The stochastic behavior of a molecular switching circuit with feedback View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Supriya Krishnamurthy, Eric Smith, David Krakauer, Walter Fontana

ABSTRACT

BACKGROUND: Using a statistical physics approach, we study the stochastic switching behavior of a model circuit of multisite phosphorylation and dephosphorylation with feedback. The circuit consists of a kinase and phosphatase acting on multiple sites of a substrate that, contingent on its modification state, catalyzes its own phosphorylation and, in a symmetric scenario, dephosphorylation. The symmetric case is viewed as a cartoon of conflicting feedback that could result from antagonistic pathways impinging on the state of a shared component. RESULTS: Multisite phosphorylation is sufficient for bistable behavior under feedback even when catalysis is linear in substrate concentration, which is the case we consider. We compute the phase diagram, fluctuation spectrum and large-deviation properties related to switch memory within a statistical mechanics framework. Bistability occurs as either a first-order or second-order non-equilibrium phase transition, depending on the network symmetries and the ratio of phosphatase to kinase numbers. In the second-order case, the circuit never leaves the bistable regime upon increasing the number of substrate molecules at constant kinase to phosphatase ratio. CONCLUSION: The number of substrate molecules is a key parameter controlling both the onset of the bistable regime, fluctuation intensity, and the residence time in a switched state. The relevance of the concept of memory depends on the degree of switch symmetry, as memory presupposes information to be remembered, which is highest for equal residence times in the switched states. More... »

PAGES

13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1745-6150-2-13

DOI

http://dx.doi.org/10.1186/1745-6150-2-13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030341104

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17540019


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swedish Institute of Computer Science", 
          "id": "https://www.grid.ac/institutes/grid.6383.e", 
          "name": [
            "Swedish Institute of Computer Science, Box 1263, SE-164 29, Kista, Sweden", 
            "Department of Information Technology and Communication, KTH \u2013 Royal Institute of Technology, Box 1263, SE-164 29, Kista, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krishnamurthy", 
        "givenName": "Supriya", 
        "id": "sg:person.0770637044.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770637044.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Santa Fe Institute", 
          "id": "https://www.grid.ac/institutes/grid.209665.e", 
          "name": [
            "Santa Fe Institute, 1399 Hyde Park Road, 87501, Santa, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Eric", 
        "id": "sg:person.0654410444.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654410444.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Santa Fe Institute", 
          "id": "https://www.grid.ac/institutes/grid.209665.e", 
          "name": [
            "Santa Fe Institute, 1399 Hyde Park Road, 87501, Santa, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krakauer", 
        "givenName": "David", 
        "id": "sg:person.01101545066.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101545066.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, 1399 Hyde Park Road, 02115, Santa, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fontana", 
        "givenName": "Walter", 
        "id": "sg:person.01045426347.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045426347.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0955-0674(03)00017-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002162918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0602767103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002189124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-1878(199910)21:10<833::aid-bies5>3.0.co;2-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003481995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.19.10078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011508189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m500158-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011834423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m500158-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011834423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-3760-1_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016132887", 
          "https://doi.org/10.1007/978-1-4615-3760-1_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.128101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016489158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.128101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016489158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.78.11.6840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016915453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.151588598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017925340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.1999.01146.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017947786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1070919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021654569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(98)01659-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022962026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0507322102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027441951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030126259", 
          "https://doi.org/10.1038/ng869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030126259", 
          "https://doi.org/10.1038/ng869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0030107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030362316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bies.10191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030889035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.048101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031987729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.048101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031987729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.200308060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033012673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033172724", 
          "https://doi.org/10.1038/nature02257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033172724", 
          "https://doi.org/10.1038/nature02257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.82.9.3055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033688631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/27.1.237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034204305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.272.30.19008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034705439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.011902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040706850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.011902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040706850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35018085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042996538", 
          "https://doi.org/10.1038/35018085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35018085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042996538", 
          "https://doi.org/10.1038/35018085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.2627987100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050755431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050896940", 
          "https://doi.org/10.1038/nature01258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050896940", 
          "https://doi.org/10.1038/nature01258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050896940", 
          "https://doi.org/10.1038/nature01258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583501003663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054002900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583501003663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054002900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi970535d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055213759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi970535d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055213759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1345725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057697163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1349894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057697513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075939952", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082663107", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083335793", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400882618-003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086534353"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "BACKGROUND: Using a statistical physics approach, we study the stochastic switching behavior of a model circuit of multisite phosphorylation and dephosphorylation with feedback. The circuit consists of a kinase and phosphatase acting on multiple sites of a substrate that, contingent on its modification state, catalyzes its own phosphorylation and, in a symmetric scenario, dephosphorylation. The symmetric case is viewed as a cartoon of conflicting feedback that could result from antagonistic pathways impinging on the state of a shared component.\nRESULTS: Multisite phosphorylation is sufficient for bistable behavior under feedback even when catalysis is linear in substrate concentration, which is the case we consider. We compute the phase diagram, fluctuation spectrum and large-deviation properties related to switch memory within a statistical mechanics framework. Bistability occurs as either a first-order or second-order non-equilibrium phase transition, depending on the network symmetries and the ratio of phosphatase to kinase numbers. In the second-order case, the circuit never leaves the bistable regime upon increasing the number of substrate molecules at constant kinase to phosphatase ratio.\nCONCLUSION: The number of substrate molecules is a key parameter controlling both the onset of the bistable regime, fluctuation intensity, and the residence time in a switched state. The relevance of the concept of memory depends on the degree of switch symmetry, as memory presupposes information to be remembered, which is highest for equal residence times in the switched states.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1745-6150-2-13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1036001", 
        "issn": [
          "1745-6150"
        ], 
        "name": "Biology Direct", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "name": "The stochastic behavior of a molecular switching circuit with feedback", 
    "pagination": "13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9089e417330e6b4a6af5a45d1765fc7a6cb0b726786f34ee0fd730e6e71b9df8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17540019"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101258412"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1745-6150-2-13"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030341104"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1745-6150-2-13", 
      "https://app.dimensions.ai/details/publication/pub.1030341104"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1745-6150-2-13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-2-13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-2-13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-2-13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1745-6150-2-13'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1745-6150-2-13 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nb00824db892e448d8c8d145fd2313a4b
4 schema:citation sg:pub.10.1007/978-1-4615-3760-1_2
5 sg:pub.10.1038/35018085
6 sg:pub.10.1038/nature01258
7 sg:pub.10.1038/nature02257
8 sg:pub.10.1038/ng869
9 https://app.dimensions.ai/details/publication/pub.1075939952
10 https://app.dimensions.ai/details/publication/pub.1082663107
11 https://app.dimensions.ai/details/publication/pub.1083335793
12 https://doi.org/10.1002/(sici)1521-1878(199910)21:10<833::aid-bies5>3.0.co;2-p
13 https://doi.org/10.1002/bies.10191
14 https://doi.org/10.1016/s0168-9525(98)01659-x
15 https://doi.org/10.1016/s0955-0674(03)00017-6
16 https://doi.org/10.1017/s0033583501003663
17 https://doi.org/10.1021/bi970535d
18 https://doi.org/10.1046/j.1365-2958.1999.01146.x
19 https://doi.org/10.1063/1.1345725
20 https://doi.org/10.1063/1.1349894
21 https://doi.org/10.1073/pnas.0507322102
22 https://doi.org/10.1073/pnas.0602767103
23 https://doi.org/10.1073/pnas.151588598
24 https://doi.org/10.1073/pnas.2627987100
25 https://doi.org/10.1073/pnas.78.11.6840
26 https://doi.org/10.1073/pnas.82.9.3055
27 https://doi.org/10.1073/pnas.93.19.10078
28 https://doi.org/10.1074/jbc.272.30.19008
29 https://doi.org/10.1074/mcp.m500158-mcp200
30 https://doi.org/10.1083/jcb.200308060
31 https://doi.org/10.1093/nar/27.1.237
32 https://doi.org/10.1103/physreve.71.011902
33 https://doi.org/10.1103/physrevlett.88.048101
34 https://doi.org/10.1103/physrevlett.92.128101
35 https://doi.org/10.1103/revmodphys.70.979
36 https://doi.org/10.1126/science.1070919
37 https://doi.org/10.1371/journal.pbio.0030107
38 https://doi.org/10.1515/9781400882618-003
39 schema:datePublished 2007-12
40 schema:datePublishedReg 2007-12-01
41 schema:description BACKGROUND: Using a statistical physics approach, we study the stochastic switching behavior of a model circuit of multisite phosphorylation and dephosphorylation with feedback. The circuit consists of a kinase and phosphatase acting on multiple sites of a substrate that, contingent on its modification state, catalyzes its own phosphorylation and, in a symmetric scenario, dephosphorylation. The symmetric case is viewed as a cartoon of conflicting feedback that could result from antagonistic pathways impinging on the state of a shared component. RESULTS: Multisite phosphorylation is sufficient for bistable behavior under feedback even when catalysis is linear in substrate concentration, which is the case we consider. We compute the phase diagram, fluctuation spectrum and large-deviation properties related to switch memory within a statistical mechanics framework. Bistability occurs as either a first-order or second-order non-equilibrium phase transition, depending on the network symmetries and the ratio of phosphatase to kinase numbers. In the second-order case, the circuit never leaves the bistable regime upon increasing the number of substrate molecules at constant kinase to phosphatase ratio. CONCLUSION: The number of substrate molecules is a key parameter controlling both the onset of the bistable regime, fluctuation intensity, and the residence time in a switched state. The relevance of the concept of memory depends on the degree of switch symmetry, as memory presupposes information to be remembered, which is highest for equal residence times in the switched states.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf Nb9903cb3685242f7b1e75215f27e178b
46 Nbd1461f4454c4d88b5a5b44f396c04b6
47 sg:journal.1036001
48 schema:name The stochastic behavior of a molecular switching circuit with feedback
49 schema:pagination 13
50 schema:productId N4bd2b61d39dc4584802facfd8ea49b91
51 N6737d559417d48edb71b2115d0c3e819
52 N79fb00f841c2495ea699a445b4ea2259
53 Nbf6d6107e5934c6b84d068a589a35b40
54 Ne0132ddc2bfc4d30b28d91b566212c62
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030341104
56 https://doi.org/10.1186/1745-6150-2-13
57 schema:sdDatePublished 2019-04-10T14:10
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N17135d994b634782a69755d544f87bcf
60 schema:url http://link.springer.com/10.1186%2F1745-6150-2-13
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N0c2122a1f18b49dbb901504147e49912 rdf:first sg:person.0654410444.08
65 rdf:rest N21fbd0f3a5a64bce81f16882b3d3c513
66 N17135d994b634782a69755d544f87bcf schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N21fbd0f3a5a64bce81f16882b3d3c513 rdf:first sg:person.01101545066.72
69 rdf:rest Na2b74639c0804c0bb0f7ba95a7169dcb
70 N4bd2b61d39dc4584802facfd8ea49b91 schema:name doi
71 schema:value 10.1186/1745-6150-2-13
72 rdf:type schema:PropertyValue
73 N6737d559417d48edb71b2115d0c3e819 schema:name nlm_unique_id
74 schema:value 101258412
75 rdf:type schema:PropertyValue
76 N79fb00f841c2495ea699a445b4ea2259 schema:name dimensions_id
77 schema:value pub.1030341104
78 rdf:type schema:PropertyValue
79 Na2b74639c0804c0bb0f7ba95a7169dcb rdf:first sg:person.01045426347.06
80 rdf:rest rdf:nil
81 Nb00824db892e448d8c8d145fd2313a4b rdf:first sg:person.0770637044.27
82 rdf:rest N0c2122a1f18b49dbb901504147e49912
83 Nb9903cb3685242f7b1e75215f27e178b schema:volumeNumber 2
84 rdf:type schema:PublicationVolume
85 Nbd1461f4454c4d88b5a5b44f396c04b6 schema:issueNumber 1
86 rdf:type schema:PublicationIssue
87 Nbf6d6107e5934c6b84d068a589a35b40 schema:name pubmed_id
88 schema:value 17540019
89 rdf:type schema:PropertyValue
90 Ne0132ddc2bfc4d30b28d91b566212c62 schema:name readcube_id
91 schema:value 9089e417330e6b4a6af5a45d1765fc7a6cb0b726786f34ee0fd730e6e71b9df8
92 rdf:type schema:PropertyValue
93 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
94 schema:name Mathematical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
97 schema:name Statistics
98 rdf:type schema:DefinedTerm
99 sg:journal.1036001 schema:issn 1745-6150
100 schema:name Biology Direct
101 rdf:type schema:Periodical
102 sg:person.01045426347.06 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
103 schema:familyName Fontana
104 schema:givenName Walter
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045426347.06
106 rdf:type schema:Person
107 sg:person.01101545066.72 schema:affiliation https://www.grid.ac/institutes/grid.209665.e
108 schema:familyName Krakauer
109 schema:givenName David
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101545066.72
111 rdf:type schema:Person
112 sg:person.0654410444.08 schema:affiliation https://www.grid.ac/institutes/grid.209665.e
113 schema:familyName Smith
114 schema:givenName Eric
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654410444.08
116 rdf:type schema:Person
117 sg:person.0770637044.27 schema:affiliation https://www.grid.ac/institutes/grid.6383.e
118 schema:familyName Krishnamurthy
119 schema:givenName Supriya
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770637044.27
121 rdf:type schema:Person
122 sg:pub.10.1007/978-1-4615-3760-1_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016132887
123 https://doi.org/10.1007/978-1-4615-3760-1_2
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/35018085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042996538
126 https://doi.org/10.1038/35018085
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nature01258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050896940
129 https://doi.org/10.1038/nature01258
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nature02257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033172724
132 https://doi.org/10.1038/nature02257
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/ng869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030126259
135 https://doi.org/10.1038/ng869
136 rdf:type schema:CreativeWork
137 https://app.dimensions.ai/details/publication/pub.1075939952 schema:CreativeWork
138 https://app.dimensions.ai/details/publication/pub.1082663107 schema:CreativeWork
139 https://app.dimensions.ai/details/publication/pub.1083335793 schema:CreativeWork
140 https://doi.org/10.1002/(sici)1521-1878(199910)21:10<833::aid-bies5>3.0.co;2-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1003481995
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/bies.10191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030889035
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0168-9525(98)01659-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022962026
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s0955-0674(03)00017-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002162918
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1017/s0033583501003663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054002900
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/bi970535d schema:sameAs https://app.dimensions.ai/details/publication/pub.1055213759
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1046/j.1365-2958.1999.01146.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017947786
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.1345725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057697163
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.1349894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057697513
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1073/pnas.0507322102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027441951
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1073/pnas.0602767103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002189124
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1073/pnas.151588598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017925340
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1073/pnas.2627987100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050755431
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1073/pnas.78.11.6840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016915453
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1073/pnas.82.9.3055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033688631
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1073/pnas.93.19.10078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011508189
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1074/jbc.272.30.19008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034705439
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1074/mcp.m500158-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011834423
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1083/jcb.200308060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033012673
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1093/nar/27.1.237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034204305
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physreve.71.011902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040706850
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.88.048101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031987729
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.92.128101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016489158
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/revmodphys.70.979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839436
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.1070919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021654569
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1371/journal.pbio.0030107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030362316
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1515/9781400882618-003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086534353
193 rdf:type schema:CreativeWork
194 https://www.grid.ac/institutes/grid.209665.e schema:alternateName Santa Fe Institute
195 schema:name Santa Fe Institute, 1399 Hyde Park Road, 87501, Santa, NM, USA
196 rdf:type schema:Organization
197 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
198 schema:name Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, 1399 Hyde Park Road, 02115, Santa, MA, USA
199 rdf:type schema:Organization
200 https://www.grid.ac/institutes/grid.6383.e schema:alternateName Swedish Institute of Computer Science
201 schema:name Department of Information Technology and Communication, KTH – Royal Institute of Technology, Box 1263, SE-164 29, Kista, Sweden
202 Swedish Institute of Computer Science, Box 1263, SE-164 29, Kista, Sweden
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...