Do inflammation and procoagulation biomarkers contribute to the metabolic syndrome cluster? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-12

AUTHORS

Aldi T Kraja, Michael A Province, Donna Arnett, Lynne Wagenknecht, Weihong Tang, Paul N Hopkins, Luc Djoussé, Ingrid B Borecki

ABSTRACT

CONTEXT: The metabolic syndrome (MetS), in addition to its lipid, metabolic, and anthropomorphic characteristics, is associated with a prothrombotic and the proinflammatory state. However, the relationship of inflammatory biomarkers to MetS is not clear. OBJECTIVE: To study the association between a group of thrombotic and inflammatory biomarkers and the MetS. METHODS: Ten conventional MetS risk variables and ten biomarkers were analyzed. Correlations, factor analysis, hexagonal binning, and regression of each biomarker with the National Cholesterol Education Program (NCEP) MetS categories were performed in the Family Heart Study (n = 2,762). RESULTS: Subjects in the top 75% quartile for plasminogen activator inhibitor-1 (PAI1) had a 6.9 CI95 [4.2-11.2] greater odds (p < 0.0001) of being classified with the NCEP MetS. Significant associations of the corresponding top 75% quartile to MetS were identified for monocyte chemotactic protein 1 (MCP1, OR = 2.19), C-reactive protein (CRP, OR = 1.89), interleukin-6 (IL6, OR = 2.11), sICAM1 (OR = 1.61), and fibrinogen (OR = 1.86). PAI1 correlated significantly with all obesity and dyslipidemia variables. CRP had a high correlation with serum amyloid A (0.6) and IL6 (0.51), and a significant correlation with fibrinogen (0.46). Ten conventional quantitative risk factors were utilized to perform multivariate factor analysis. Individual inclusion, in this analysis of each biomarker, showed that, PAI1, CRP, IL6, and fibrinogen were the most important biomarkers that clustered with the MetS latent factors. CONCLUSION: PAI1 is an important risk factor for MetS. It correlates significantly with most of the variables studied, clusters in two latent factors related to obesity and lipids, and demonstrates the greatest relative odds of the 10 biomarkers studied with respect to the MetS. Three other biomarkers, CRP, IL6, and fibrinogen associate also importantly with the MetS cluster. These 4 biomarkers can contribute in the MetS risk assessment. More... »

PAGES

28

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1743-7075-4-28

DOI

http://dx.doi.org/10.1186/1743-7075-4-28

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016450913

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18154661


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Biochemistry and Metabolomics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Washington University in St. Louis", 
          "id": "https://www.grid.ac/institutes/grid.4367.6", 
          "name": [
            "Division of Statistical Genomics, Washington University School of Medicine, Saint Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kraja", 
        "givenName": "Aldi T", 
        "id": "sg:person.01260600634.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260600634.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Washington University in St. Louis", 
          "id": "https://www.grid.ac/institutes/grid.4367.6", 
          "name": [
            "Division of Statistical Genomics, Washington University School of Medicine, Saint Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Province", 
        "givenName": "Michael A", 
        "id": "sg:person.014223302737.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014223302737.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Alabama at Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arnett", 
        "givenName": "Donna", 
        "id": "sg:person.01351132756.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351132756.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wake Forest University", 
          "id": "https://www.grid.ac/institutes/grid.241167.7", 
          "name": [
            "Department of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagenknecht", 
        "givenName": "Lynne", 
        "id": "sg:person.011236207437.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011236207437.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Minnesota", 
          "id": "https://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Weihong", 
        "id": "sg:person.014304652012.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014304652012.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Utah", 
          "id": "https://www.grid.ac/institutes/grid.223827.e", 
          "name": [
            "Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hopkins", 
        "givenName": "Paul N", 
        "id": "sg:person.013107363662.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013107363662.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brigham and Women's Hospital", 
          "id": "https://www.grid.ac/institutes/grid.62560.37", 
          "name": [
            "Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Djouss\u00e9", 
        "givenName": "Luc", 
        "id": "sg:person.01141305172.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141305172.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Washington University in St. Louis", 
          "id": "https://www.grid.ac/institutes/grid.4367.6", 
          "name": [
            "Division of Statistical Genomics, Washington University School of Medicine, Saint Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borecki", 
        "givenName": "Ingrid B", 
        "id": "sg:person.01117564210.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117564210.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/eurheartj/ehi237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001339419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/152.10.908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003616533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2004-12-4716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007289221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.1997.03550140061041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008540649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.00090.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009339598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.00090.2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009339598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9343(99)00066-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009488098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0803189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009735406", 
          "https://doi.org/10.1038/sj.ijo.0803189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0803189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009735406", 
          "https://doi.org/10.1038/sj.ijo.0803189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.53.7.1773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010013179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst0331078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011665017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst0331078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011665017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biochi.2004.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012393291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11745-007-3132-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014003252", 
          "https://doi.org/10.1007/s11745-007-3132-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1743-7075-3-41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014105373", 
          "https://doi.org/10.1186/1743-7075-3-41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.28.9.2211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015834859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1743-7075-2-17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016529032", 
          "https://doi.org/10.1186/1743-7075-2-17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.aje.a008709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019620955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/346074a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020496408", 
          "https://doi.org/10.1038/346074a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.51.3.841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021566253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-8703(94)90040-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022933045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1742-4933-2-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023569728", 
          "https://doi.org/10.1186/1742-4933-2-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1742-4933-2-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023569728", 
          "https://doi.org/10.1186/1742-4933-2-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s1516-31802001000300008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024097439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.557132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024460652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1559/152304092783721231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025174177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ndt/16.10.1968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027438905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000149807.32506.f4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027774821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diabetes.52.11.2840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029210705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.101.18.2149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030382113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2005.01.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030415876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/152.10.897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031009937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(97)09032-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031134413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000132467.45278.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031811582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9150(00)00586-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032879005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.00189.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034248539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000205234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036858170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coph.2005.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038739787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbi.2005.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040067732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbi.2005.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040067732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.00605.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040482222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.00605.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040482222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.metabol.2004.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042419877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc0902.104353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042565382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000023186.60090.fb", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042860736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-7836.2005.01420.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045131366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-7836.2005.01420.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045131366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2005.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045237616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0802778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046539364", 
          "https://doi.org/10.1038/sj.ijo.0802778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0802778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046539364", 
          "https://doi.org/10.1038/sj.ijo.0802778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.537878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048885039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1742-4658.2005.04979.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051436288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1742-4658.2005.04979.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051436288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.med.56.082103.104751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051935550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0146-2806(04)00074-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054617327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst20051078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056717375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0961203305lu2214oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064154710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0961203305lu2214oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064154710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0961203305lu2214oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064154710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2004-0395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064287760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1517/14712598.3.7.1061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067589347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circ.106.25.3143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075204771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079645215", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082798845", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083111432", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "CONTEXT: The metabolic syndrome (MetS), in addition to its lipid, metabolic, and anthropomorphic characteristics, is associated with a prothrombotic and the proinflammatory state. However, the relationship of inflammatory biomarkers to MetS is not clear.\nOBJECTIVE: To study the association between a group of thrombotic and inflammatory biomarkers and the MetS.\nMETHODS: Ten conventional MetS risk variables and ten biomarkers were analyzed. Correlations, factor analysis, hexagonal binning, and regression of each biomarker with the National Cholesterol Education Program (NCEP) MetS categories were performed in the Family Heart Study (n = 2,762).\nRESULTS: Subjects in the top 75% quartile for plasminogen activator inhibitor-1 (PAI1) had a 6.9 CI95 [4.2-11.2] greater odds (p < 0.0001) of being classified with the NCEP MetS. Significant associations of the corresponding top 75% quartile to MetS were identified for monocyte chemotactic protein 1 (MCP1, OR = 2.19), C-reactive protein (CRP, OR = 1.89), interleukin-6 (IL6, OR = 2.11), sICAM1 (OR = 1.61), and fibrinogen (OR = 1.86). PAI1 correlated significantly with all obesity and dyslipidemia variables. CRP had a high correlation with serum amyloid A (0.6) and IL6 (0.51), and a significant correlation with fibrinogen (0.46). Ten conventional quantitative risk factors were utilized to perform multivariate factor analysis. Individual inclusion, in this analysis of each biomarker, showed that, PAI1, CRP, IL6, and fibrinogen were the most important biomarkers that clustered with the MetS latent factors.\nCONCLUSION: PAI1 is an important risk factor for MetS. It correlates significantly with most of the variables studied, clusters in two latent factors related to obesity and lipids, and demonstrates the greatest relative odds of the 10 biomarkers studied with respect to the MetS. Three other biomarkers, CRP, IL6, and fibrinogen associate also importantly with the MetS cluster. These 4 biomarkers can contribute in the MetS risk assessment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1743-7075-4-28", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034448", 
        "issn": [
          "1743-7075"
        ], 
        "name": "Nutrition & Metabolism", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Do inflammation and procoagulation biomarkers contribute to the metabolic syndrome cluster?", 
    "pagination": "28", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4e61eea2d39f708652c0cb7ac73fb5b71876444d51d129014606c1c4184911ae"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18154661"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101231644"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1743-7075-4-28"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016450913"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1743-7075-4-28", 
      "https://app.dimensions.ai/details/publication/pub.1016450913"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1743-7075-4-28"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1743-7075-4-28'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1743-7075-4-28'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1743-7075-4-28'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1743-7075-4-28'


 

This table displays all metadata directly associated to this object as RDF triples.

298 TRIPLES      21 PREDICATES      83 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1743-7075-4-28 schema:about anzsrc-for:11
2 anzsrc-for:1101
3 schema:author Naa48856995d3436180569f938fb3f862
4 schema:citation sg:pub.10.1007/s11745-007-3132-7
5 sg:pub.10.1038/346074a0
6 sg:pub.10.1038/sj.ijo.0802778
7 sg:pub.10.1038/sj.ijo.0803189
8 sg:pub.10.1186/1742-4933-2-1
9 sg:pub.10.1186/1743-7075-2-17
10 sg:pub.10.1186/1743-7075-3-41
11 https://app.dimensions.ai/details/publication/pub.1079645215
12 https://app.dimensions.ai/details/publication/pub.1082798845
13 https://app.dimensions.ai/details/publication/pub.1083111432
14 https://doi.org/10.1001/jama.1997.03550140061041
15 https://doi.org/10.1016/0002-8703(94)90040-x
16 https://doi.org/10.1016/j.amjcard.2005.01.046
17 https://doi.org/10.1016/j.amjcard.2005.05.007
18 https://doi.org/10.1016/j.bbi.2005.04.008
19 https://doi.org/10.1016/j.biochi.2004.09.016
20 https://doi.org/10.1016/j.coph.2005.01.006
21 https://doi.org/10.1016/j.metabol.2004.02.004
22 https://doi.org/10.1016/s0002-9343(99)00066-2
23 https://doi.org/10.1016/s0021-9150(00)00586-4
24 https://doi.org/10.1016/s0140-6736(97)09032-6
25 https://doi.org/10.1016/s0146-2806(04)00074-x
26 https://doi.org/10.1042/bst0331078
27 https://doi.org/10.1042/bst20051078
28 https://doi.org/10.1093/aje/152.10.897
29 https://doi.org/10.1093/aje/152.10.908
30 https://doi.org/10.1093/eurheartj/ehi237
31 https://doi.org/10.1093/ndt/16.10.1968
32 https://doi.org/10.1093/oxfordjournals.aje.a008709
33 https://doi.org/10.1111/j.1538-7836.2005.01420.x
34 https://doi.org/10.1111/j.1742-4658.2005.04979.x
35 https://doi.org/10.1146/annurev.med.56.082103.104751
36 https://doi.org/10.1152/ajpendo.00090.2005
37 https://doi.org/10.1152/ajpendo.00189.2003
38 https://doi.org/10.1152/ajpendo.00605.2004
39 https://doi.org/10.1159/000205234
40 https://doi.org/10.1161/01.cir.0000023186.60090.fb
41 https://doi.org/10.1161/01.cir.0000132467.45278.59
42 https://doi.org/10.1161/01.cir.0000149807.32506.f4
43 https://doi.org/10.1161/01.cir.101.18.2149
44 https://doi.org/10.1161/circ.106.25.3143
45 https://doi.org/10.1161/circulationaha.105.537878
46 https://doi.org/10.1161/circulationaha.105.557132
47 https://doi.org/10.1161/hc0902.104353
48 https://doi.org/10.1182/blood-2004-12-4716
49 https://doi.org/10.1191/0961203305lu2214oa
50 https://doi.org/10.1210/jc.2004-0395
51 https://doi.org/10.1517/14712598.3.7.1061
52 https://doi.org/10.1559/152304092783721231
53 https://doi.org/10.1590/s1516-31802001000300008
54 https://doi.org/10.2337/diabetes.51.3.841
55 https://doi.org/10.2337/diabetes.52.11.2840
56 https://doi.org/10.2337/diabetes.53.7.1773
57 https://doi.org/10.2337/diacare.28.9.2211
58 schema:datePublished 2007-12
59 schema:datePublishedReg 2007-12-01
60 schema:description CONTEXT: The metabolic syndrome (MetS), in addition to its lipid, metabolic, and anthropomorphic characteristics, is associated with a prothrombotic and the proinflammatory state. However, the relationship of inflammatory biomarkers to MetS is not clear. OBJECTIVE: To study the association between a group of thrombotic and inflammatory biomarkers and the MetS. METHODS: Ten conventional MetS risk variables and ten biomarkers were analyzed. Correlations, factor analysis, hexagonal binning, and regression of each biomarker with the National Cholesterol Education Program (NCEP) MetS categories were performed in the Family Heart Study (n = 2,762). RESULTS: Subjects in the top 75% quartile for plasminogen activator inhibitor-1 (PAI1) had a 6.9 CI95 [4.2-11.2] greater odds (p < 0.0001) of being classified with the NCEP MetS. Significant associations of the corresponding top 75% quartile to MetS were identified for monocyte chemotactic protein 1 (MCP1, OR = 2.19), C-reactive protein (CRP, OR = 1.89), interleukin-6 (IL6, OR = 2.11), sICAM1 (OR = 1.61), and fibrinogen (OR = 1.86). PAI1 correlated significantly with all obesity and dyslipidemia variables. CRP had a high correlation with serum amyloid A (0.6) and IL6 (0.51), and a significant correlation with fibrinogen (0.46). Ten conventional quantitative risk factors were utilized to perform multivariate factor analysis. Individual inclusion, in this analysis of each biomarker, showed that, PAI1, CRP, IL6, and fibrinogen were the most important biomarkers that clustered with the MetS latent factors. CONCLUSION: PAI1 is an important risk factor for MetS. It correlates significantly with most of the variables studied, clusters in two latent factors related to obesity and lipids, and demonstrates the greatest relative odds of the 10 biomarkers studied with respect to the MetS. Three other biomarkers, CRP, IL6, and fibrinogen associate also importantly with the MetS cluster. These 4 biomarkers can contribute in the MetS risk assessment.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf N06c89857dfe240c8ae0cbef7e5dd1c2e
65 N18552d6cc0534609ab4c076650412ca7
66 sg:journal.1034448
67 schema:name Do inflammation and procoagulation biomarkers contribute to the metabolic syndrome cluster?
68 schema:pagination 28
69 schema:productId N3d53425236b742e7b2e1e58d72af665d
70 N81d69e78d88e41bbaba4e60176096cb8
71 Naa0a75b7b0eb4e718ee5304d7e808781
72 Nbbb1a0e6ace947c5b41ad8f27898aaf8
73 Nfa765d52a3b342a99d446f233d9df13a
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016450913
75 https://doi.org/10.1186/1743-7075-4-28
76 schema:sdDatePublished 2019-04-11T00:15
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Nada11b6b6a944a4f99d88d3980ef5999
79 schema:url http://link.springer.com/10.1186%2F1743-7075-4-28
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N06c89857dfe240c8ae0cbef7e5dd1c2e schema:volumeNumber 4
84 rdf:type schema:PublicationVolume
85 N18552d6cc0534609ab4c076650412ca7 schema:issueNumber 1
86 rdf:type schema:PublicationIssue
87 N36b35c5f6b8f4d22836ef0550624a5da rdf:first sg:person.01117564210.02
88 rdf:rest rdf:nil
89 N3cdb06d74fd8484e90bc40c57a7a6013 rdf:first sg:person.011236207437.34
90 rdf:rest N6778ea0914374ff79a31481c54bbaae2
91 N3d53425236b742e7b2e1e58d72af665d schema:name doi
92 schema:value 10.1186/1743-7075-4-28
93 rdf:type schema:PropertyValue
94 N6778ea0914374ff79a31481c54bbaae2 rdf:first sg:person.014304652012.83
95 rdf:rest Ne624c900a652476fb1a6d9dd7f6c3efe
96 N6f46718b8a384a60bf1a8c5725094529 rdf:first sg:person.014223302737.04
97 rdf:rest N78041b0ad9344514ae8240ac1e80d1f8
98 N78041b0ad9344514ae8240ac1e80d1f8 rdf:first sg:person.01351132756.07
99 rdf:rest N3cdb06d74fd8484e90bc40c57a7a6013
100 N81d69e78d88e41bbaba4e60176096cb8 schema:name nlm_unique_id
101 schema:value 101231644
102 rdf:type schema:PropertyValue
103 Na60bc1cea46f44c492c913fe21f207d8 rdf:first sg:person.01141305172.66
104 rdf:rest N36b35c5f6b8f4d22836ef0550624a5da
105 Naa0a75b7b0eb4e718ee5304d7e808781 schema:name readcube_id
106 schema:value 4e61eea2d39f708652c0cb7ac73fb5b71876444d51d129014606c1c4184911ae
107 rdf:type schema:PropertyValue
108 Naa48856995d3436180569f938fb3f862 rdf:first sg:person.01260600634.53
109 rdf:rest N6f46718b8a384a60bf1a8c5725094529
110 Nada11b6b6a944a4f99d88d3980ef5999 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Nbbb1a0e6ace947c5b41ad8f27898aaf8 schema:name dimensions_id
113 schema:value pub.1016450913
114 rdf:type schema:PropertyValue
115 Ne624c900a652476fb1a6d9dd7f6c3efe rdf:first sg:person.013107363662.75
116 rdf:rest Na60bc1cea46f44c492c913fe21f207d8
117 Nfa765d52a3b342a99d446f233d9df13a schema:name pubmed_id
118 schema:value 18154661
119 rdf:type schema:PropertyValue
120 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
121 schema:name Medical and Health Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:1101 schema:inDefinedTermSet anzsrc-for:
124 schema:name Medical Biochemistry and Metabolomics
125 rdf:type schema:DefinedTerm
126 sg:journal.1034448 schema:issn 1743-7075
127 schema:name Nutrition & Metabolism
128 rdf:type schema:Periodical
129 sg:person.01117564210.02 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
130 schema:familyName Borecki
131 schema:givenName Ingrid B
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117564210.02
133 rdf:type schema:Person
134 sg:person.011236207437.34 schema:affiliation https://www.grid.ac/institutes/grid.241167.7
135 schema:familyName Wagenknecht
136 schema:givenName Lynne
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011236207437.34
138 rdf:type schema:Person
139 sg:person.01141305172.66 schema:affiliation https://www.grid.ac/institutes/grid.62560.37
140 schema:familyName Djoussé
141 schema:givenName Luc
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141305172.66
143 rdf:type schema:Person
144 sg:person.01260600634.53 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
145 schema:familyName Kraja
146 schema:givenName Aldi T
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260600634.53
148 rdf:type schema:Person
149 sg:person.013107363662.75 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
150 schema:familyName Hopkins
151 schema:givenName Paul N
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013107363662.75
153 rdf:type schema:Person
154 sg:person.01351132756.07 schema:affiliation https://www.grid.ac/institutes/grid.265892.2
155 schema:familyName Arnett
156 schema:givenName Donna
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351132756.07
158 rdf:type schema:Person
159 sg:person.014223302737.04 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
160 schema:familyName Province
161 schema:givenName Michael A
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014223302737.04
163 rdf:type schema:Person
164 sg:person.014304652012.83 schema:affiliation https://www.grid.ac/institutes/grid.17635.36
165 schema:familyName Tang
166 schema:givenName Weihong
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014304652012.83
168 rdf:type schema:Person
169 sg:pub.10.1007/s11745-007-3132-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014003252
170 https://doi.org/10.1007/s11745-007-3132-7
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/346074a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020496408
173 https://doi.org/10.1038/346074a0
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/sj.ijo.0802778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046539364
176 https://doi.org/10.1038/sj.ijo.0802778
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/sj.ijo.0803189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009735406
179 https://doi.org/10.1038/sj.ijo.0803189
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/1742-4933-2-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023569728
182 https://doi.org/10.1186/1742-4933-2-1
183 rdf:type schema:CreativeWork
184 sg:pub.10.1186/1743-7075-2-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016529032
185 https://doi.org/10.1186/1743-7075-2-17
186 rdf:type schema:CreativeWork
187 sg:pub.10.1186/1743-7075-3-41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014105373
188 https://doi.org/10.1186/1743-7075-3-41
189 rdf:type schema:CreativeWork
190 https://app.dimensions.ai/details/publication/pub.1079645215 schema:CreativeWork
191 https://app.dimensions.ai/details/publication/pub.1082798845 schema:CreativeWork
192 https://app.dimensions.ai/details/publication/pub.1083111432 schema:CreativeWork
193 https://doi.org/10.1001/jama.1997.03550140061041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008540649
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/0002-8703(94)90040-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022933045
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.amjcard.2005.01.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030415876
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.amjcard.2005.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045237616
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.bbi.2005.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040067732
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.biochi.2004.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012393291
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.coph.2005.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038739787
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.metabol.2004.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042419877
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/s0002-9343(99)00066-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009488098
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/s0021-9150(00)00586-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032879005
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/s0140-6736(97)09032-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031134413
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s0146-2806(04)00074-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054617327
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1042/bst0331078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011665017
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1042/bst20051078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056717375
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/aje/152.10.897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031009937
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/aje/152.10.908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003616533
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/eurheartj/ehi237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001339419
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/ndt/16.10.1968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027438905
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/oxfordjournals.aje.a008709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019620955
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1111/j.1538-7836.2005.01420.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045131366
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1111/j.1742-4658.2005.04979.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051436288
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1146/annurev.med.56.082103.104751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051935550
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1152/ajpendo.00090.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009339598
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1152/ajpendo.00189.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034248539
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1152/ajpendo.00605.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040482222
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1159/000205234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036858170
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1161/01.cir.0000023186.60090.fb schema:sameAs https://app.dimensions.ai/details/publication/pub.1042860736
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1161/01.cir.0000132467.45278.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031811582
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1161/01.cir.0000149807.32506.f4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027774821
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1161/01.cir.101.18.2149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030382113
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1161/circ.106.25.3143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075204771
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1161/circulationaha.105.537878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048885039
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1161/circulationaha.105.557132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024460652
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1161/hc0902.104353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042565382
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1182/blood-2004-12-4716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007289221
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1191/0961203305lu2214oa schema:sameAs https://app.dimensions.ai/details/publication/pub.1064154710
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1210/jc.2004-0395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064287760
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1517/14712598.3.7.1061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067589347
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1559/152304092783721231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025174177
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1590/s1516-31802001000300008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024097439
272 rdf:type schema:CreativeWork
273 https://doi.org/10.2337/diabetes.51.3.841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021566253
274 rdf:type schema:CreativeWork
275 https://doi.org/10.2337/diabetes.52.11.2840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029210705
276 rdf:type schema:CreativeWork
277 https://doi.org/10.2337/diabetes.53.7.1773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010013179
278 rdf:type schema:CreativeWork
279 https://doi.org/10.2337/diacare.28.9.2211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015834859
280 rdf:type schema:CreativeWork
281 https://www.grid.ac/institutes/grid.17635.36 schema:alternateName University of Minnesota
282 schema:name Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
283 rdf:type schema:Organization
284 https://www.grid.ac/institutes/grid.223827.e schema:alternateName University of Utah
285 schema:name Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT, USA
286 rdf:type schema:Organization
287 https://www.grid.ac/institutes/grid.241167.7 schema:alternateName Wake Forest University
288 schema:name Department of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
289 rdf:type schema:Organization
290 https://www.grid.ac/institutes/grid.265892.2 schema:alternateName University of Alabama at Birmingham
291 schema:name Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
292 rdf:type schema:Organization
293 https://www.grid.ac/institutes/grid.4367.6 schema:alternateName Washington University in St. Louis
294 schema:name Division of Statistical Genomics, Washington University School of Medicine, Saint Louis, MO, USA
295 rdf:type schema:Organization
296 https://www.grid.ac/institutes/grid.62560.37 schema:alternateName Brigham and Women's Hospital
297 schema:name Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
298 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...