Ontology type: schema:ScholarlyArticle Open Access: True
2008-12-04
AUTHORSDaniel McDonald, Laura Waterbury, Rob Knight, M D Betterton
ABSTRACTBackgroundMany studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos.ResultsHere we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate.ConclusionThe activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks.ReviewersReviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon) Xia (nominated by Mark Gerstein). For the full reviews, please go to the Reviewers' comments section. More... »
PAGES49
http://scigraph.springernature.com/pub.10.1186/1745-6150-3-49
DOIhttp://dx.doi.org/10.1186/1745-6150-3-49
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1022434547
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/19055800
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Algorithms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Animals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Arabidopsis",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Circadian Rhythm",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Drosophila",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Gene Regulatory Networks",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mathematical Concepts",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Metabolic Networks and Pathways",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Biological",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Models, Genetic",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Nerve Growth Factor",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Receptors, Notch",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Signal Transduction",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Systems Biology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Wnt Proteins",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "beta Catenin",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Computer Science, University of Colorado, 430 UCB, 80309, Boulder, CO, USA",
"id": "http://www.grid.ac/institutes/grid.266190.a",
"name": [
"Department of Computer Science, University of Colorado, 430 UCB, 80309, Boulder, CO, USA"
],
"type": "Organization"
},
"familyName": "McDonald",
"givenName": "Daniel",
"id": "sg:person.01324411177.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324411177.44"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Applied Mathematics, University of Colorado, 526 UCB, 80309, Boulder, CO, USA",
"id": "http://www.grid.ac/institutes/grid.266190.a",
"name": [
"Department of Applied Mathematics, University of Colorado, 526 UCB, 80309, Boulder, CO, USA"
],
"type": "Organization"
},
"familyName": "Waterbury",
"givenName": "Laura",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, 80309, Boulder, CO, USA",
"id": "http://www.grid.ac/institutes/grid.266190.a",
"name": [
"Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, 80309, Boulder, CO, USA"
],
"type": "Organization"
},
"familyName": "Knight",
"givenName": "Rob",
"id": "sg:person.016311745377.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, University of Colorado, 390 UCB, 80309, Boulder, CO, USA",
"id": "http://www.grid.ac/institutes/grid.266190.a",
"name": [
"Department of Physics, University of Colorado, 390 UCB, 80309, Boulder, CO, USA"
],
"type": "Organization"
},
"familyName": "Betterton",
"givenName": "M D",
"id": "sg:person.01215376747.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215376747.33"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nrg1471",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029668835",
"https://doi.org/10.1038/nrg1471"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ng881",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010954918",
"https://doi.org/10.1038/ng881"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature04488",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034061759",
"https://doi.org/10.1038/nature04488"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature04228",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045691469",
"https://doi.org/10.1038/nature04228"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature01765",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036375807",
"https://doi.org/10.1038/nature01765"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10709-006-0035-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034228934",
"https://doi.org/10.1007/s10709-006-0035-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrg1633",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034578708",
"https://doi.org/10.1038/nrg1633"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nrg1272",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018231980",
"https://doi.org/10.1038/nrg1272"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2164-7-237",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003446625",
"https://doi.org/10.1186/1471-2164-7-237"
],
"type": "CreativeWork"
}
],
"datePublished": "2008-12-04",
"datePublishedReg": "2008-12-04",
"description": "BackgroundMany studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior \u2013 for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos.ResultsHere we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate.ConclusionThe activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks.ReviewersReviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon) Xia (nominated by Mark Gerstein). For the full reviews, please go to the Reviewers' comments section.",
"genre": "article",
"id": "sg:pub.10.1186/1745-6150-3-49",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1036001",
"issn": [
"1745-6150"
],
"name": "Biology Direct",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "3"
}
],
"keywords": [
"network dynamical behavior",
"dynamical behavior",
"network topology",
"network dynamics",
"biological network dynamics",
"simple dynamical model",
"biological network topology",
"dynamical model",
"random networks",
"Sergei Maslov",
"steady state",
"robust dynamics",
"biochemical networks",
"biological networks",
"network robustness",
"network wiring",
"topology",
"cellular networks",
"Reviewers' comments section",
"dynamics",
"neutral evolution",
"Eugene Koonin",
"selective advantage",
"chaos",
"network",
"Maslov",
"Koonin",
"model",
"protein",
"oscillations",
"robustness",
"wide range",
"state",
"connection",
"parameters",
"genes",
"behavior",
"principles",
"ResultsHere",
"evolution",
"advantages",
"specific types",
"work",
"selection",
"wiring",
"range",
"fraction",
"XIa",
"such work",
"sections",
"types",
"balance",
"influence",
"review",
"knowledge",
"study",
"example",
"full review",
"comment sections",
"BackgroundMany studies"
],
"name": "Activating and inhibiting connections in biological network dynamics",
"pagination": "49",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1022434547"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1186/1745-6150-3-49"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"19055800"
]
}
],
"sameAs": [
"https://doi.org/10.1186/1745-6150-3-49",
"https://app.dimensions.ai/details/publication/pub.1022434547"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_464.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1186/1745-6150-3-49"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-3-49'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-3-49'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-3-49'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-3-49'
This table displays all metadata directly associated to this object as RDF triples.
247 TRIPLES
22 PREDICATES
111 URIs
94 LITERALS
23 BLANK NODES