168 sg:person.0740332153.70 schema:affiliation https://www.grid.ac/institutes/grid.469946.0
169 schema:familyName Redman
170 schema:givenName Julia C
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740332153.70
172 rdf:type schema:Person
173 sg:person.0745667774.72 schema:affiliation https://www.grid.ac/institutes/grid.469946.0
174 schema:familyName Xiao
175 schema:givenName Yongli
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0745667774.72
177 rdf:type schema:Person
178 sg:person.0775243742.49 schema:affiliation https://www.grid.ac/institutes/grid.469946.0
179 schema:familyName Cheung
180 schema:givenName Foo
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775243742.49
182 rdf:type schema:Person
183 sg:pub.10.1007/bf00023399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009747798
184 https://doi.org/10.1007/bf00023399
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s10142-002-0065-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042777972
187 https://doi.org/10.1007/s10142-002-0065-3
188 rdf:type schema:CreativeWork
189 sg:pub.10.1023/a:1023967214199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042256328
190 https://doi.org/10.1023/a:1023967214199
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/46058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015791760
193 https://doi.org/10.1038/46058
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nrg1893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007370859
196 https://doi.org/10.1038/nrg1893
197 rdf:type schema:CreativeWork
198 sg:pub.10.1186/1471-2229-8-21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032952584
199 https://doi.org/10.1186/1471-2229-8-21
200 rdf:type schema:CreativeWork
201 sg:pub.10.1186/1746-4811-3-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013018295
202 https://doi.org/10.1186/1746-4811-3-7
203 rdf:type schema:CreativeWork
204 sg:pub.10.1186/gb-2002-3-7-research0034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039751959
205 https://doi.org/10.1186/gb-2002-3-7-research0034
206 rdf:type schema:CreativeWork
207 sg:pub.10.1385/1-59259-192-2:365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023668922
208 https://doi.org/10.1385/1-59259-192-2:365
209 rdf:type schema:CreativeWork
210 https://app.dimensions.ai/details/publication/pub.1074544770 schema:CreativeWork
211 https://app.dimensions.ai/details/publication/pub.1074596291 schema:CreativeWork
212 https://app.dimensions.ai/details/publication/pub.1082935611 schema:CreativeWork
213 https://doi.org/10.1016/s0304-3940(02)01423-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009175625
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1073/pnas.222302699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047157691
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/bioinformatics/bti334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003059579
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/dnares/dsi011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038411411
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1094/mpmi-20-8-0900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060078631
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1101/gad.402806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044939355
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1104/pp.017004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046579069
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1104/pp.104.043612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002554290
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1104/pp.104.047019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005387725
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1104/pp.104.056572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013962553
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1104/pp.104.057034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044726361
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1104/pp.105.063743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014383374
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1104/pp.105.068544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002866426
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1104/pp.107.098061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012052632
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1105/tpc.106.048264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017973867
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1111/j.1365-3040.2006.01608.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014553837
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1111/j.1365-313x.2004.02051.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008954850
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1111/j.1365-313x.2008.03519.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048183131
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1126/science.1110951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452086
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1126/science.1111025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452090
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1126/science.290.5499.2105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040617236
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1199/tab.0085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006699339
256 rdf:type schema:CreativeWork
257 https://www.grid.ac/institutes/grid.418390.7 schema:alternateName Max Planck Institute for Molecular Plant Physiology
258 schema:name Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
259 rdf:type schema:Organization
260 https://www.grid.ac/institutes/grid.419447.b schema:alternateName Samuel Roberts Noble Foundation
261 schema:name Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
262 The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, 73401, Ardmore, OK, USA
263 rdf:type schema:Organization
264 https://www.grid.ac/institutes/grid.469946.0 schema:alternateName J. Craig Venter Institute
265 schema:name The J. Craig Venter Institute, 9704 Medical Center Drive, 20850, Rockville, MD, USA
266 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...