Metabolic labeling of plant cell cultures with K15NO3 as a tool for quantitative analysis of proteins and metabolites View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-09-04

AUTHORS

Wolfgang R Engelsberger, Alexander Erban, Joachim Kopka, Waltraud X Schulze

ABSTRACT

Strategies for robust quantitative comparison between different biological samples are of high importance in experiments that address biological questions beyond the establishment of protein lists. Here, we propose the use of 15N-KNO3 as the only nitrogen source in Arabidopsis cell cultures in order to achieve a metabolically fully labeled cell population. Proteins from such metabolically labeled culture are distinguishable from unlabeled protein populations by a characteristic mass shift that depends on the amino acid composition of the tryptic peptide analyzed. In addition, the metabolically labeled cell extracts are also suitable for comparative quantitative analysis of nitrogen-containing cellular metabolic complement. Protein extracts from unlabeled and from standardized 15N-labeled cells were combined into one sample for joined analytical processing. This has the advantage of (i) reduced experimental variability and (ii) immediate relative quantitation at the level of single extracted peptide and metabolite spectra. Together ease and accuracy of relative quantitation for profiling experiments is substantially improved. The metabolic labeling strategy has been validated by mixtures of protein extracts and metabolite extracts from the same cell cultures in known ratios of labeled to unlabeled extracts (1:1, 1:4, and 4:1). We conclude that saturating metabolic 15N-labeling provides a robust and affordable integrative strategy to answer questions in quantitative proteomics and nitrogen focused metabolomics. More... »

PAGES

14

References to SciGraph publications

  • 2003-03. Mass spectrometry-based proteomics in NATURE
  • 2004-08-15. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics in NATURE BIOTECHNOLOGY
  • 2001-11. Effects of the mur1 mutation on xyloglucans produced by suspension-cultured Arabidopsis thaliana cells in PLANTA
  • 2003-03. Proteomic analysis of post-translational modifications in NATURE BIOTECHNOLOGY
  • 2003-07-13. Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics in NATURE BIOTECHNOLOGY
  • 2004-05-01. An isotope labeling strategy for quantifying the degree of phosphorylation at multiple sites in proteins in JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
  • 2007. Nonsupervised Construction and Application of Mass Spectral and Retention Time Index Libraries From Time-of-Flight Gas Chromatography-Mass Spectrometry Metabolite Profiles in METABOLOMICS
  • 2006-09-01. Nonsupervised Construction and Application of Mass Spectral and Retention Time Index Libraries From Time-of-Flight Gas Chromatography-Mass Spectrometry Metabolite Profiles in METABOLOMICS
  • 2005-09-20. Mass spectrometry–based proteomics turns quantitative in NATURE CHEMICAL BIOLOGY
  • 2000-11. Metabolite profiling for plant functional genomics in NATURE BIOTECHNOLOGY
  • 2003-02-10. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling in NATURE BIOTECHNOLOGY
  • 2005-02. NMR analysis of plant nitrogen metabolism in PHOTOSYNTHESIS RESEARCH
  • 1998-05. A theory for 15N/14N fractionation in nitrate-grown vascular plants in PLANTA
  • 2005-06. Nitrogen transfer in the arbuscular mycorrhizal symbiosis in NATURE
  • 1999-10. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags in NATURE BIOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1746-4811-2-14

    DOI

    http://dx.doi.org/10.1186/1746-4811-2-14

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023434983

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/16948866


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max-Planck Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, 14476, Golm, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Max-Planck Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, 14476, Golm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Engelsberger", 
            "givenName": "Wolfgang R", 
            "id": "sg:person.01263506773.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263506773.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, 14476, Golm, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Max-Planck Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, 14476, Golm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Erban", 
            "givenName": "Alexander", 
            "id": "sg:person.01353252733.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353252733.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, 14476, Golm, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Max-Planck Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, 14476, Golm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kopka", 
            "givenName": "Joachim", 
            "id": "sg:person.0633132075.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633132075.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, 14476, Golm, Germany", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Max-Planck Institut f\u00fcr Molekulare Pflanzenphysiologie, Am M\u00fchlenberg 1, 14476, Golm, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schulze", 
            "givenName": "Waltraud X", 
            "id": "sg:person.01167023606.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167023606.80"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-59745-244-1_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044052761", 
              "https://doi.org/10.1007/978-1-59745-244-1_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012180132", 
              "https://doi.org/10.1038/nature01511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio736", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004679205", 
              "https://doi.org/10.1038/nchembio736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004250100585", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049991601", 
              "https://doi.org/10.1007/s004250100585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/13690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029022565", 
              "https://doi.org/10.1038/13690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.jasms.2003.12.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031194579", 
              "https://doi.org/10.1016/j.jasms.2003.12.019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048011450", 
              "https://doi.org/10.1038/nbt1005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt0303-255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045890250", 
              "https://doi.org/10.1038/nbt0303-255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021251049", 
              "https://doi.org/10.1038/nature03610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038335617", 
              "https://doi.org/10.1038/nbt848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1385/1-59745-244-0:19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088542930", 
              "https://doi.org/10.1385/1-59745-244-0:19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11120-004-2081-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039781255", 
              "https://doi.org/10.1007/s11120-004-2081-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004250050336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004850695", 
              "https://doi.org/10.1007/s004250050336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/81137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045090002", 
              "https://doi.org/10.1038/81137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002942507", 
              "https://doi.org/10.1038/nbt790"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-09-04", 
        "datePublishedReg": "2006-09-04", 
        "description": "Strategies for robust quantitative comparison between different biological samples are of high importance in experiments that address biological questions beyond the establishment of protein lists. Here, we propose the use of 15N-KNO3 as the only nitrogen source in Arabidopsis cell cultures in order to achieve a metabolically fully labeled cell population. Proteins from such metabolically labeled culture are distinguishable from unlabeled protein populations by a characteristic mass shift that depends on the amino acid composition of the tryptic peptide analyzed. In addition, the metabolically labeled cell extracts are also suitable for comparative quantitative analysis of nitrogen-containing cellular metabolic complement. Protein extracts from unlabeled and from standardized 15N-labeled cells were combined into one sample for joined analytical processing. This has the advantage of (i) reduced experimental variability and (ii) immediate relative quantitation at the level of single extracted peptide and metabolite spectra. Together ease and accuracy of relative quantitation for profiling experiments is substantially improved. The metabolic labeling strategy has been validated by mixtures of protein extracts and metabolite extracts from the same cell cultures in known ratios of labeled to unlabeled extracts (1:1, 1:4, and 4:1). We conclude that saturating metabolic 15N-labeling provides a robust and affordable integrative strategy to answer questions in quantitative proteomics and nitrogen focused metabolomics.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1746-4811-2-14", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1035309", 
            "issn": [
              "1746-4811"
            ], 
            "name": "Plant Methods", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "keywords": [
          "Arabidopsis cell cultures", 
          "protein extracts", 
          "metabolic labeling strategy", 
          "plant cell cultures", 
          "relative quantitation", 
          "cell cultures", 
          "amino acid composition", 
          "protein lists", 
          "protein population", 
          "quantitative proteomics", 
          "biological questions", 
          "only nitrogen source", 
          "robust quantitative comparisons", 
          "metabolic complement", 
          "metabolic labeling", 
          "same cell culture", 
          "cell extracts", 
          "characteristic mass shift", 
          "tryptic peptides", 
          "unlabeled extracts", 
          "metabolite extracts", 
          "labeling strategy", 
          "cell populations", 
          "nitrogen source", 
          "acid composition", 
          "protein", 
          "comparative quantitative analysis", 
          "integrative strategy", 
          "metabolite spectra", 
          "different biological samples", 
          "proteomics", 
          "peptides", 
          "biological samples", 
          "experimental variability", 
          "extract", 
          "culture", 
          "mass shift", 
          "population", 
          "metabolomics", 
          "K15NO3", 
          "cells", 
          "metabolites", 
          "quantitative analysis", 
          "labeling", 
          "establishment", 
          "nitrogen", 
          "quantitation", 
          "complement", 
          "analysis", 
          "high importance", 
          "strategies", 
          "composition", 
          "variability", 
          "experiments", 
          "quantitative comparison", 
          "importance", 
          "levels", 
          "addition", 
          "shift", 
          "list", 
          "samples", 
          "tool", 
          "questions", 
          "source", 
          "comparison", 
          "processing", 
          "mixture", 
          "use", 
          "order", 
          "advantages", 
          "ease", 
          "ratio", 
          "spectra", 
          "accuracy", 
          "analytical processing"
        ], 
        "name": "Metabolic labeling of plant cell cultures with K15NO3 as a tool for quantitative analysis of proteins and metabolites", 
        "pagination": "14", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023434983"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1746-4811-2-14"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "16948866"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1746-4811-2-14", 
          "https://app.dimensions.ai/details/publication/pub.1023434983"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T09:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_424.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1746-4811-2-14"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1746-4811-2-14'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1746-4811-2-14'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1746-4811-2-14'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1746-4811-2-14'


     

    This table displays all metadata directly associated to this object as RDF triples.

    217 TRIPLES      22 PREDICATES      116 URIs      93 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1746-4811-2-14 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author Nec8e3f2e25c94bc987f679f195aa6e26
    4 schema:citation sg:pub.10.1007/978-1-59745-244-1_2
    5 sg:pub.10.1007/s004250050336
    6 sg:pub.10.1007/s004250100585
    7 sg:pub.10.1007/s11120-004-2081-8
    8 sg:pub.10.1016/j.jasms.2003.12.019
    9 sg:pub.10.1038/13690
    10 sg:pub.10.1038/81137
    11 sg:pub.10.1038/nature01511
    12 sg:pub.10.1038/nature03610
    13 sg:pub.10.1038/nbt0303-255
    14 sg:pub.10.1038/nbt1005
    15 sg:pub.10.1038/nbt790
    16 sg:pub.10.1038/nbt848
    17 sg:pub.10.1038/nchembio736
    18 sg:pub.10.1385/1-59745-244-0:19
    19 schema:datePublished 2006-09-04
    20 schema:datePublishedReg 2006-09-04
    21 schema:description Strategies for robust quantitative comparison between different biological samples are of high importance in experiments that address biological questions beyond the establishment of protein lists. Here, we propose the use of 15N-KNO3 as the only nitrogen source in Arabidopsis cell cultures in order to achieve a metabolically fully labeled cell population. Proteins from such metabolically labeled culture are distinguishable from unlabeled protein populations by a characteristic mass shift that depends on the amino acid composition of the tryptic peptide analyzed. In addition, the metabolically labeled cell extracts are also suitable for comparative quantitative analysis of nitrogen-containing cellular metabolic complement. Protein extracts from unlabeled and from standardized 15N-labeled cells were combined into one sample for joined analytical processing. This has the advantage of (i) reduced experimental variability and (ii) immediate relative quantitation at the level of single extracted peptide and metabolite spectra. Together ease and accuracy of relative quantitation for profiling experiments is substantially improved. The metabolic labeling strategy has been validated by mixtures of protein extracts and metabolite extracts from the same cell cultures in known ratios of labeled to unlabeled extracts (1:1, 1:4, and 4:1). We conclude that saturating metabolic 15N-labeling provides a robust and affordable integrative strategy to answer questions in quantitative proteomics and nitrogen focused metabolomics.
    22 schema:genre article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree true
    25 schema:isPartOf Na0a139a11ccf43e19c18c1aeb131b036
    26 Nc915cbe2adb645a68ca190d3173a6961
    27 sg:journal.1035309
    28 schema:keywords Arabidopsis cell cultures
    29 K15NO3
    30 accuracy
    31 acid composition
    32 addition
    33 advantages
    34 amino acid composition
    35 analysis
    36 analytical processing
    37 biological questions
    38 biological samples
    39 cell cultures
    40 cell extracts
    41 cell populations
    42 cells
    43 characteristic mass shift
    44 comparative quantitative analysis
    45 comparison
    46 complement
    47 composition
    48 culture
    49 different biological samples
    50 ease
    51 establishment
    52 experimental variability
    53 experiments
    54 extract
    55 high importance
    56 importance
    57 integrative strategy
    58 labeling
    59 labeling strategy
    60 levels
    61 list
    62 mass shift
    63 metabolic complement
    64 metabolic labeling
    65 metabolic labeling strategy
    66 metabolite extracts
    67 metabolite spectra
    68 metabolites
    69 metabolomics
    70 mixture
    71 nitrogen
    72 nitrogen source
    73 only nitrogen source
    74 order
    75 peptides
    76 plant cell cultures
    77 population
    78 processing
    79 protein
    80 protein extracts
    81 protein lists
    82 protein population
    83 proteomics
    84 quantitation
    85 quantitative analysis
    86 quantitative comparison
    87 quantitative proteomics
    88 questions
    89 ratio
    90 relative quantitation
    91 robust quantitative comparisons
    92 same cell culture
    93 samples
    94 shift
    95 source
    96 spectra
    97 strategies
    98 tool
    99 tryptic peptides
    100 unlabeled extracts
    101 use
    102 variability
    103 schema:name Metabolic labeling of plant cell cultures with K15NO3 as a tool for quantitative analysis of proteins and metabolites
    104 schema:pagination 14
    105 schema:productId N559d097121ce44b0883e240e8e75ad7f
    106 N96052b7cf097470c9b29cb26908434cd
    107 Nd0e7fe02865d49cab7a4b95e3fa0a41e
    108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023434983
    109 https://doi.org/10.1186/1746-4811-2-14
    110 schema:sdDatePublished 2022-05-10T09:57
    111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    112 schema:sdPublisher N0fd32bb61e1144ee811a718bae6885f4
    113 schema:url https://doi.org/10.1186/1746-4811-2-14
    114 sgo:license sg:explorer/license/
    115 sgo:sdDataset articles
    116 rdf:type schema:ScholarlyArticle
    117 N02a8938608a84aa0a8344351d5a99e53 rdf:first sg:person.01353252733.38
    118 rdf:rest Nad43d7a47f8649bbbed7f252e460ecf2
    119 N0fd32bb61e1144ee811a718bae6885f4 schema:name Springer Nature - SN SciGraph project
    120 rdf:type schema:Organization
    121 N559d097121ce44b0883e240e8e75ad7f schema:name dimensions_id
    122 schema:value pub.1023434983
    123 rdf:type schema:PropertyValue
    124 N628628250d0245d78028381d59777c9d rdf:first sg:person.01167023606.80
    125 rdf:rest rdf:nil
    126 N96052b7cf097470c9b29cb26908434cd schema:name doi
    127 schema:value 10.1186/1746-4811-2-14
    128 rdf:type schema:PropertyValue
    129 Na0a139a11ccf43e19c18c1aeb131b036 schema:volumeNumber 2
    130 rdf:type schema:PublicationVolume
    131 Nad43d7a47f8649bbbed7f252e460ecf2 rdf:first sg:person.0633132075.84
    132 rdf:rest N628628250d0245d78028381d59777c9d
    133 Nc915cbe2adb645a68ca190d3173a6961 schema:issueNumber 1
    134 rdf:type schema:PublicationIssue
    135 Nd0e7fe02865d49cab7a4b95e3fa0a41e schema:name pubmed_id
    136 schema:value 16948866
    137 rdf:type schema:PropertyValue
    138 Nec8e3f2e25c94bc987f679f195aa6e26 rdf:first sg:person.01263506773.44
    139 rdf:rest N02a8938608a84aa0a8344351d5a99e53
    140 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Biological Sciences
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Biochemistry and Cell Biology
    145 rdf:type schema:DefinedTerm
    146 sg:journal.1035309 schema:issn 1746-4811
    147 schema:name Plant Methods
    148 schema:publisher Springer Nature
    149 rdf:type schema:Periodical
    150 sg:person.01167023606.80 schema:affiliation grid-institutes:None
    151 schema:familyName Schulze
    152 schema:givenName Waltraud X
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167023606.80
    154 rdf:type schema:Person
    155 sg:person.01263506773.44 schema:affiliation grid-institutes:None
    156 schema:familyName Engelsberger
    157 schema:givenName Wolfgang R
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263506773.44
    159 rdf:type schema:Person
    160 sg:person.01353252733.38 schema:affiliation grid-institutes:None
    161 schema:familyName Erban
    162 schema:givenName Alexander
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353252733.38
    164 rdf:type schema:Person
    165 sg:person.0633132075.84 schema:affiliation grid-institutes:None
    166 schema:familyName Kopka
    167 schema:givenName Joachim
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633132075.84
    169 rdf:type schema:Person
    170 sg:pub.10.1007/978-1-59745-244-1_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044052761
    171 https://doi.org/10.1007/978-1-59745-244-1_2
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s004250050336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004850695
    174 https://doi.org/10.1007/s004250050336
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s004250100585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049991601
    177 https://doi.org/10.1007/s004250100585
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s11120-004-2081-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039781255
    180 https://doi.org/10.1007/s11120-004-2081-8
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1016/j.jasms.2003.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031194579
    183 https://doi.org/10.1016/j.jasms.2003.12.019
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/13690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029022565
    186 https://doi.org/10.1038/13690
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/81137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045090002
    189 https://doi.org/10.1038/81137
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/nature01511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012180132
    192 https://doi.org/10.1038/nature01511
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nature03610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021251049
    195 https://doi.org/10.1038/nature03610
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/nbt0303-255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045890250
    198 https://doi.org/10.1038/nbt0303-255
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/nbt1005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048011450
    201 https://doi.org/10.1038/nbt1005
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nbt790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002942507
    204 https://doi.org/10.1038/nbt790
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nbt848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038335617
    207 https://doi.org/10.1038/nbt848
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nchembio736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004679205
    210 https://doi.org/10.1038/nchembio736
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1385/1-59745-244-0:19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088542930
    213 https://doi.org/10.1385/1-59745-244-0:19
    214 rdf:type schema:CreativeWork
    215 grid-institutes:None schema:alternateName Max-Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Golm, Germany
    216 schema:name Max-Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Golm, Germany
    217 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...