Do inflammation and procoagulation biomarkers contribute to the metabolic syndrome cluster? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Aldi T Kraja, Michael A Province, Donna Arnett, Lynne Wagenknecht, Weihong Tang, Paul N Hopkins, Luc Djoussé, Ingrid B Borecki

ABSTRACT

CONTEXT: The metabolic syndrome (MetS), in addition to its lipid, metabolic, and anthropomorphic characteristics, is associated with a prothrombotic and the proinflammatory state. However, the relationship of inflammatory biomarkers to MetS is not clear. OBJECTIVE: To study the association between a group of thrombotic and inflammatory biomarkers and the MetS. METHODS: Ten conventional MetS risk variables and ten biomarkers were analyzed. Correlations, factor analysis, hexagonal binning, and regression of each biomarker with the National Cholesterol Education Program (NCEP) MetS categories were performed in the Family Heart Study (n = 2,762). RESULTS: Subjects in the top 75% quartile for plasminogen activator inhibitor-1 (PAI1) had a 6.9 CI95 [4.2-11.2] greater odds (p < 0.0001) of being classified with the NCEP MetS. Significant associations of the corresponding top 75% quartile to MetS were identified for monocyte chemotactic protein 1 (MCP1, OR = 2.19), C-reactive protein (CRP, OR = 1.89), interleukin-6 (IL6, OR = 2.11), sICAM1 (OR = 1.61), and fibrinogen (OR = 1.86). PAI1 correlated significantly with all obesity and dyslipidemia variables. CRP had a high correlation with serum amyloid A (0.6) and IL6 (0.51), and a significant correlation with fibrinogen (0.46). Ten conventional quantitative risk factors were utilized to perform multivariate factor analysis. Individual inclusion, in this analysis of each biomarker, showed that, PAI1, CRP, IL6, and fibrinogen were the most important biomarkers that clustered with the MetS latent factors. CONCLUSION: PAI1 is an important risk factor for MetS. It correlates significantly with most of the variables studied, clusters in two latent factors related to obesity and lipids, and demonstrates the greatest relative odds of the 10 biomarkers studied with respect to the MetS. Three other biomarkers, CRP, IL6, and fibrinogen associate also importantly with the MetS cluster. These 4 biomarkers can contribute in the MetS risk assessment. More... »

PAGES

28

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1743-7075-4-28

DOI

http://dx.doi.org/10.1186/1743-7075-4-28

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016450913

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18154661


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Biochemistry and Metabolomics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Washington University in St. Louis", 
          "id": "https://www.grid.ac/institutes/grid.4367.6", 
          "name": [
            "Division of Statistical Genomics, Washington University School of Medicine, Saint Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kraja", 
        "givenName": "Aldi T", 
        "id": "sg:person.01260600634.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260600634.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Washington University in St. Louis", 
          "id": "https://www.grid.ac/institutes/grid.4367.6", 
          "name": [
            "Division of Statistical Genomics, Washington University School of Medicine, Saint Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Province", 
        "givenName": "Michael A", 
        "id": "sg:person.014223302737.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014223302737.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Alabama at Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arnett", 
        "givenName": "Donna", 
        "id": "sg:person.01351132756.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351132756.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wake Forest University", 
          "id": "https://www.grid.ac/institutes/grid.241167.7", 
          "name": [
            "Department of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagenknecht", 
        "givenName": "Lynne", 
        "id": "sg:person.011236207437.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011236207437.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Weihong", 
        "id": "sg:person.014304652012.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014304652012.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Utah", 
          "id": "https://www.grid.ac/institutes/grid.223827.e", 
          "name": [
            "Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hopkins", 
        "givenName": "Paul N", 
        "id": "sg:person.013107363662.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013107363662.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brigham and Women's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Djouss\u00e9", 
        "givenName": "Luc", 
        "id": "sg:person.01141305172.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141305172.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Washington University in St. Louis", 
          "id": "https://www.grid.ac/institutes/grid.4367.6", 
          "name": [
            "Division of Statistical Genomics, Washington University School of Medicine, Saint Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borecki", 
        "givenName": "Ingrid B", 
        "id": "sg:person.01117564210.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117564210.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/eurheartj/ehi237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001339419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/152.10.908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003616533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2004-12-4716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007289221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.1997.03550140061041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008540649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.00090.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009339598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.00090.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009339598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9343(99)00066-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009488098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0803189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009735406", 
          "https://doi.org/10.1038/sj.ijo.0803189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0803189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009735406", 
          "https://doi.org/10.1038/sj.ijo.0803189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.53.7.1773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010013179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst0331078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011665017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst0331078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011665017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biochi.2004.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012393291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11745-007-3132-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014003252", 
          "https://doi.org/10.1007/s11745-007-3132-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1743-7075-3-41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014105373", 
          "https://doi.org/10.1186/1743-7075-3-41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.28.9.2211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015834859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1743-7075-2-17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016529032", 
          "https://doi.org/10.1186/1743-7075-2-17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a008709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019620955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/346074a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020496408", 
          "https://doi.org/10.1038/346074a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.51.3.841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021566253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-8703(94)90040-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022933045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1742-4933-2-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023569728", 
          "https://doi.org/10.1186/1742-4933-2-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1742-4933-2-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023569728", 
          "https://doi.org/10.1186/1742-4933-2-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s1516-31802001000300008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024097439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.557132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024460652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1559/152304092783721231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025174177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ndt/16.10.1968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027438905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000149807.32506.f4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027774821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.52.11.2840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029210705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.101.18.2149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030382113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2005.01.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030415876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/152.10.897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031009937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(97)09032-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031134413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000132467.45278.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031811582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9150(00)00586-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032879005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.00189.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034248539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000205234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036858170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coph.2005.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038739787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbi.2005.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040067732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbi.2005.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040067732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.00605.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040482222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.00605.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040482222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.metabol.2004.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042419877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc0902.104353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042565382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000023186.60090.fb", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042860736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-7836.2005.01420.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045131366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-7836.2005.01420.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045131366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2005.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045237616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0802778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046539364", 
          "https://doi.org/10.1038/sj.ijo.0802778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0802778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046539364", 
          "https://doi.org/10.1038/sj.ijo.0802778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.537878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048885039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1742-4658.2005.04979.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051436288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1742-4658.2005.04979.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051436288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.med.56.082103.104751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051935550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0146-2806(04)00074-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054617327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst20051078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056717375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0961203305lu2214oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064154710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0961203305lu2214oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064154710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0961203305lu2214oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064154710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2004-0395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064287760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1517/14712598.3.7.1061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067589347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circ.106.25.3143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075204771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079645215", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082798845", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083111432", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "CONTEXT: The metabolic syndrome (MetS), in addition to its lipid, metabolic, and anthropomorphic characteristics, is associated with a prothrombotic and the proinflammatory state. However, the relationship of inflammatory biomarkers to MetS is not clear.\nOBJECTIVE: To study the association between a group of thrombotic and inflammatory biomarkers and the MetS.\nMETHODS: Ten conventional MetS risk variables and ten biomarkers were analyzed. Correlations, factor analysis, hexagonal binning, and regression of each biomarker with the National Cholesterol Education Program (NCEP) MetS categories were performed in the Family Heart Study (n = 2,762).\nRESULTS: Subjects in the top 75% quartile for plasminogen activator inhibitor-1 (PAI1) had a 6.9 CI95 [4.2-11.2] greater odds (p < 0.0001) of being classified with the NCEP MetS. Significant associations of the corresponding top 75% quartile to MetS were identified for monocyte chemotactic protein 1 (MCP1, OR = 2.19), C-reactive protein (CRP, OR = 1.89), interleukin-6 (IL6, OR = 2.11), sICAM1 (OR = 1.61), and fibrinogen (OR = 1.86). PAI1 correlated significantly with all obesity and dyslipidemia variables. CRP had a high correlation with serum amyloid A (0.6) and IL6 (0.51), and a significant correlation with fibrinogen (0.46). Ten conventional quantitative risk factors were utilized to perform multivariate factor analysis. Individual inclusion, in this analysis of each biomarker, showed that, PAI1, CRP, IL6, and fibrinogen were the most important biomarkers that clustered with the MetS latent factors.\nCONCLUSION: PAI1 is an important risk factor for MetS. It correlates significantly with most of the variables studied, clusters in two latent factors related to obesity and lipids, and demonstrates the greatest relative odds of the 10 biomarkers studied with respect to the MetS. Three other biomarkers, CRP, IL6, and fibrinogen associate also importantly with the MetS cluster. These 4 biomarkers can contribute in the MetS risk assessment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1743-7075-4-28", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034448", 
        "issn": [
          "1743-7075"
        ], 
        "name": "Nutrition & Metabolism", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Do inflammation and procoagulation biomarkers contribute to the metabolic syndrome cluster?", 
    "pagination": "28", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4e61eea2d39f708652c0cb7ac73fb5b71876444d51d129014606c1c4184911ae"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18154661"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101231644"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1743-7075-4-28"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016450913"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1743-7075-4-28", 
      "https://app.dimensions.ai/details/publication/pub.1016450913"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1743-7075-4-28"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1743-7075-4-28'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1743-7075-4-28'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1743-7075-4-28'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1743-7075-4-28'


 

This table displays all metadata directly associated to this object as RDF triples.

298 TRIPLES      21 PREDICATES      83 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1743-7075-4-28 schema:about anzsrc-for:11
2 anzsrc-for:1101
3 schema:author N055d7f0fa622490dad09ded6bedc0bfa
4 schema:citation sg:pub.10.1007/s11745-007-3132-7
5 sg:pub.10.1038/346074a0
6 sg:pub.10.1038/sj.ijo.0802778
7 sg:pub.10.1038/sj.ijo.0803189
8 sg:pub.10.1186/1742-4933-2-1
9 sg:pub.10.1186/1743-7075-2-17
10 sg:pub.10.1186/1743-7075-3-41
11 https://app.dimensions.ai/details/publication/pub.1079645215
12 https://app.dimensions.ai/details/publication/pub.1082798845
13 https://app.dimensions.ai/details/publication/pub.1083111432
14 https://doi.org/10.1001/jama.1997.03550140061041
15 https://doi.org/10.1016/0002-8703(94)90040-x
16 https://doi.org/10.1016/j.amjcard.2005.01.046
17 https://doi.org/10.1016/j.amjcard.2005.05.007
18 https://doi.org/10.1016/j.bbi.2005.04.008
19 https://doi.org/10.1016/j.biochi.2004.09.016
20 https://doi.org/10.1016/j.coph.2005.01.006
21 https://doi.org/10.1016/j.metabol.2004.02.004
22 https://doi.org/10.1016/s0002-9343(99)00066-2
23 https://doi.org/10.1016/s0021-9150(00)00586-4
24 https://doi.org/10.1016/s0140-6736(97)09032-6
25 https://doi.org/10.1016/s0146-2806(04)00074-x
26 https://doi.org/10.1042/bst0331078
27 https://doi.org/10.1042/bst20051078
28 https://doi.org/10.1093/aje/152.10.897
29 https://doi.org/10.1093/aje/152.10.908
30 https://doi.org/10.1093/eurheartj/ehi237
31 https://doi.org/10.1093/ndt/16.10.1968
32 https://doi.org/10.1093/oxfordjournals.aje.a008709
33 https://doi.org/10.1111/j.1538-7836.2005.01420.x
34 https://doi.org/10.1111/j.1742-4658.2005.04979.x
35 https://doi.org/10.1146/annurev.med.56.082103.104751
36 https://doi.org/10.1152/ajpendo.00090.2005
37 https://doi.org/10.1152/ajpendo.00189.2003
38 https://doi.org/10.1152/ajpendo.00605.2004
39 https://doi.org/10.1159/000205234
40 https://doi.org/10.1161/01.cir.0000023186.60090.fb
41 https://doi.org/10.1161/01.cir.0000132467.45278.59
42 https://doi.org/10.1161/01.cir.0000149807.32506.f4
43 https://doi.org/10.1161/01.cir.101.18.2149
44 https://doi.org/10.1161/circ.106.25.3143
45 https://doi.org/10.1161/circulationaha.105.537878
46 https://doi.org/10.1161/circulationaha.105.557132
47 https://doi.org/10.1161/hc0902.104353
48 https://doi.org/10.1182/blood-2004-12-4716
49 https://doi.org/10.1191/0961203305lu2214oa
50 https://doi.org/10.1210/jc.2004-0395
51 https://doi.org/10.1517/14712598.3.7.1061
52 https://doi.org/10.1559/152304092783721231
53 https://doi.org/10.1590/s1516-31802001000300008
54 https://doi.org/10.2337/diabetes.51.3.841
55 https://doi.org/10.2337/diabetes.52.11.2840
56 https://doi.org/10.2337/diabetes.53.7.1773
57 https://doi.org/10.2337/diacare.28.9.2211
58 schema:datePublished 2007-12
59 schema:datePublishedReg 2007-12-01
60 schema:description CONTEXT: The metabolic syndrome (MetS), in addition to its lipid, metabolic, and anthropomorphic characteristics, is associated with a prothrombotic and the proinflammatory state. However, the relationship of inflammatory biomarkers to MetS is not clear. OBJECTIVE: To study the association between a group of thrombotic and inflammatory biomarkers and the MetS. METHODS: Ten conventional MetS risk variables and ten biomarkers were analyzed. Correlations, factor analysis, hexagonal binning, and regression of each biomarker with the National Cholesterol Education Program (NCEP) MetS categories were performed in the Family Heart Study (n = 2,762). RESULTS: Subjects in the top 75% quartile for plasminogen activator inhibitor-1 (PAI1) had a 6.9 CI95 [4.2-11.2] greater odds (p < 0.0001) of being classified with the NCEP MetS. Significant associations of the corresponding top 75% quartile to MetS were identified for monocyte chemotactic protein 1 (MCP1, OR = 2.19), C-reactive protein (CRP, OR = 1.89), interleukin-6 (IL6, OR = 2.11), sICAM1 (OR = 1.61), and fibrinogen (OR = 1.86). PAI1 correlated significantly with all obesity and dyslipidemia variables. CRP had a high correlation with serum amyloid A (0.6) and IL6 (0.51), and a significant correlation with fibrinogen (0.46). Ten conventional quantitative risk factors were utilized to perform multivariate factor analysis. Individual inclusion, in this analysis of each biomarker, showed that, PAI1, CRP, IL6, and fibrinogen were the most important biomarkers that clustered with the MetS latent factors. CONCLUSION: PAI1 is an important risk factor for MetS. It correlates significantly with most of the variables studied, clusters in two latent factors related to obesity and lipids, and demonstrates the greatest relative odds of the 10 biomarkers studied with respect to the MetS. Three other biomarkers, CRP, IL6, and fibrinogen associate also importantly with the MetS cluster. These 4 biomarkers can contribute in the MetS risk assessment.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf N87956739e0ed48cfb61474c7901a5f90
65 Ndb4c5d1abfa44415b058abf23638b964
66 sg:journal.1034448
67 schema:name Do inflammation and procoagulation biomarkers contribute to the metabolic syndrome cluster?
68 schema:pagination 28
69 schema:productId N06e7ae7f0d80426ca666ba4f878f5b86
70 N4536600a0b5d46beb83ac3b8be43f0fb
71 N989cabb012ef4824b06326a67824ba52
72 Nba9e1663c68f47d0a251cdbfd8a8627a
73 Nf600aac089d8452f981d39ca4124bbc4
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016450913
75 https://doi.org/10.1186/1743-7075-4-28
76 schema:sdDatePublished 2019-04-11T00:15
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Nf0893f7da23e46229b6a7f2222f580a1
79 schema:url http://link.springer.com/10.1186%2F1743-7075-4-28
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N055d7f0fa622490dad09ded6bedc0bfa rdf:first sg:person.01260600634.53
84 rdf:rest N05e5c9495ff54dd8bfa73dce338f705e
85 N05e5c9495ff54dd8bfa73dce338f705e rdf:first sg:person.014223302737.04
86 rdf:rest N5ca50b9047ee45aea8bdf3160d2cb74f
87 N06e7ae7f0d80426ca666ba4f878f5b86 schema:name nlm_unique_id
88 schema:value 101231644
89 rdf:type schema:PropertyValue
90 N1414a955fc6e4a3794217c8e01cd3760 rdf:first sg:person.013107363662.75
91 rdf:rest Ncd1e94656c3f4f878c7f50eb0f5cf1a9
92 N4536600a0b5d46beb83ac3b8be43f0fb schema:name dimensions_id
93 schema:value pub.1016450913
94 rdf:type schema:PropertyValue
95 N5ca50b9047ee45aea8bdf3160d2cb74f rdf:first sg:person.01351132756.07
96 rdf:rest Nbbccb20d28f04e87a70360ebb24941d0
97 N736af079fd5a48c0a37119105607ce86 rdf:first sg:person.014304652012.83
98 rdf:rest N1414a955fc6e4a3794217c8e01cd3760
99 N87956739e0ed48cfb61474c7901a5f90 schema:volumeNumber 4
100 rdf:type schema:PublicationVolume
101 N8830b36a6e7b43b98328f792728e9a2d rdf:first sg:person.01117564210.02
102 rdf:rest rdf:nil
103 N989cabb012ef4824b06326a67824ba52 schema:name readcube_id
104 schema:value 4e61eea2d39f708652c0cb7ac73fb5b71876444d51d129014606c1c4184911ae
105 rdf:type schema:PropertyValue
106 Nba9e1663c68f47d0a251cdbfd8a8627a schema:name doi
107 schema:value 10.1186/1743-7075-4-28
108 rdf:type schema:PropertyValue
109 Nbbccb20d28f04e87a70360ebb24941d0 rdf:first sg:person.011236207437.34
110 rdf:rest N736af079fd5a48c0a37119105607ce86
111 Ncd1e94656c3f4f878c7f50eb0f5cf1a9 rdf:first sg:person.01141305172.66
112 rdf:rest N8830b36a6e7b43b98328f792728e9a2d
113 Ndb4c5d1abfa44415b058abf23638b964 schema:issueNumber 1
114 rdf:type schema:PublicationIssue
115 Nf0893f7da23e46229b6a7f2222f580a1 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 Nf600aac089d8452f981d39ca4124bbc4 schema:name pubmed_id
118 schema:value 18154661
119 rdf:type schema:PropertyValue
120 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
121 schema:name Medical and Health Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:1101 schema:inDefinedTermSet anzsrc-for:
124 schema:name Medical Biochemistry and Metabolomics
125 rdf:type schema:DefinedTerm
126 sg:journal.1034448 schema:issn 1743-7075
127 schema:name Nutrition & Metabolism
128 rdf:type schema:Periodical
129 sg:person.01117564210.02 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
130 schema:familyName Borecki
131 schema:givenName Ingrid B
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117564210.02
133 rdf:type schema:Person
134 sg:person.011236207437.34 schema:affiliation https://www.grid.ac/institutes/grid.241167.7
135 schema:familyName Wagenknecht
136 schema:givenName Lynne
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011236207437.34
138 rdf:type schema:Person
139 sg:person.01141305172.66 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
140 schema:familyName Djoussé
141 schema:givenName Luc
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141305172.66
143 rdf:type schema:Person
144 sg:person.01260600634.53 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
145 schema:familyName Kraja
146 schema:givenName Aldi T
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260600634.53
148 rdf:type schema:Person
149 sg:person.013107363662.75 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
150 schema:familyName Hopkins
151 schema:givenName Paul N
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013107363662.75
153 rdf:type schema:Person
154 sg:person.01351132756.07 schema:affiliation https://www.grid.ac/institutes/grid.265892.2
155 schema:familyName Arnett
156 schema:givenName Donna
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351132756.07
158 rdf:type schema:Person
159 sg:person.014223302737.04 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
160 schema:familyName Province
161 schema:givenName Michael A
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014223302737.04
163 rdf:type schema:Person
164 sg:person.014304652012.83 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
165 schema:familyName Tang
166 schema:givenName Weihong
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014304652012.83
168 rdf:type schema:Person
169 sg:pub.10.1007/s11745-007-3132-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014003252
170 https://doi.org/10.1007/s11745-007-3132-7
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/346074a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020496408
173 https://doi.org/10.1038/346074a0
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/sj.ijo.0802778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046539364
176 https://doi.org/10.1038/sj.ijo.0802778
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/sj.ijo.0803189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009735406
179 https://doi.org/10.1038/sj.ijo.0803189
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/1742-4933-2-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023569728
182 https://doi.org/10.1186/1742-4933-2-1
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/1743-7075-2-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016529032
185 https://doi.org/10.1186/1743-7075-2-17
186 rdf:type schema:CreativeWork
187 sg:pub.10.1186/1743-7075-3-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014105373
188 https://doi.org/10.1186/1743-7075-3-41
189 rdf:type schema:CreativeWork
190 https://app.dimensions.ai/details/publication/pub.1079645215 schema:CreativeWork
191 https://app.dimensions.ai/details/publication/pub.1082798845 schema:CreativeWork
192 https://app.dimensions.ai/details/publication/pub.1083111432 schema:CreativeWork
193 https://doi.org/10.1001/jama.1997.03550140061041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008540649
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/0002-8703(94)90040-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022933045
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.amjcard.2005.01.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030415876
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.amjcard.2005.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045237616
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.bbi.2005.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040067732
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.biochi.2004.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012393291
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.coph.2005.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038739787
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.metabol.2004.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042419877
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/s0002-9343(99)00066-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009488098
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/s0021-9150(00)00586-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032879005
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/s0140-6736(97)09032-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031134413
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s0146-2806(04)00074-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054617327
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1042/bst0331078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011665017
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1042/bst20051078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056717375
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/aje/152.10.897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031009937
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/aje/152.10.908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003616533
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/eurheartj/ehi237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001339419
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/ndt/16.10.1968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027438905
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/oxfordjournals.aje.a008709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019620955
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1111/j.1538-7836.2005.01420.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045131366
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1111/j.1742-4658.2005.04979.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051436288
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1146/annurev.med.56.082103.104751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051935550
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1152/ajpendo.00090.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009339598
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1152/ajpendo.00189.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034248539
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1152/ajpendo.00605.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040482222
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1159/000205234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036858170
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1161/01.cir.0000023186.60090.fb schema:sameAs https://app.dimensions.ai/details/publication/pub.1042860736
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1161/01.cir.0000132467.45278.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031811582
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1161/01.cir.0000149807.32506.f4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027774821
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1161/01.cir.101.18.2149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030382113
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1161/circ.106.25.3143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075204771
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1161/circulationaha.105.537878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048885039
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1161/circulationaha.105.557132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024460652
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1161/hc0902.104353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042565382
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1182/blood-2004-12-4716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007289221
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1191/0961203305lu2214oa schema:sameAs https://app.dimensions.ai/details/publication/pub.1064154710
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1210/jc.2004-0395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064287760
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1517/14712598.3.7.1061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067589347
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1559/152304092783721231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025174177
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1590/s1516-31802001000300008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024097439
272 rdf:type schema:CreativeWork
273 https://doi.org/10.2337/diabetes.51.3.841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021566253
274 rdf:type schema:CreativeWork
275 https://doi.org/10.2337/diabetes.52.11.2840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029210705
276 rdf:type schema:CreativeWork
277 https://doi.org/10.2337/diabetes.53.7.1773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010013179
278 rdf:type schema:CreativeWork
279 https://doi.org/10.2337/diacare.28.9.2211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015834859
280 rdf:type schema:CreativeWork
281 https://www.grid.ac/institutes/grid.17635.36 schema:alternateName University of Minnesota
282 schema:name Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
283 rdf:type schema:Organization
284 https://www.grid.ac/institutes/grid.223827.e schema:alternateName University of Utah
285 schema:name Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT, USA
286 rdf:type schema:Organization
287 https://www.grid.ac/institutes/grid.241167.7 schema:alternateName Wake Forest University
288 schema:name Department of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
289 rdf:type schema:Organization
290 https://www.grid.ac/institutes/grid.265892.2 schema:alternateName University of Alabama at Birmingham
291 schema:name Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
292 rdf:type schema:Organization
293 https://www.grid.ac/institutes/grid.4367.6 schema:alternateName Washington University in St. Louis
294 schema:name Division of Statistical Genomics, Washington University School of Medicine, Saint Louis, MO, USA
295 rdf:type schema:Organization
296 https://www.grid.ac/institutes/grid.62560.37 schema:alternateName Brigham and Women's Hospital
297 schema:name Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
298 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...