Extensive parallelism in protein evolution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-08-16

AUTHORS

Georgii A Bazykin, Fyodor A Kondrashov, Michael Brudno, Alexander Poliakov, Inna Dubchak, Alexey S Kondrashov

ABSTRACT

BACKGROUND: Independently evolving lineages mostly accumulate different changes, which leads to their gradual divergence. However, parallel accumulation of identical changes is also common, especially in traits with only a small number of possible states. RESULTS: We characterize parallelism in evolution of coding sequences in three four-species sets of genomes of mammals, Drosophila, and yeasts. Each such set contains two independent evolutionary paths, which we call paths I and II. An amino acid replacement which occurred along path I also occurs along path II with the probability 50-80% of that expected under selective neutrality. Thus, the per site rate of parallel evolution of proteins is several times higher than their average rate of evolution, but still lower than the rate of evolution of neutral sequences. This deficit may be caused by changes in the fitness landscape, leading to a replacement being possible along path I but not along path II. However, constant, weak selection assumed by the nearly neutral model of evolution appears to be a more likely explanation. Then, the average coefficient of selection associated with an amino acid replacement, in the units of the effective population size, must exceed approximately 0.4, and the fraction of effectively neutral replacements must be below approximately 30%. At a majority of evolvable amino acid sites, only a relatively small number of different amino acids is permitted. CONCLUSION: High, but below-neutral, rates of parallel amino acid replacements suggest that a majority of amino acid replacements that occur in evolution are subject to weak, but non-trivial, selection, as predicted by Ohta's nearly-neutral theory. More... »

PAGES

20-20

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1745-6150-2-20

DOI

http://dx.doi.org/10.1186/1745-6150-2-20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009649998

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17705846


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alleles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Substitution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dogs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drosophila", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rats", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Selection, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoi Karetny pereulok 19, Moscow, 127994, Russia", 
            "Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bazykin", 
        "givenName": "Georgii A", 
        "id": "sg:person.01022331441.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022331441.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Section on Ecology, Behavior and Evolution, University of California at San Diego, La Jolla, CA 92093, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Section on Ecology, Behavior and Evolution, University of California at San Diego, La Jolla, CA 92093, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kondrashov", 
        "givenName": "Fyodor A", 
        "id": "sg:person.01020411727.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020411727.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Banting & Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3J4, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Computer Science and Banting & Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3J4, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brudno", 
        "givenName": "Michael", 
        "id": "sg:person.01253563237.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253563237.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA", 
          "id": "http://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poliakov", 
        "givenName": "Alexander", 
        "id": "sg:person.0767134426.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767134426.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA", 
          "id": "http://www.grid.ac/institutes/grid.451309.a", 
          "name": [
            "Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA", 
            "Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dubchak", 
        "givenName": "Inna", 
        "id": "sg:person.01055372546.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055372546.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Life Sciences Institute and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Life Sciences Institute and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kondrashov", 
        "givenName": "Alexey S", 
        "id": "sg:person.01134640327.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134640327.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00175885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049063048", 
          "https://doi.org/10.1007/bf00175885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/246096a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039946912", 
          "https://doi.org/10.1038/246096a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01732340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010544282", 
          "https://doi.org/10.1007/bf01732340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014262094", 
          "https://doi.org/10.1038/nrg1603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2002-3-12-research0086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002917064", 
          "https://doi.org/10.1186/gb-2002-3-12-research0086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049226452", 
          "https://doi.org/10.1038/ng1812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/217624a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037698058", 
          "https://doi.org/10.1038/217624a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010517605", 
          "https://doi.org/10.1038/nature01644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048338096", 
          "https://doi.org/10.1038/nature02426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30219-3_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039123727", 
          "https://doi.org/10.1007/978-3-540-30219-3_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1745-6150-1-34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037807654", 
          "https://doi.org/10.1186/1745-6150-1-34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00486096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001338981", 
          "https://doi.org/10.1007/bf00486096"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-08-16", 
    "datePublishedReg": "2007-08-16", 
    "description": "BACKGROUND: Independently evolving lineages mostly accumulate different changes, which leads to their gradual divergence. However, parallel accumulation of identical changes is also common, especially in traits with only a small number of possible states.\nRESULTS: We characterize parallelism in evolution of coding sequences in three four-species sets of genomes of mammals, Drosophila, and yeasts. Each such set contains two independent evolutionary paths, which we call paths I and II. An amino acid replacement which occurred along path I also occurs along path II with the probability 50-80% of that expected under selective neutrality. Thus, the per site rate of parallel evolution of proteins is several times higher than their average rate of evolution, but still lower than the rate of evolution of neutral sequences. This deficit may be caused by changes in the fitness landscape, leading to a replacement being possible along path I but not along path II. However, constant, weak selection assumed by the nearly neutral model of evolution appears to be a more likely explanation. Then, the average coefficient of selection associated with an amino acid replacement, in the units of the effective population size, must exceed approximately 0.4, and the fraction of effectively neutral replacements must be below approximately 30%. At a majority of evolvable amino acid sites, only a relatively small number of different amino acids is permitted.\nCONCLUSION: High, but below-neutral, rates of parallel amino acid replacements suggest that a majority of amino acid replacements that occur in evolution are subject to weak, but non-trivial, selection, as predicted by Ohta's nearly-neutral theory.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1745-6150-2-20", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2691659", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1036001", 
        "issn": [
          "1745-6150"
        ], 
        "name": "Biology Direct", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "amino acid replacements", 
      "acid replacements", 
      "parallel amino acid replacements", 
      "effective population size", 
      "independent evolutionary paths", 
      "rate of evolution", 
      "amino acid sites", 
      "protein evolution", 
      "neutral theory", 
      "selective neutrality", 
      "parallel evolution", 
      "weak selection", 
      "neutral model", 
      "neutral sequences", 
      "different amino acids", 
      "gradual divergence", 
      "population size", 
      "fitness landscape", 
      "amino acids", 
      "evolutionary path", 
      "extensive parallelism", 
      "site rates", 
      "neutral replacements", 
      "parallel accumulation", 
      "sequence", 
      "Drosophila", 
      "genome", 
      "evolution", 
      "lineages", 
      "mammals", 
      "yeast", 
      "probability 50", 
      "likely explanation", 
      "traits", 
      "protein", 
      "selection", 
      "divergence", 
      "small number", 
      "identical changes", 
      "accumulation", 
      "landscape", 
      "different changes", 
      "sites", 
      "changes", 
      "acid", 
      "replacement", 
      "majority", 
      "average rate", 
      "number", 
      "Ohta", 
      "fraction", 
      "rate", 
      "neutrality", 
      "average coefficient", 
      "set", 
      "size", 
      "explanation", 
      "acid sites", 
      "units", 
      "path II", 
      "state", 
      "path I", 
      "time", 
      "deficits", 
      "model", 
      "such sets", 
      "possible states", 
      "parallelism", 
      "path", 
      "coefficient", 
      "theory", 
      "four-species sets", 
      "evolvable amino acid sites"
    ], 
    "name": "Extensive parallelism in protein evolution", 
    "pagination": "20-20", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009649998"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1745-6150-2-20"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17705846"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1745-6150-2-20", 
      "https://app.dimensions.ai/details/publication/pub.1009649998"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_451.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1745-6150-2-20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-2-20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-2-20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-2-20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-2-20'


 

This table displays all metadata directly associated to this object as RDF triples.

300 TRIPLES      22 PREDICATES      127 URIs      107 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1745-6150-2-20 schema:about N138f49b20cef419fbf030d2d4f251709
2 N14b073c3685b48f3913786bfb771729c
3 N257a68d00cc6425e88978f11eeb7402a
4 N45241947e94844dd8b170e2e9f4ccd1f
5 N469b054a9640405092cf251a3c4dd25d
6 N508a8f53b3794234bb6590793a764f8e
7 N5a75ca55c35a41668349e4bb6813f75f
8 N802ad92b9a014bd48bb9385c9043c883
9 N8fb2f5acf8634a7fae47edfb3decb49e
10 N9560ebdc428c429d9bb20f98c9630c9f
11 Nabc92a0ba5234800b2577d871c0470ad
12 Nd1bb8514a0484a63af858525c3d09538
13 Nd36f6dd361754a1d80548f98d4ee0a76
14 Nd50a2115283e42a9be65ecae8905ff45
15 Ne481a7bd333040b3ad362b19ea845c48
16 Nf74f7fb97ec842cd91470ef0cdb69ce4
17 anzsrc-for:06
18 anzsrc-for:0604
19 schema:author N34f443a898bd4a5dad49f0b6c1a62e7a
20 schema:citation sg:pub.10.1007/978-3-540-30219-3_28
21 sg:pub.10.1007/bf00175885
22 sg:pub.10.1007/bf00486096
23 sg:pub.10.1007/bf01732340
24 sg:pub.10.1038/217624a0
25 sg:pub.10.1038/246096a0
26 sg:pub.10.1038/nature01644
27 sg:pub.10.1038/nature02426
28 sg:pub.10.1038/ng1812
29 sg:pub.10.1038/nrg1603
30 sg:pub.10.1186/1745-6150-1-34
31 sg:pub.10.1186/gb-2002-3-12-research0086
32 schema:datePublished 2007-08-16
33 schema:datePublishedReg 2007-08-16
34 schema:description BACKGROUND: Independently evolving lineages mostly accumulate different changes, which leads to their gradual divergence. However, parallel accumulation of identical changes is also common, especially in traits with only a small number of possible states. RESULTS: We characterize parallelism in evolution of coding sequences in three four-species sets of genomes of mammals, Drosophila, and yeasts. Each such set contains two independent evolutionary paths, which we call paths I and II. An amino acid replacement which occurred along path I also occurs along path II with the probability 50-80% of that expected under selective neutrality. Thus, the per site rate of parallel evolution of proteins is several times higher than their average rate of evolution, but still lower than the rate of evolution of neutral sequences. This deficit may be caused by changes in the fitness landscape, leading to a replacement being possible along path I but not along path II. However, constant, weak selection assumed by the nearly neutral model of evolution appears to be a more likely explanation. Then, the average coefficient of selection associated with an amino acid replacement, in the units of the effective population size, must exceed approximately 0.4, and the fraction of effectively neutral replacements must be below approximately 30%. At a majority of evolvable amino acid sites, only a relatively small number of different amino acids is permitted. CONCLUSION: High, but below-neutral, rates of parallel amino acid replacements suggest that a majority of amino acid replacements that occur in evolution are subject to weak, but non-trivial, selection, as predicted by Ohta's nearly-neutral theory.
35 schema:genre article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf Na383b2bba4bc4c4b8543658e12c0e55e
39 Ncb3bf5cc0ba84b45883aa71c11fc62f1
40 sg:journal.1036001
41 schema:keywords Drosophila
42 Ohta
43 accumulation
44 acid
45 acid replacements
46 acid sites
47 amino acid replacements
48 amino acid sites
49 amino acids
50 average coefficient
51 average rate
52 changes
53 coefficient
54 deficits
55 different amino acids
56 different changes
57 divergence
58 effective population size
59 evolution
60 evolutionary path
61 evolvable amino acid sites
62 explanation
63 extensive parallelism
64 fitness landscape
65 four-species sets
66 fraction
67 genome
68 gradual divergence
69 identical changes
70 independent evolutionary paths
71 landscape
72 likely explanation
73 lineages
74 majority
75 mammals
76 model
77 neutral model
78 neutral replacements
79 neutral sequences
80 neutral theory
81 neutrality
82 number
83 parallel accumulation
84 parallel amino acid replacements
85 parallel evolution
86 parallelism
87 path
88 path I
89 path II
90 population size
91 possible states
92 probability 50
93 protein
94 protein evolution
95 rate
96 rate of evolution
97 replacement
98 selection
99 selective neutrality
100 sequence
101 set
102 site rates
103 sites
104 size
105 small number
106 state
107 such sets
108 theory
109 time
110 traits
111 units
112 weak selection
113 yeast
114 schema:name Extensive parallelism in protein evolution
115 schema:pagination 20-20
116 schema:productId N055b6a7872514cd7a4c5162f312f4f9e
117 N10e862ad913444f7b043cacd8fea29b9
118 Nc9e6910068ac4c56a4e53aa0b528bf93
119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009649998
120 https://doi.org/10.1186/1745-6150-2-20
121 schema:sdDatePublished 2021-11-01T18:11
122 schema:sdLicense https://scigraph.springernature.com/explorer/license/
123 schema:sdPublisher N836e349106104f3294d829abbbd765b4
124 schema:url https://doi.org/10.1186/1745-6150-2-20
125 sgo:license sg:explorer/license/
126 sgo:sdDataset articles
127 rdf:type schema:ScholarlyArticle
128 N055b6a7872514cd7a4c5162f312f4f9e schema:name pubmed_id
129 schema:value 17705846
130 rdf:type schema:PropertyValue
131 N10e862ad913444f7b043cacd8fea29b9 schema:name doi
132 schema:value 10.1186/1745-6150-2-20
133 rdf:type schema:PropertyValue
134 N138f49b20cef419fbf030d2d4f251709 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Animals
136 rdf:type schema:DefinedTerm
137 N14b073c3685b48f3913786bfb771729c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Alleles
139 rdf:type schema:DefinedTerm
140 N1a0ac177095a438aac19039cb5772fa7 rdf:first sg:person.01134640327.47
141 rdf:rest rdf:nil
142 N257a68d00cc6425e88978f11eeb7402a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Amino Acid Substitution
144 rdf:type schema:DefinedTerm
145 N34f443a898bd4a5dad49f0b6c1a62e7a rdf:first sg:person.01022331441.71
146 rdf:rest N85408cf1e2d14012ab9101f8d43f5b2a
147 N45241947e94844dd8b170e2e9f4ccd1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Mice
149 rdf:type schema:DefinedTerm
150 N469b054a9640405092cf251a3c4dd25d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Sequence Alignment
152 rdf:type schema:DefinedTerm
153 N508a8f53b3794234bb6590793a764f8e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Proteins
155 rdf:type schema:DefinedTerm
156 N56d20b2605d741c3b147d0bdad1db1e6 rdf:first sg:person.01253563237.25
157 rdf:rest Ne268d9b63a6247daae90148bbba79d6b
158 N5a75ca55c35a41668349e4bb6813f75f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Drosophila
160 rdf:type schema:DefinedTerm
161 N802ad92b9a014bd48bb9385c9043c883 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Saccharomyces cerevisiae
163 rdf:type schema:DefinedTerm
164 N836e349106104f3294d829abbbd765b4 schema:name Springer Nature - SN SciGraph project
165 rdf:type schema:Organization
166 N85408cf1e2d14012ab9101f8d43f5b2a rdf:first sg:person.01020411727.09
167 rdf:rest N56d20b2605d741c3b147d0bdad1db1e6
168 N8fb2f5acf8634a7fae47edfb3decb49e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Humans
170 rdf:type schema:DefinedTerm
171 N9560ebdc428c429d9bb20f98c9630c9f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Amino Acids
173 rdf:type schema:DefinedTerm
174 Na383b2bba4bc4c4b8543658e12c0e55e schema:volumeNumber 2
175 rdf:type schema:PublicationVolume
176 Nabc92a0ba5234800b2577d871c0470ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Amino Acid Sequence
178 rdf:type schema:DefinedTerm
179 Nc9e6910068ac4c56a4e53aa0b528bf93 schema:name dimensions_id
180 schema:value pub.1009649998
181 rdf:type schema:PropertyValue
182 Ncb3bf5cc0ba84b45883aa71c11fc62f1 schema:issueNumber 1
183 rdf:type schema:PublicationIssue
184 Nd1bb8514a0484a63af858525c3d09538 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Dogs
186 rdf:type schema:DefinedTerm
187 Nd36f6dd361754a1d80548f98d4ee0a76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Evolution, Molecular
189 rdf:type schema:DefinedTerm
190 Nd50a2115283e42a9be65ecae8905ff45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Phylogeny
192 rdf:type schema:DefinedTerm
193 Ne268d9b63a6247daae90148bbba79d6b rdf:first sg:person.0767134426.06
194 rdf:rest Nf18f7835c63e4be0a4b9982f7afc4b93
195 Ne481a7bd333040b3ad362b19ea845c48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Selection, Genetic
197 rdf:type schema:DefinedTerm
198 Nf18f7835c63e4be0a4b9982f7afc4b93 rdf:first sg:person.01055372546.51
199 rdf:rest N1a0ac177095a438aac19039cb5772fa7
200 Nf74f7fb97ec842cd91470ef0cdb69ce4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
201 schema:name Rats
202 rdf:type schema:DefinedTerm
203 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
204 schema:name Biological Sciences
205 rdf:type schema:DefinedTerm
206 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
207 schema:name Genetics
208 rdf:type schema:DefinedTerm
209 sg:grant.2691659 http://pending.schema.org/fundedItem sg:pub.10.1186/1745-6150-2-20
210 rdf:type schema:MonetaryGrant
211 sg:journal.1036001 schema:issn 1745-6150
212 schema:name Biology Direct
213 schema:publisher Springer Nature
214 rdf:type schema:Periodical
215 sg:person.01020411727.09 schema:affiliation grid-institutes:grid.266100.3
216 schema:familyName Kondrashov
217 schema:givenName Fyodor A
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020411727.09
219 rdf:type schema:Person
220 sg:person.01022331441.71 schema:affiliation grid-institutes:grid.16750.35
221 schema:familyName Bazykin
222 schema:givenName Georgii A
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022331441.71
224 rdf:type schema:Person
225 sg:person.01055372546.51 schema:affiliation grid-institutes:grid.451309.a
226 schema:familyName Dubchak
227 schema:givenName Inna
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055372546.51
229 rdf:type schema:Person
230 sg:person.01134640327.47 schema:affiliation grid-institutes:grid.214458.e
231 schema:familyName Kondrashov
232 schema:givenName Alexey S
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134640327.47
234 rdf:type schema:Person
235 sg:person.01253563237.25 schema:affiliation grid-institutes:grid.17063.33
236 schema:familyName Brudno
237 schema:givenName Michael
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253563237.25
239 rdf:type schema:Person
240 sg:person.0767134426.06 schema:affiliation grid-institutes:grid.184769.5
241 schema:familyName Poliakov
242 schema:givenName Alexander
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767134426.06
244 rdf:type schema:Person
245 sg:pub.10.1007/978-3-540-30219-3_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039123727
246 https://doi.org/10.1007/978-3-540-30219-3_28
247 rdf:type schema:CreativeWork
248 sg:pub.10.1007/bf00175885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049063048
249 https://doi.org/10.1007/bf00175885
250 rdf:type schema:CreativeWork
251 sg:pub.10.1007/bf00486096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001338981
252 https://doi.org/10.1007/bf00486096
253 rdf:type schema:CreativeWork
254 sg:pub.10.1007/bf01732340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010544282
255 https://doi.org/10.1007/bf01732340
256 rdf:type schema:CreativeWork
257 sg:pub.10.1038/217624a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037698058
258 https://doi.org/10.1038/217624a0
259 rdf:type schema:CreativeWork
260 sg:pub.10.1038/246096a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039946912
261 https://doi.org/10.1038/246096a0
262 rdf:type schema:CreativeWork
263 sg:pub.10.1038/nature01644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010517605
264 https://doi.org/10.1038/nature01644
265 rdf:type schema:CreativeWork
266 sg:pub.10.1038/nature02426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048338096
267 https://doi.org/10.1038/nature02426
268 rdf:type schema:CreativeWork
269 sg:pub.10.1038/ng1812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049226452
270 https://doi.org/10.1038/ng1812
271 rdf:type schema:CreativeWork
272 sg:pub.10.1038/nrg1603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014262094
273 https://doi.org/10.1038/nrg1603
274 rdf:type schema:CreativeWork
275 sg:pub.10.1186/1745-6150-1-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037807654
276 https://doi.org/10.1186/1745-6150-1-34
277 rdf:type schema:CreativeWork
278 sg:pub.10.1186/gb-2002-3-12-research0086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002917064
279 https://doi.org/10.1186/gb-2002-3-12-research0086
280 rdf:type schema:CreativeWork
281 grid-institutes:grid.16750.35 schema:alternateName Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
282 schema:name Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
283 Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoi Karetny pereulok 19, Moscow, 127994, Russia
284 rdf:type schema:Organization
285 grid-institutes:grid.17063.33 schema:alternateName Department of Computer Science and Banting & Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3J4, Canada
286 schema:name Department of Computer Science and Banting & Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3J4, Canada
287 rdf:type schema:Organization
288 grid-institutes:grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
289 schema:name Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
290 rdf:type schema:Organization
291 grid-institutes:grid.214458.e schema:alternateName Life Sciences Institute and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
292 schema:name Life Sciences Institute and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
293 rdf:type schema:Organization
294 grid-institutes:grid.266100.3 schema:alternateName Section on Ecology, Behavior and Evolution, University of California at San Diego, La Jolla, CA 92093, USA
295 schema:name Section on Ecology, Behavior and Evolution, University of California at San Diego, La Jolla, CA 92093, USA
296 rdf:type schema:Organization
297 grid-institutes:grid.451309.a schema:alternateName Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
298 schema:name Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
299 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
300 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...