Activating and inhibiting connections in biological network dynamics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12-04

AUTHORS

Daniel McDonald, Laura Waterbury, Rob Knight, M D Betterton

ABSTRACT

BACKGROUND: Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior--for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. RESULTS: Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. CONCLUSION: The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. REVIEWERS: Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon) Xia (nominated by Mark Gerstein). For the full reviews, please go to the Reviewers' comments section. More... »

PAGES

49-49

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1745-6150-3-49

DOI

http://dx.doi.org/10.1186/1745-6150-3-49

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022434547

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19055800


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Circadian Rhythm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drosophila", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematical Concepts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Networks and Pathways", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Growth Factor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Notch", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Systems Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Wnt Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "beta Catenin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Colorado, 430 UCB, Boulder, CO 80309, USA", 
          "id": "http://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Computer Science, University of Colorado, 430 UCB, Boulder, CO 80309, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McDonald", 
        "givenName": "Daniel", 
        "id": "sg:person.01324411177.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324411177.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics, University of Colorado, 526 UCB, Boulder, CO 80309, USA", 
          "id": "http://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Applied Mathematics, University of Colorado, 526 UCB, Boulder, CO 80309, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waterbury", 
        "givenName": "Laura", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, CO 80309, USA", 
          "id": "http://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, CO 80309, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knight", 
        "givenName": "Rob", 
        "id": "sg:person.016311745377.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Colorado, 390 UCB, Boulder, CO 80309, USA", 
          "id": "http://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Physics, University of Colorado, 390 UCB, Boulder, CO 80309, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Betterton", 
        "givenName": "M D", 
        "id": "sg:person.01215376747.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215376747.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrg1471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029668835", 
          "https://doi.org/10.1038/nrg1471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10709-006-0035-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034228934", 
          "https://doi.org/10.1007/s10709-006-0035-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034061759", 
          "https://doi.org/10.1038/nature04488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010954918", 
          "https://doi.org/10.1038/ng881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036375807", 
          "https://doi.org/10.1038/nature01765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034578708", 
          "https://doi.org/10.1038/nrg1633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045691469", 
          "https://doi.org/10.1038/nature04228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018231980", 
          "https://doi.org/10.1038/nrg1272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-7-237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003446625", 
          "https://doi.org/10.1186/1471-2164-7-237"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12-04", 
    "datePublishedReg": "2008-12-04", 
    "description": "BACKGROUND: Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior--for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos.\nRESULTS: Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate.\nCONCLUSION: The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks.\nREVIEWERS: Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon) Xia (nominated by Mark Gerstein). For the full reviews, please go to the Reviewers' comments section.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1745-6150-3-49", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036001", 
        "issn": [
          "1745-6150"
        ], 
        "name": "Biology Direct", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "network dynamical behavior", 
      "dynamical behavior", 
      "network topology", 
      "network dynamics", 
      "biological network dynamics", 
      "simple dynamical model", 
      "biological network topology", 
      "dynamical model", 
      "random networks", 
      "steady state", 
      "robust dynamics", 
      "biochemical networks", 
      "biological networks", 
      "network robustness", 
      "Sergei Maslov", 
      "network wiring", 
      "topology", 
      "cellular networks", 
      "dynamics", 
      "Reviewers' comments section", 
      "neutral evolution", 
      "Eugene Koonin", 
      "chaos", 
      "network", 
      "selective advantage", 
      "Maslov", 
      "model", 
      "oscillations", 
      "robustness", 
      "wide range", 
      "protein", 
      "state", 
      "connection", 
      "parameters", 
      "Koonin", 
      "behavior", 
      "principles", 
      "genes", 
      "evolution", 
      "advantages", 
      "specific types", 
      "work", 
      "comments section", 
      "wiring", 
      "range", 
      "selection", 
      "XIa", 
      "such work", 
      "sections", 
      "types", 
      "fraction", 
      "balance", 
      "influence", 
      "full review", 
      "review", 
      "knowledge", 
      "example", 
      "study", 
      "connections influences", 
      "Yu (Brandon) Xia"
    ], 
    "name": "Activating and inhibiting connections in biological network dynamics", 
    "pagination": "49-49", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022434547"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1745-6150-3-49"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19055800"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1745-6150-3-49", 
      "https://app.dimensions.ai/details/publication/pub.1022434547"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_463.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1745-6150-3-49"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-3-49'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-3-49'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-3-49'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-3-49'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      22 PREDICATES      111 URIs      94 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1745-6150-3-49 schema:about N00ad2eff62bc4efc93e310d44cdd45b3
2 N023a55cec64b4ef4b12e27c0529c1602
3 N112fbe92be1d48108d5365f5553a94e0
4 N447e3122ca364977a5a291e00648bac1
5 N4a54b86fb5f94be9ad46e3c40ccd028b
6 N6377c171949c4cda9e6e656c4a8a26ac
7 N669ab6cfb11d48b0b9d57714eebcc41f
8 N7f31948b32dd4b73a12941c29e38d5f5
9 N849fc629a04e40a798f0c0d8adc9409c
10 N9cabddaff004417396efa16a518c6ece
11 Nad147b31c87e436b98b53c453d929144
12 Nd1f73a301457401c883b7b3188afbae4
13 Ne461af49214b448b8533f8894b91d772
14 Ne955d7510fcb4eac86af137e42163062
15 Nf18b72f6483c4352a45f05b6f7dd6f55
16 Nf4073ecf3d7d45aab5b69c0ce20ce1fe
17 anzsrc-for:06
18 anzsrc-for:0601
19 schema:author N95154cb4a7bc4a1dac52ae45b906e0d8
20 schema:citation sg:pub.10.1007/s10709-006-0035-0
21 sg:pub.10.1038/nature01765
22 sg:pub.10.1038/nature04228
23 sg:pub.10.1038/nature04488
24 sg:pub.10.1038/ng881
25 sg:pub.10.1038/nrg1272
26 sg:pub.10.1038/nrg1471
27 sg:pub.10.1038/nrg1633
28 sg:pub.10.1186/1471-2164-7-237
29 schema:datePublished 2008-12-04
30 schema:datePublishedReg 2008-12-04
31 schema:description BACKGROUND: Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior--for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. RESULTS: Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. CONCLUSION: The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. REVIEWERS: Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon) Xia (nominated by Mark Gerstein). For the full reviews, please go to the Reviewers' comments section.
32 schema:genre article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N5bb5c7078d2e49c98d5c85b496097096
36 Nb4df1df03b2049759af0428948be5cbf
37 sg:journal.1036001
38 schema:keywords Eugene Koonin
39 Koonin
40 Maslov
41 Reviewers' comments section
42 Sergei Maslov
43 XIa
44 Yu (Brandon) Xia
45 advantages
46 balance
47 behavior
48 biochemical networks
49 biological network dynamics
50 biological network topology
51 biological networks
52 cellular networks
53 chaos
54 comments section
55 connection
56 connections influences
57 dynamical behavior
58 dynamical model
59 dynamics
60 evolution
61 example
62 fraction
63 full review
64 genes
65 influence
66 knowledge
67 model
68 network
69 network dynamical behavior
70 network dynamics
71 network robustness
72 network topology
73 network wiring
74 neutral evolution
75 oscillations
76 parameters
77 principles
78 protein
79 random networks
80 range
81 review
82 robust dynamics
83 robustness
84 sections
85 selection
86 selective advantage
87 simple dynamical model
88 specific types
89 state
90 steady state
91 study
92 such work
93 topology
94 types
95 wide range
96 wiring
97 work
98 schema:name Activating and inhibiting connections in biological network dynamics
99 schema:pagination 49-49
100 schema:productId N1cd24ddfac884aed8e30c501032dda57
101 N528fb055051b40c3a9c00f8682110b1f
102 N6d256167edcd4667a17993af9cd49049
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022434547
104 https://doi.org/10.1186/1745-6150-3-49
105 schema:sdDatePublished 2022-01-01T18:18
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher N5cd9a90d4b784170b8b20383fa6f4b69
108 schema:url https://doi.org/10.1186/1745-6150-3-49
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N00ad2eff62bc4efc93e310d44cdd45b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Gene Regulatory Networks
114 rdf:type schema:DefinedTerm
115 N023a55cec64b4ef4b12e27c0529c1602 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Circadian Rhythm
117 rdf:type schema:DefinedTerm
118 N07ccb0bd0bc14040a8fa7777c4201d84 rdf:first sg:person.016311745377.96
119 rdf:rest N942c4de5461f4f589ad770c7f2c92b65
120 N09f2b058b3c84c81802ed7a59f9d6385 rdf:first Nad2fe00024094f3cb2eee4c28774414b
121 rdf:rest N07ccb0bd0bc14040a8fa7777c4201d84
122 N112fbe92be1d48108d5365f5553a94e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Metabolic Networks and Pathways
124 rdf:type schema:DefinedTerm
125 N1cd24ddfac884aed8e30c501032dda57 schema:name pubmed_id
126 schema:value 19055800
127 rdf:type schema:PropertyValue
128 N447e3122ca364977a5a291e00648bac1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Signal Transduction
130 rdf:type schema:DefinedTerm
131 N4a54b86fb5f94be9ad46e3c40ccd028b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Nerve Growth Factor
133 rdf:type schema:DefinedTerm
134 N528fb055051b40c3a9c00f8682110b1f schema:name dimensions_id
135 schema:value pub.1022434547
136 rdf:type schema:PropertyValue
137 N5bb5c7078d2e49c98d5c85b496097096 schema:issueNumber 1
138 rdf:type schema:PublicationIssue
139 N5cd9a90d4b784170b8b20383fa6f4b69 schema:name Springer Nature - SN SciGraph project
140 rdf:type schema:Organization
141 N6377c171949c4cda9e6e656c4a8a26ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Mathematical Concepts
143 rdf:type schema:DefinedTerm
144 N669ab6cfb11d48b0b9d57714eebcc41f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Models, Biological
146 rdf:type schema:DefinedTerm
147 N6d256167edcd4667a17993af9cd49049 schema:name doi
148 schema:value 10.1186/1745-6150-3-49
149 rdf:type schema:PropertyValue
150 N7f31948b32dd4b73a12941c29e38d5f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Arabidopsis
152 rdf:type schema:DefinedTerm
153 N849fc629a04e40a798f0c0d8adc9409c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Systems Biology
155 rdf:type schema:DefinedTerm
156 N942c4de5461f4f589ad770c7f2c92b65 rdf:first sg:person.01215376747.33
157 rdf:rest rdf:nil
158 N95154cb4a7bc4a1dac52ae45b906e0d8 rdf:first sg:person.01324411177.44
159 rdf:rest N09f2b058b3c84c81802ed7a59f9d6385
160 N9cabddaff004417396efa16a518c6ece schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Algorithms
162 rdf:type schema:DefinedTerm
163 Nad147b31c87e436b98b53c453d929144 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Drosophila
165 rdf:type schema:DefinedTerm
166 Nad2fe00024094f3cb2eee4c28774414b schema:affiliation grid-institutes:grid.266190.a
167 schema:familyName Waterbury
168 schema:givenName Laura
169 rdf:type schema:Person
170 Nb4df1df03b2049759af0428948be5cbf schema:volumeNumber 3
171 rdf:type schema:PublicationVolume
172 Nd1f73a301457401c883b7b3188afbae4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Wnt Proteins
174 rdf:type schema:DefinedTerm
175 Ne461af49214b448b8533f8894b91d772 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Models, Genetic
177 rdf:type schema:DefinedTerm
178 Ne955d7510fcb4eac86af137e42163062 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Animals
180 rdf:type schema:DefinedTerm
181 Nf18b72f6483c4352a45f05b6f7dd6f55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Receptors, Notch
183 rdf:type schema:DefinedTerm
184 Nf4073ecf3d7d45aab5b69c0ce20ce1fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name beta Catenin
186 rdf:type schema:DefinedTerm
187 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
188 schema:name Biological Sciences
189 rdf:type schema:DefinedTerm
190 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
191 schema:name Biochemistry and Cell Biology
192 rdf:type schema:DefinedTerm
193 sg:journal.1036001 schema:issn 1745-6150
194 schema:name Biology Direct
195 schema:publisher Springer Nature
196 rdf:type schema:Periodical
197 sg:person.01215376747.33 schema:affiliation grid-institutes:grid.266190.a
198 schema:familyName Betterton
199 schema:givenName M D
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215376747.33
201 rdf:type schema:Person
202 sg:person.01324411177.44 schema:affiliation grid-institutes:grid.266190.a
203 schema:familyName McDonald
204 schema:givenName Daniel
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324411177.44
206 rdf:type schema:Person
207 sg:person.016311745377.96 schema:affiliation grid-institutes:grid.266190.a
208 schema:familyName Knight
209 schema:givenName Rob
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96
211 rdf:type schema:Person
212 sg:pub.10.1007/s10709-006-0035-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034228934
213 https://doi.org/10.1007/s10709-006-0035-0
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nature01765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036375807
216 https://doi.org/10.1038/nature01765
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/nature04228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045691469
219 https://doi.org/10.1038/nature04228
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/nature04488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034061759
222 https://doi.org/10.1038/nature04488
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/ng881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010954918
225 https://doi.org/10.1038/ng881
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/nrg1272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018231980
228 https://doi.org/10.1038/nrg1272
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/nrg1471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029668835
231 https://doi.org/10.1038/nrg1471
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nrg1633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034578708
234 https://doi.org/10.1038/nrg1633
235 rdf:type schema:CreativeWork
236 sg:pub.10.1186/1471-2164-7-237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003446625
237 https://doi.org/10.1186/1471-2164-7-237
238 rdf:type schema:CreativeWork
239 grid-institutes:grid.266190.a schema:alternateName Department of Applied Mathematics, University of Colorado, 526 UCB, Boulder, CO 80309, USA
240 Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, CO 80309, USA
241 Department of Computer Science, University of Colorado, 430 UCB, Boulder, CO 80309, USA
242 Department of Physics, University of Colorado, 390 UCB, Boulder, CO 80309, USA
243 schema:name Department of Applied Mathematics, University of Colorado, 526 UCB, Boulder, CO 80309, USA
244 Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, CO 80309, USA
245 Department of Computer Science, University of Colorado, 430 UCB, Boulder, CO 80309, USA
246 Department of Physics, University of Colorado, 390 UCB, Boulder, CO 80309, USA
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...