Activating and inhibiting connections in biological network dynamics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12-04

AUTHORS

Daniel McDonald, Laura Waterbury, Rob Knight, M D Betterton

ABSTRACT

BackgroundMany studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos.ResultsHere we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate.ConclusionThe activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks.ReviewersReviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon) Xia (nominated by Mark Gerstein). For the full reviews, please go to the Reviewers' comments section. More... »

PAGES

49

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1745-6150-3-49

DOI

http://dx.doi.org/10.1186/1745-6150-3-49

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022434547

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19055800


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Circadian Rhythm", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drosophila", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Regulatory Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematical Concepts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Networks and Pathways", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Growth Factor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, Notch", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Systems Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Wnt Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "beta Catenin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Colorado, 430 UCB, 80309, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Computer Science, University of Colorado, 430 UCB, 80309, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McDonald", 
        "givenName": "Daniel", 
        "id": "sg:person.01324411177.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324411177.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics, University of Colorado, 526 UCB, 80309, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Applied Mathematics, University of Colorado, 526 UCB, 80309, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waterbury", 
        "givenName": "Laura", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, 80309, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, 80309, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knight", 
        "givenName": "Rob", 
        "id": "sg:person.016311745377.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Colorado, 390 UCB, 80309, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Physics, University of Colorado, 390 UCB, 80309, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Betterton", 
        "givenName": "M D", 
        "id": "sg:person.01215376747.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215376747.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrg1471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029668835", 
          "https://doi.org/10.1038/nrg1471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010954918", 
          "https://doi.org/10.1038/ng881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034061759", 
          "https://doi.org/10.1038/nature04488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045691469", 
          "https://doi.org/10.1038/nature04228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036375807", 
          "https://doi.org/10.1038/nature01765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10709-006-0035-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034228934", 
          "https://doi.org/10.1007/s10709-006-0035-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034578708", 
          "https://doi.org/10.1038/nrg1633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018231980", 
          "https://doi.org/10.1038/nrg1272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-7-237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003446625", 
          "https://doi.org/10.1186/1471-2164-7-237"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12-04", 
    "datePublishedReg": "2008-12-04", 
    "description": "BackgroundMany studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior \u2013 for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos.ResultsHere we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate.ConclusionThe activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks.ReviewersReviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon) Xia (nominated by Mark Gerstein). For the full reviews, please go to the Reviewers' comments section.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1745-6150-3-49", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036001", 
        "issn": [
          "1745-6150"
        ], 
        "name": "Biology Direct", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "network dynamical behavior", 
      "dynamical behavior", 
      "network topology", 
      "network dynamics", 
      "biological network dynamics", 
      "simple dynamical model", 
      "biological network topology", 
      "dynamical model", 
      "random networks", 
      "Sergei Maslov", 
      "steady state", 
      "robust dynamics", 
      "biochemical networks", 
      "biological networks", 
      "network robustness", 
      "network wiring", 
      "topology", 
      "cellular networks", 
      "Reviewers' comments section", 
      "dynamics", 
      "neutral evolution", 
      "Eugene Koonin", 
      "selective advantage", 
      "chaos", 
      "network", 
      "Maslov", 
      "Koonin", 
      "model", 
      "protein", 
      "oscillations", 
      "robustness", 
      "wide range", 
      "state", 
      "connection", 
      "parameters", 
      "genes", 
      "behavior", 
      "principles", 
      "ResultsHere", 
      "evolution", 
      "advantages", 
      "specific types", 
      "work", 
      "selection", 
      "wiring", 
      "range", 
      "fraction", 
      "XIa", 
      "such work", 
      "sections", 
      "types", 
      "balance", 
      "influence", 
      "review", 
      "knowledge", 
      "study", 
      "example", 
      "full review", 
      "comment sections", 
      "BackgroundMany studies"
    ], 
    "name": "Activating and inhibiting connections in biological network dynamics", 
    "pagination": "49", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022434547"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1745-6150-3-49"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19055800"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1745-6150-3-49", 
      "https://app.dimensions.ai/details/publication/pub.1022434547"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_464.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1745-6150-3-49"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-3-49'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-3-49'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-3-49'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-3-49'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      22 PREDICATES      111 URIs      94 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1745-6150-3-49 schema:about N1c367a20a0dd4716822644a39ad92f19
2 N1f5c7770ff6542f981f444614a5fefba
3 N2387db3e5936413eb60c78543d46a717
4 N3bd3ab85bcd14497ad75f3a90283a8bb
5 N3c5d1f61afc94352aff2f1e894a4df6d
6 N46b3ffa9a6e74f7fb4061b1d944beed1
7 N5f005b607db2422896b4f48392fec941
8 N5f5ef12cf1c84c25a1cb10c7a35bd819
9 N7caff39b2d68498ba068bd33c0da0cfc
10 N90d4621a40e54597ae127e936059f2fc
11 N95619c7264ae4455bc12c60ba6aa1d02
12 N9791705b79be4ad8b5c3a0ffad24b4dc
13 Na787ed1ea20b49029529686efce32881
14 Nd937dc970ef24a09a5bf7934e5ad8497
15 Nf74067fbc3be480b9f2a4319068c9127
16 Nff9de0bdb97447d088f6a812ca3205c7
17 anzsrc-for:06
18 anzsrc-for:0601
19 schema:author N87d1302bea9c4313805bb86c117d816f
20 schema:citation sg:pub.10.1007/s10709-006-0035-0
21 sg:pub.10.1038/nature01765
22 sg:pub.10.1038/nature04228
23 sg:pub.10.1038/nature04488
24 sg:pub.10.1038/ng881
25 sg:pub.10.1038/nrg1272
26 sg:pub.10.1038/nrg1471
27 sg:pub.10.1038/nrg1633
28 sg:pub.10.1186/1471-2164-7-237
29 schema:datePublished 2008-12-04
30 schema:datePublishedReg 2008-12-04
31 schema:description BackgroundMany studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos.ResultsHere we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate.ConclusionThe activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks.ReviewersReviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon) Xia (nominated by Mark Gerstein). For the full reviews, please go to the Reviewers' comments section.
32 schema:genre article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N019c2461e131447caaefe920bf9333ac
36 N204146432bd344e6bfdcfdb2fdcfd0e4
37 sg:journal.1036001
38 schema:keywords BackgroundMany studies
39 Eugene Koonin
40 Koonin
41 Maslov
42 ResultsHere
43 Reviewers' comments section
44 Sergei Maslov
45 XIa
46 advantages
47 balance
48 behavior
49 biochemical networks
50 biological network dynamics
51 biological network topology
52 biological networks
53 cellular networks
54 chaos
55 comment sections
56 connection
57 dynamical behavior
58 dynamical model
59 dynamics
60 evolution
61 example
62 fraction
63 full review
64 genes
65 influence
66 knowledge
67 model
68 network
69 network dynamical behavior
70 network dynamics
71 network robustness
72 network topology
73 network wiring
74 neutral evolution
75 oscillations
76 parameters
77 principles
78 protein
79 random networks
80 range
81 review
82 robust dynamics
83 robustness
84 sections
85 selection
86 selective advantage
87 simple dynamical model
88 specific types
89 state
90 steady state
91 study
92 such work
93 topology
94 types
95 wide range
96 wiring
97 work
98 schema:name Activating and inhibiting connections in biological network dynamics
99 schema:pagination 49
100 schema:productId N769592775c684487bbd1b572a595990b
101 N84010a413d544284b5e95e0af59632f1
102 Ne665522e3f944569a15445e81257f136
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022434547
104 https://doi.org/10.1186/1745-6150-3-49
105 schema:sdDatePublished 2022-05-20T07:24
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher N398969470343481bb8c87f5731a96e41
108 schema:url https://doi.org/10.1186/1745-6150-3-49
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N019c2461e131447caaefe920bf9333ac schema:issueNumber 1
113 rdf:type schema:PublicationIssue
114 N1c367a20a0dd4716822644a39ad92f19 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Receptors, Notch
116 rdf:type schema:DefinedTerm
117 N1f5c7770ff6542f981f444614a5fefba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name beta Catenin
119 rdf:type schema:DefinedTerm
120 N204146432bd344e6bfdcfdb2fdcfd0e4 schema:volumeNumber 3
121 rdf:type schema:PublicationVolume
122 N2387db3e5936413eb60c78543d46a717 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Wnt Proteins
124 rdf:type schema:DefinedTerm
125 N398969470343481bb8c87f5731a96e41 schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 N3bd3ab85bcd14497ad75f3a90283a8bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Circadian Rhythm
129 rdf:type schema:DefinedTerm
130 N3c5d1f61afc94352aff2f1e894a4df6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Mathematical Concepts
132 rdf:type schema:DefinedTerm
133 N410c3ba4b222492591f17c2ccb056f13 rdf:first sg:person.016311745377.96
134 rdf:rest N85577760e1a945a591a72730ec802932
135 N46b3ffa9a6e74f7fb4061b1d944beed1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Models, Genetic
137 rdf:type schema:DefinedTerm
138 N5f005b607db2422896b4f48392fec941 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Signal Transduction
140 rdf:type schema:DefinedTerm
141 N5f5ef12cf1c84c25a1cb10c7a35bd819 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Gene Regulatory Networks
143 rdf:type schema:DefinedTerm
144 N769592775c684487bbd1b572a595990b schema:name doi
145 schema:value 10.1186/1745-6150-3-49
146 rdf:type schema:PropertyValue
147 N7caff39b2d68498ba068bd33c0da0cfc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Nerve Growth Factor
149 rdf:type schema:DefinedTerm
150 N84010a413d544284b5e95e0af59632f1 schema:name pubmed_id
151 schema:value 19055800
152 rdf:type schema:PropertyValue
153 N85577760e1a945a591a72730ec802932 rdf:first sg:person.01215376747.33
154 rdf:rest rdf:nil
155 N87d1302bea9c4313805bb86c117d816f rdf:first sg:person.01324411177.44
156 rdf:rest Nb41e5655c1eb40e4ad6e930f55dd43f5
157 N90d4621a40e54597ae127e936059f2fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Metabolic Networks and Pathways
159 rdf:type schema:DefinedTerm
160 N95619c7264ae4455bc12c60ba6aa1d02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Animals
162 rdf:type schema:DefinedTerm
163 N9791705b79be4ad8b5c3a0ffad24b4dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Models, Biological
165 rdf:type schema:DefinedTerm
166 Na0093d3d6de648bdb69183afed0e8c89 schema:affiliation grid-institutes:grid.266190.a
167 schema:familyName Waterbury
168 schema:givenName Laura
169 rdf:type schema:Person
170 Na787ed1ea20b49029529686efce32881 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Algorithms
172 rdf:type schema:DefinedTerm
173 Nb41e5655c1eb40e4ad6e930f55dd43f5 rdf:first Na0093d3d6de648bdb69183afed0e8c89
174 rdf:rest N410c3ba4b222492591f17c2ccb056f13
175 Nd937dc970ef24a09a5bf7934e5ad8497 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Arabidopsis
177 rdf:type schema:DefinedTerm
178 Ne665522e3f944569a15445e81257f136 schema:name dimensions_id
179 schema:value pub.1022434547
180 rdf:type schema:PropertyValue
181 Nf74067fbc3be480b9f2a4319068c9127 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Drosophila
183 rdf:type schema:DefinedTerm
184 Nff9de0bdb97447d088f6a812ca3205c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Systems Biology
186 rdf:type schema:DefinedTerm
187 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
188 schema:name Biological Sciences
189 rdf:type schema:DefinedTerm
190 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
191 schema:name Biochemistry and Cell Biology
192 rdf:type schema:DefinedTerm
193 sg:journal.1036001 schema:issn 1745-6150
194 schema:name Biology Direct
195 schema:publisher Springer Nature
196 rdf:type schema:Periodical
197 sg:person.01215376747.33 schema:affiliation grid-institutes:grid.266190.a
198 schema:familyName Betterton
199 schema:givenName M D
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215376747.33
201 rdf:type schema:Person
202 sg:person.01324411177.44 schema:affiliation grid-institutes:grid.266190.a
203 schema:familyName McDonald
204 schema:givenName Daniel
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324411177.44
206 rdf:type schema:Person
207 sg:person.016311745377.96 schema:affiliation grid-institutes:grid.266190.a
208 schema:familyName Knight
209 schema:givenName Rob
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311745377.96
211 rdf:type schema:Person
212 sg:pub.10.1007/s10709-006-0035-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034228934
213 https://doi.org/10.1007/s10709-006-0035-0
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nature01765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036375807
216 https://doi.org/10.1038/nature01765
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/nature04228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045691469
219 https://doi.org/10.1038/nature04228
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/nature04488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034061759
222 https://doi.org/10.1038/nature04488
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/ng881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010954918
225 https://doi.org/10.1038/ng881
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/nrg1272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018231980
228 https://doi.org/10.1038/nrg1272
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/nrg1471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029668835
231 https://doi.org/10.1038/nrg1471
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nrg1633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034578708
234 https://doi.org/10.1038/nrg1633
235 rdf:type schema:CreativeWork
236 sg:pub.10.1186/1471-2164-7-237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003446625
237 https://doi.org/10.1186/1471-2164-7-237
238 rdf:type schema:CreativeWork
239 grid-institutes:grid.266190.a schema:alternateName Department of Applied Mathematics, University of Colorado, 526 UCB, 80309, Boulder, CO, USA
240 Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, 80309, Boulder, CO, USA
241 Department of Computer Science, University of Colorado, 430 UCB, 80309, Boulder, CO, USA
242 Department of Physics, University of Colorado, 390 UCB, 80309, Boulder, CO, USA
243 schema:name Department of Applied Mathematics, University of Colorado, 526 UCB, 80309, Boulder, CO, USA
244 Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, 80309, Boulder, CO, USA
245 Department of Computer Science, University of Colorado, 430 UCB, 80309, Boulder, CO, USA
246 Department of Physics, University of Colorado, 390 UCB, 80309, Boulder, CO, USA
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...