Extensive parallelism in protein evolution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-08-16

AUTHORS

Georgii A Bazykin, Fyodor A Kondrashov, Michael Brudno, Alexander Poliakov, Inna Dubchak, Alexey S Kondrashov

ABSTRACT

BACKGROUND: Independently evolving lineages mostly accumulate different changes, which leads to their gradual divergence. However, parallel accumulation of identical changes is also common, especially in traits with only a small number of possible states. RESULTS: We characterize parallelism in evolution of coding sequences in three four-species sets of genomes of mammals, Drosophila, and yeasts. Each such set contains two independent evolutionary paths, which we call paths I and II. An amino acid replacement which occurred along path I also occurs along path II with the probability 50-80% of that expected under selective neutrality. Thus, the per site rate of parallel evolution of proteins is several times higher than their average rate of evolution, but still lower than the rate of evolution of neutral sequences. This deficit may be caused by changes in the fitness landscape, leading to a replacement being possible along path I but not along path II. However, constant, weak selection assumed by the nearly neutral model of evolution appears to be a more likely explanation. Then, the average coefficient of selection associated with an amino acid replacement, in the units of the effective population size, must exceed approximately 0.4, and the fraction of effectively neutral replacements must be below approximately 30%. At a majority of evolvable amino acid sites, only a relatively small number of different amino acids is permitted. CONCLUSION: High, but below-neutral, rates of parallel amino acid replacements suggest that a majority of amino acid replacements that occur in evolution are subject to weak, but non-trivial, selection, as predicted by Ohta's nearly-neutral theory. More... »

PAGES

20-20

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1745-6150-2-20

DOI

http://dx.doi.org/10.1186/1745-6150-2-20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009649998

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17705846


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Substitution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dogs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drosophila", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Selection, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoi Karetny pereulok 19, Moscow, 127994, Russia", 
            "Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bazykin", 
        "givenName": "Georgii A", 
        "id": "sg:person.01022331441.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022331441.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Section on Ecology, Behavior and Evolution, University of California at San Diego, La Jolla, CA 92093, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Section on Ecology, Behavior and Evolution, University of California at San Diego, La Jolla, CA 92093, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kondrashov", 
        "givenName": "Fyodor A", 
        "id": "sg:person.01020411727.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020411727.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Banting & Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3J4, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Computer Science and Banting & Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3J4, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brudno", 
        "givenName": "Michael", 
        "id": "sg:person.01253563237.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253563237.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poliakov", 
        "givenName": "Alexander", 
        "id": "sg:person.0767134426.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767134426.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA", 
          "id": "http://www.grid.ac/institutes/grid.451309.a", 
          "name": [
            "Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA", 
            "Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dubchak", 
        "givenName": "Inna", 
        "id": "sg:person.01055372546.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055372546.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Life Sciences Institute and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Life Sciences Institute and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kondrashov", 
        "givenName": "Alexey S", 
        "id": "sg:person.01134640327.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134640327.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature01644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010517605", 
          "https://doi.org/10.1038/nature01644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00175885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049063048", 
          "https://doi.org/10.1007/bf00175885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30219-3_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039123727", 
          "https://doi.org/10.1007/978-3-540-30219-3_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-12-research0086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002917064", 
          "https://doi.org/10.1186/gb-2002-3-12-research0086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049226452", 
          "https://doi.org/10.1038/ng1812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048338096", 
          "https://doi.org/10.1038/nature02426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1745-6150-1-34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037807654", 
          "https://doi.org/10.1186/1745-6150-1-34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01732340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010544282", 
          "https://doi.org/10.1007/bf01732340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014262094", 
          "https://doi.org/10.1038/nrg1603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/217624a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037698058", 
          "https://doi.org/10.1038/217624a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00486096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001338981", 
          "https://doi.org/10.1007/bf00486096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/246096a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039946912", 
          "https://doi.org/10.1038/246096a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-08-16", 
    "datePublishedReg": "2007-08-16", 
    "description": "BACKGROUND: Independently evolving lineages mostly accumulate different changes, which leads to their gradual divergence. However, parallel accumulation of identical changes is also common, especially in traits with only a small number of possible states.\nRESULTS: We characterize parallelism in evolution of coding sequences in three four-species sets of genomes of mammals, Drosophila, and yeasts. Each such set contains two independent evolutionary paths, which we call paths I and II. An amino acid replacement which occurred along path I also occurs along path II with the probability 50-80% of that expected under selective neutrality. Thus, the per site rate of parallel evolution of proteins is several times higher than their average rate of evolution, but still lower than the rate of evolution of neutral sequences. This deficit may be caused by changes in the fitness landscape, leading to a replacement being possible along path I but not along path II. However, constant, weak selection assumed by the nearly neutral model of evolution appears to be a more likely explanation. Then, the average coefficient of selection associated with an amino acid replacement, in the units of the effective population size, must exceed approximately 0.4, and the fraction of effectively neutral replacements must be below approximately 30%. At a majority of evolvable amino acid sites, only a relatively small number of different amino acids is permitted.\nCONCLUSION: High, but below-neutral, rates of parallel amino acid replacements suggest that a majority of amino acid replacements that occur in evolution are subject to weak, but non-trivial, selection, as predicted by Ohta's nearly-neutral theory.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1745-6150-2-20", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2691659", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036001", 
        "issn": [
          "1745-6150"
        ], 
        "name": "Biology Direct", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "amino acid replacements", 
      "acid replacements", 
      "parallel amino acid replacements", 
      "effective population size", 
      "independent evolutionary paths", 
      "rate of evolution", 
      "amino acid sites", 
      "protein evolution", 
      "neutral theory", 
      "selective neutrality", 
      "parallel evolution", 
      "weak selection", 
      "neutral model", 
      "neutral sequences", 
      "different amino acids", 
      "gradual divergence", 
      "population size", 
      "fitness landscape", 
      "amino acids", 
      "evolutionary path", 
      "extensive parallelism", 
      "site rates", 
      "neutral replacements", 
      "parallel accumulation", 
      "sequence", 
      "Drosophila", 
      "genome", 
      "evolution", 
      "lineages", 
      "mammals", 
      "yeast", 
      "probability 50", 
      "likely explanation", 
      "traits", 
      "protein", 
      "selection", 
      "divergence", 
      "small number", 
      "identical changes", 
      "accumulation", 
      "landscape", 
      "different changes", 
      "sites", 
      "changes", 
      "acid", 
      "replacement", 
      "majority", 
      "average rate", 
      "number", 
      "Ohta", 
      "fraction", 
      "rate", 
      "neutrality", 
      "average coefficient", 
      "set", 
      "size", 
      "explanation", 
      "acid sites", 
      "units", 
      "path II", 
      "state", 
      "path I", 
      "time", 
      "deficits", 
      "model", 
      "such sets", 
      "possible states", 
      "parallelism", 
      "path", 
      "coefficient", 
      "theory", 
      "four-species sets", 
      "evolvable amino acid sites"
    ], 
    "name": "Extensive parallelism in protein evolution", 
    "pagination": "20-20", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009649998"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1745-6150-2-20"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17705846"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1745-6150-2-20", 
      "https://app.dimensions.ai/details/publication/pub.1009649998"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_436.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1745-6150-2-20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-2-20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-2-20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-2-20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-2-20'


 

This table displays all metadata directly associated to this object as RDF triples.

300 TRIPLES      22 PREDICATES      127 URIs      107 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1745-6150-2-20 schema:about N0e8548bc8b094a769d0267ad24c7a052
2 N2854c178ea8840cfa3f742de61ef3bac
3 N29087a0854e5499ab05b7a59d905b255
4 N36e1a6e72a5b4378be20baef4d942da3
5 N5b34486de13c4911b21507ec1207eba1
6 N64a86d45cc514f63a0b9cca8bbce45c3
7 N6d496b78b0964818b3e94bd5a1f51b4d
8 N7570308df97e4b5aba5fea6dcc5206a4
9 N802076bbd7ea41cf902091d4d2d49d43
10 N84b3a75dd86641eda763c88e3a7f30ef
11 N8990c0397d94413ea6dbbe2b1ee1d3e1
12 N9ae3b90dfd234646b683ea57a3a6f4fc
13 Nb49536a8741c47f8a1b772ef243670ee
14 Nb6bf51aebf444e179fcdd5ba1137e437
15 Ne84a97d70e7f49368f45bd59e67ac1da
16 Nf2b86dc62de44ec981d13d4ee7f39f33
17 anzsrc-for:06
18 anzsrc-for:0604
19 schema:author N954f4414751a4c9d94f1dbadba04eb5c
20 schema:citation sg:pub.10.1007/978-3-540-30219-3_28
21 sg:pub.10.1007/bf00175885
22 sg:pub.10.1007/bf00486096
23 sg:pub.10.1007/bf01732340
24 sg:pub.10.1038/217624a0
25 sg:pub.10.1038/246096a0
26 sg:pub.10.1038/nature01644
27 sg:pub.10.1038/nature02426
28 sg:pub.10.1038/ng1812
29 sg:pub.10.1038/nrg1603
30 sg:pub.10.1186/1745-6150-1-34
31 sg:pub.10.1186/gb-2002-3-12-research0086
32 schema:datePublished 2007-08-16
33 schema:datePublishedReg 2007-08-16
34 schema:description BACKGROUND: Independently evolving lineages mostly accumulate different changes, which leads to their gradual divergence. However, parallel accumulation of identical changes is also common, especially in traits with only a small number of possible states. RESULTS: We characterize parallelism in evolution of coding sequences in three four-species sets of genomes of mammals, Drosophila, and yeasts. Each such set contains two independent evolutionary paths, which we call paths I and II. An amino acid replacement which occurred along path I also occurs along path II with the probability 50-80% of that expected under selective neutrality. Thus, the per site rate of parallel evolution of proteins is several times higher than their average rate of evolution, but still lower than the rate of evolution of neutral sequences. This deficit may be caused by changes in the fitness landscape, leading to a replacement being possible along path I but not along path II. However, constant, weak selection assumed by the nearly neutral model of evolution appears to be a more likely explanation. Then, the average coefficient of selection associated with an amino acid replacement, in the units of the effective population size, must exceed approximately 0.4, and the fraction of effectively neutral replacements must be below approximately 30%. At a majority of evolvable amino acid sites, only a relatively small number of different amino acids is permitted. CONCLUSION: High, but below-neutral, rates of parallel amino acid replacements suggest that a majority of amino acid replacements that occur in evolution are subject to weak, but non-trivial, selection, as predicted by Ohta's nearly-neutral theory.
35 schema:genre article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N51c381b2e2504cffa99c8765eb2dfd26
39 Ne1aeccc3c08943b8ac8051a6f552e726
40 sg:journal.1036001
41 schema:keywords Drosophila
42 Ohta
43 accumulation
44 acid
45 acid replacements
46 acid sites
47 amino acid replacements
48 amino acid sites
49 amino acids
50 average coefficient
51 average rate
52 changes
53 coefficient
54 deficits
55 different amino acids
56 different changes
57 divergence
58 effective population size
59 evolution
60 evolutionary path
61 evolvable amino acid sites
62 explanation
63 extensive parallelism
64 fitness landscape
65 four-species sets
66 fraction
67 genome
68 gradual divergence
69 identical changes
70 independent evolutionary paths
71 landscape
72 likely explanation
73 lineages
74 majority
75 mammals
76 model
77 neutral model
78 neutral replacements
79 neutral sequences
80 neutral theory
81 neutrality
82 number
83 parallel accumulation
84 parallel amino acid replacements
85 parallel evolution
86 parallelism
87 path
88 path I
89 path II
90 population size
91 possible states
92 probability 50
93 protein
94 protein evolution
95 rate
96 rate of evolution
97 replacement
98 selection
99 selective neutrality
100 sequence
101 set
102 site rates
103 sites
104 size
105 small number
106 state
107 such sets
108 theory
109 time
110 traits
111 units
112 weak selection
113 yeast
114 schema:name Extensive parallelism in protein evolution
115 schema:pagination 20-20
116 schema:productId N622f54e2966a483e9fec490cfa2052c7
117 N83753f5106fb41dda0528b21879bc4d3
118 Nfbabd125fd98479eae2fe3ca3ee3cf82
119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009649998
120 https://doi.org/10.1186/1745-6150-2-20
121 schema:sdDatePublished 2022-01-01T18:16
122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
123 schema:sdPublisher Nc7127f0d2bc140489a9ff573be722385
124 schema:url https://doi.org/10.1186/1745-6150-2-20
125 sgo:license sg:explorer/license/
126 sgo:sdDataset articles
127 rdf:type schema:ScholarlyArticle
128 N0e8548bc8b094a769d0267ad24c7a052 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Proteins
130 rdf:type schema:DefinedTerm
131 N0f28b0c013884beb87917cf5f2c0a388 rdf:first sg:person.01134640327.47
132 rdf:rest rdf:nil
133 N2854c178ea8840cfa3f742de61ef3bac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Alleles
135 rdf:type schema:DefinedTerm
136 N29087a0854e5499ab05b7a59d905b255 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Rats
138 rdf:type schema:DefinedTerm
139 N36e1a6e72a5b4378be20baef4d942da3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Selection, Genetic
141 rdf:type schema:DefinedTerm
142 N385c6d428f0b41f9817701bcf1588a9b rdf:first sg:person.0767134426.06
143 rdf:rest Nb1255325f73d4609a36c322d00efa8fc
144 N51c381b2e2504cffa99c8765eb2dfd26 schema:volumeNumber 2
145 rdf:type schema:PublicationVolume
146 N5b34486de13c4911b21507ec1207eba1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Mice
148 rdf:type schema:DefinedTerm
149 N622f54e2966a483e9fec490cfa2052c7 schema:name doi
150 schema:value 10.1186/1745-6150-2-20
151 rdf:type schema:PropertyValue
152 N64a86d45cc514f63a0b9cca8bbce45c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Amino Acid Sequence
154 rdf:type schema:DefinedTerm
155 N6d496b78b0964818b3e94bd5a1f51b4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Amino Acid Substitution
157 rdf:type schema:DefinedTerm
158 N7570308df97e4b5aba5fea6dcc5206a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Animals
160 rdf:type schema:DefinedTerm
161 N802076bbd7ea41cf902091d4d2d49d43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Phylogeny
163 rdf:type schema:DefinedTerm
164 N83753f5106fb41dda0528b21879bc4d3 schema:name dimensions_id
165 schema:value pub.1009649998
166 rdf:type schema:PropertyValue
167 N84b3a75dd86641eda763c88e3a7f30ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Evolution, Molecular
169 rdf:type schema:DefinedTerm
170 N8990c0397d94413ea6dbbe2b1ee1d3e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Drosophila
172 rdf:type schema:DefinedTerm
173 N954f4414751a4c9d94f1dbadba04eb5c rdf:first sg:person.01022331441.71
174 rdf:rest Nf323551c63164481a687d55b7e75f9d2
175 N9ae3b90dfd234646b683ea57a3a6f4fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Amino Acids
177 rdf:type schema:DefinedTerm
178 Nb1255325f73d4609a36c322d00efa8fc rdf:first sg:person.01055372546.51
179 rdf:rest N0f28b0c013884beb87917cf5f2c0a388
180 Nb49536a8741c47f8a1b772ef243670ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Saccharomyces cerevisiae
182 rdf:type schema:DefinedTerm
183 Nb6bf51aebf444e179fcdd5ba1137e437 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Humans
185 rdf:type schema:DefinedTerm
186 Nc7127f0d2bc140489a9ff573be722385 schema:name Springer Nature - SN SciGraph project
187 rdf:type schema:Organization
188 Nd654abc771a9437aac9677acda96b8e8 rdf:first sg:person.01253563237.25
189 rdf:rest N385c6d428f0b41f9817701bcf1588a9b
190 Ne1aeccc3c08943b8ac8051a6f552e726 schema:issueNumber 1
191 rdf:type schema:PublicationIssue
192 Ne84a97d70e7f49368f45bd59e67ac1da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Dogs
194 rdf:type schema:DefinedTerm
195 Nf2b86dc62de44ec981d13d4ee7f39f33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Sequence Alignment
197 rdf:type schema:DefinedTerm
198 Nf323551c63164481a687d55b7e75f9d2 rdf:first sg:person.01020411727.09
199 rdf:rest Nd654abc771a9437aac9677acda96b8e8
200 Nfbabd125fd98479eae2fe3ca3ee3cf82 schema:name pubmed_id
201 schema:value 17705846
202 rdf:type schema:PropertyValue
203 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
204 schema:name Biological Sciences
205 rdf:type schema:DefinedTerm
206 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
207 schema:name Genetics
208 rdf:type schema:DefinedTerm
209 sg:grant.2691659 http://pending.schema.org/fundedItem sg:pub.10.1186/1745-6150-2-20
210 rdf:type schema:MonetaryGrant
211 sg:journal.1036001 schema:issn 1745-6150
212 schema:name Biology Direct
213 schema:publisher Springer Nature
214 rdf:type schema:Periodical
215 sg:person.01020411727.09 schema:affiliation grid-institutes:grid.266100.3
216 schema:familyName Kondrashov
217 schema:givenName Fyodor A
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020411727.09
219 rdf:type schema:Person
220 sg:person.01022331441.71 schema:affiliation grid-institutes:grid.16750.35
221 schema:familyName Bazykin
222 schema:givenName Georgii A
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022331441.71
224 rdf:type schema:Person
225 sg:person.01055372546.51 schema:affiliation grid-institutes:grid.451309.a
226 schema:familyName Dubchak
227 schema:givenName Inna
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055372546.51
229 rdf:type schema:Person
230 sg:person.01134640327.47 schema:affiliation grid-institutes:grid.214458.e
231 schema:familyName Kondrashov
232 schema:givenName Alexey S
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134640327.47
234 rdf:type schema:Person
235 sg:person.01253563237.25 schema:affiliation grid-institutes:grid.17063.33
236 schema:familyName Brudno
237 schema:givenName Michael
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253563237.25
239 rdf:type schema:Person
240 sg:person.0767134426.06 schema:affiliation grid-institutes:grid.184769.5
241 schema:familyName Poliakov
242 schema:givenName Alexander
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767134426.06
244 rdf:type schema:Person
245 sg:pub.10.1007/978-3-540-30219-3_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039123727
246 https://doi.org/10.1007/978-3-540-30219-3_28
247 rdf:type schema:CreativeWork
248 sg:pub.10.1007/bf00175885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049063048
249 https://doi.org/10.1007/bf00175885
250 rdf:type schema:CreativeWork
251 sg:pub.10.1007/bf00486096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001338981
252 https://doi.org/10.1007/bf00486096
253 rdf:type schema:CreativeWork
254 sg:pub.10.1007/bf01732340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010544282
255 https://doi.org/10.1007/bf01732340
256 rdf:type schema:CreativeWork
257 sg:pub.10.1038/217624a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037698058
258 https://doi.org/10.1038/217624a0
259 rdf:type schema:CreativeWork
260 sg:pub.10.1038/246096a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039946912
261 https://doi.org/10.1038/246096a0
262 rdf:type schema:CreativeWork
263 sg:pub.10.1038/nature01644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010517605
264 https://doi.org/10.1038/nature01644
265 rdf:type schema:CreativeWork
266 sg:pub.10.1038/nature02426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048338096
267 https://doi.org/10.1038/nature02426
268 rdf:type schema:CreativeWork
269 sg:pub.10.1038/ng1812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049226452
270 https://doi.org/10.1038/ng1812
271 rdf:type schema:CreativeWork
272 sg:pub.10.1038/nrg1603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014262094
273 https://doi.org/10.1038/nrg1603
274 rdf:type schema:CreativeWork
275 sg:pub.10.1186/1745-6150-1-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037807654
276 https://doi.org/10.1186/1745-6150-1-34
277 rdf:type schema:CreativeWork
278 sg:pub.10.1186/gb-2002-3-12-research0086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002917064
279 https://doi.org/10.1186/gb-2002-3-12-research0086
280 rdf:type schema:CreativeWork
281 grid-institutes:grid.16750.35 schema:alternateName Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
282 schema:name Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
283 Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoi Karetny pereulok 19, Moscow, 127994, Russia
284 rdf:type schema:Organization
285 grid-institutes:grid.17063.33 schema:alternateName Department of Computer Science and Banting & Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3J4, Canada
286 schema:name Department of Computer Science and Banting & Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3J4, Canada
287 rdf:type schema:Organization
288 grid-institutes:grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
289 schema:name Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
290 rdf:type schema:Organization
291 grid-institutes:grid.214458.e schema:alternateName Life Sciences Institute and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
292 schema:name Life Sciences Institute and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
293 rdf:type schema:Organization
294 grid-institutes:grid.266100.3 schema:alternateName Section on Ecology, Behavior and Evolution, University of California at San Diego, La Jolla, CA 92093, USA
295 schema:name Section on Ecology, Behavior and Evolution, University of California at San Diego, La Jolla, CA 92093, USA
296 rdf:type schema:Organization
297 grid-institutes:grid.451309.a schema:alternateName Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
298 schema:name Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
299 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
300 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...