The SARS Coronavirus S Glycoprotein Receptor Binding Domain: Fine Mapping and Functional Characterization View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-08-25

AUTHORS

Samitabh Chakraborti, Ponraj Prabakaran, Xiaodong Xiao, Dimiter S Dimitrov

ABSTRACT

The entry of the SARS coronavirus (SCV) into cells is initiated by binding of its spike envelope glycoprotein (S) to a receptor, ACE2. We and others identified the receptor-binding domain (RBD) by using S fragments of various lengths but all including the amino acid residue 318 and two other potential glycosylation sites. To further characterize the role of glycosylation and identify residues important for its function as an interacting partner of ACE2, we have cloned, expressed and characterized various soluble fragments of S containing RBD, and mutated all potential glycosylation sites and 32 other residues. The shortest of these fragments still able to bind the receptor ACE2 did not include residue 318 (which is a potential glycosylation site), but started at residue 319, and has only two potential glycosylation sites (residues 330 and 357). Mutation of each of these sites to either alanine or glutamine, as well as mutation of residue 318 to alanine in longer fragments resulted in the same decrease of molecular weight (by approximately 3 kDa) suggesting that all glycosylation sites are functional. Simultaneous mutation of all glycosylation sites resulted in lack of expression suggesting that at least one glycosylation site (any of the three) is required for expression. Glycosylation did not affect binding to ACE2. Alanine scanning mutagenesis of the fragment S319-518 resulted in the identification of ten residues (K390, R426, D429, T431, I455, N473, F483, Q492, Y494, R495) that significantly reduced binding to ACE2, and one residue (D393) that appears to increase binding. Mutation of residue T431 reduced binding by about 2-fold, and mutation of the other eight residues--by more than 10-fold. Analysis of these data and the mapping of these mutations on the recently determined crystal structure of a fragment containing the RBD complexed to ACE2 (Li, F, Li, W, Farzan, M, and Harrison, S. C., submitted) suggested the existence of two hot spots on the S RBD surface, R426 and N473, which are likely to contribute significant portion of the binding energy. The finding that most of the mutations (23 out of 34 including glycosylation sites) do not affect the RBD binding function indicates possible mechanisms for evasion of immune responses. More... »

PAGES

73-73

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1743-422x-2-73

DOI

http://dx.doi.org/10.1186/1743-422x-2-73

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006105779

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16122388


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Substitution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Angiotensin-Converting Enzyme 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycosylation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Glycoproteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutagenesis, Site-Directed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Peptidyl-Dipeptidase A", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Interaction Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Structure, Tertiary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "SARS Virus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spike Glycoprotein, Coronavirus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Viral Envelope Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Virus Attachment", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Protein Interactions Group, LECB, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201", 
          "id": "http://www.grid.ac/institutes/grid.429651.d", 
          "name": [
            "Protein Interactions Group, LECB, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chakraborti", 
        "givenName": "Samitabh", 
        "id": "sg:person.01030270310.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030270310.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Protein Interactions Group, LECB, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201", 
          "id": "http://www.grid.ac/institutes/grid.429651.d", 
          "name": [
            "Protein Interactions Group, LECB, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prabakaran", 
        "givenName": "Ponraj", 
        "id": "sg:person.01030646403.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030646403.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Protein Interactions Group, LECB, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201", 
          "id": "http://www.grid.ac/institutes/grid.429651.d", 
          "name": [
            "Protein Interactions Group, LECB, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Xiaodong", 
        "id": "sg:person.0675260434.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675260434.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Protein Interactions Group, LECB, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201", 
          "id": "http://www.grid.ac/institutes/grid.429651.d", 
          "name": [
            "Protein Interactions Group, LECB, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dimitrov", 
        "givenName": "Dimiter S", 
        "id": "sg:person.012247636637.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247636637.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature02145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040468747", 
          "https://doi.org/10.1038/nature02145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044058158", 
          "https://doi.org/10.1038/nrmicro817"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-08-25", 
    "datePublishedReg": "2005-08-25", 
    "description": "The entry of the SARS coronavirus (SCV) into cells is initiated by binding of its spike envelope glycoprotein (S) to a receptor, ACE2. We and others identified the receptor-binding domain (RBD) by using S fragments of various lengths but all including the amino acid residue 318 and two other potential glycosylation sites. To further characterize the role of glycosylation and identify residues important for its function as an interacting partner of ACE2, we have cloned, expressed and characterized various soluble fragments of S containing RBD, and mutated all potential glycosylation sites and 32 other residues. The shortest of these fragments still able to bind the receptor ACE2 did not include residue 318 (which is a potential glycosylation site), but started at residue 319, and has only two potential glycosylation sites (residues 330 and 357). Mutation of each of these sites to either alanine or glutamine, as well as mutation of residue 318 to alanine in longer fragments resulted in the same decrease of molecular weight (by approximately 3 kDa) suggesting that all glycosylation sites are functional. Simultaneous mutation of all glycosylation sites resulted in lack of expression suggesting that at least one glycosylation site (any of the three) is required for expression. Glycosylation did not affect binding to ACE2. Alanine scanning mutagenesis of the fragment S319-518 resulted in the identification of ten residues (K390, R426, D429, T431, I455, N473, F483, Q492, Y494, R495) that significantly reduced binding to ACE2, and one residue (D393) that appears to increase binding. Mutation of residue T431 reduced binding by about 2-fold, and mutation of the other eight residues--by more than 10-fold. Analysis of these data and the mapping of these mutations on the recently determined crystal structure of a fragment containing the RBD complexed to ACE2 (Li, F, Li, W, Farzan, M, and Harrison, S. C., submitted) suggested the existence of two hot spots on the S RBD surface, R426 and N473, which are likely to contribute significant portion of the binding energy. The finding that most of the mutations (23 out of 34 including glycosylation sites) do not affect the RBD binding function indicates possible mechanisms for evasion of immune responses.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1743-422x-2-73", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034449", 
        "issn": [
          "1743-422X"
        ], 
        "name": "Virology Journal", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "potential glycosylation sites", 
      "glycosylation sites", 
      "receptor-binding domain", 
      "residue 318", 
      "role of glycosylation", 
      "alanine scanning mutagenesis", 
      "fine mapping", 
      "functional characterization", 
      "scanning mutagenesis", 
      "binding domains", 
      "simultaneous mutations", 
      "lack of expression", 
      "receptor binding domains", 
      "SARS coronavirus", 
      "long fragment", 
      "mutations", 
      "soluble fragment", 
      "residues", 
      "glycosylation", 
      "fragments", 
      "expression", 
      "sites", 
      "molecular weight", 
      "mutagenesis", 
      "S319", 
      "T431", 
      "envelope glycoprotein", 
      "domain", 
      "ACE2", 
      "hot spots", 
      "immune response", 
      "crystal structure", 
      "possible mechanism", 
      "glycoprotein", 
      "alanine", 
      "cells", 
      "mapping", 
      "significant portion", 
      "function", 
      "evasion", 
      "receptors", 
      "coronavirus", 
      "identification", 
      "mechanism", 
      "role", 
      "characterization", 
      "spots", 
      "partners", 
      "entry", 
      "response", 
      "portion", 
      "same decrease", 
      "structure", 
      "analysis", 
      "length", 
      "lack", 
      "decrease", 
      "existence", 
      "weight", 
      "findings", 
      "data", 
      "surface", 
      "energy", 
      "spike envelope glycoprotein", 
      "amino acid residue 318", 
      "acid residue 318", 
      "partner of ACE2", 
      "receptor ACE2", 
      "fragment S319", 
      "residue T431", 
      "RBD surface", 
      "R426", 
      "N473", 
      "SARS Coronavirus S Glycoprotein Receptor Binding Domain", 
      "Coronavirus S Glycoprotein Receptor Binding Domain", 
      "S Glycoprotein Receptor Binding Domain", 
      "Glycoprotein Receptor Binding Domain"
    ], 
    "name": "The SARS Coronavirus S Glycoprotein Receptor Binding Domain: Fine Mapping and Functional Characterization", 
    "pagination": "73-73", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006105779"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1743-422x-2-73"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16122388"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1743-422x-2-73", 
      "https://app.dimensions.ai/details/publication/pub.1006105779"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_405.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1743-422x-2-73"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1743-422x-2-73'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1743-422x-2-73'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1743-422x-2-73'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1743-422x-2-73'


 

This table displays all metadata directly associated to this object as RDF triples.

239 TRIPLES      22 PREDICATES      123 URIs      113 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1743-422x-2-73 schema:about N02da4c6216b1492f9e390ee3c04f53d5
2 N0681dd9627074a3b8c7636b170e3a46d
3 N3715c7faf6924754bf1cf0d72cc98e70
4 N38239160b8e646999b8ff11e38deb250
5 N585332deefb145c4a4a6226540ab1ea6
6 N5f87817cb22547e992f5960a582868d3
7 N615c4a0cbe28493397eb63163721eb21
8 N6851d173af304632a7400ef43976642d
9 N8611c8445c1a44e991f7f2f0d5b151fe
10 N90e8f26357b245839abc868db993434d
11 Nbcc2e7ef80914f2988f56bd24036d970
12 Nbd54e27aa2f34004a67bf1ba6a127a44
13 Nbeef1ec907cb47908eb63736281d96b5
14 Ne0bc7b59e9844732b6618d61beae9d4d
15 Ne29db08ded2d4ea4bb4b5fe0a6365047
16 Ne7b34d8d6268417bafcb244459a08d0d
17 Necf54b491f5c43e584c44f28e066156d
18 Nffd1c10fa31f409a835ee47eaa1a2c7f
19 anzsrc-for:06
20 anzsrc-for:0601
21 schema:author Nfb214a78f35b43f7b1284527bb049073
22 schema:citation sg:pub.10.1038/nature02145
23 sg:pub.10.1038/nrmicro817
24 schema:datePublished 2005-08-25
25 schema:datePublishedReg 2005-08-25
26 schema:description The entry of the SARS coronavirus (SCV) into cells is initiated by binding of its spike envelope glycoprotein (S) to a receptor, ACE2. We and others identified the receptor-binding domain (RBD) by using S fragments of various lengths but all including the amino acid residue 318 and two other potential glycosylation sites. To further characterize the role of glycosylation and identify residues important for its function as an interacting partner of ACE2, we have cloned, expressed and characterized various soluble fragments of S containing RBD, and mutated all potential glycosylation sites and 32 other residues. The shortest of these fragments still able to bind the receptor ACE2 did not include residue 318 (which is a potential glycosylation site), but started at residue 319, and has only two potential glycosylation sites (residues 330 and 357). Mutation of each of these sites to either alanine or glutamine, as well as mutation of residue 318 to alanine in longer fragments resulted in the same decrease of molecular weight (by approximately 3 kDa) suggesting that all glycosylation sites are functional. Simultaneous mutation of all glycosylation sites resulted in lack of expression suggesting that at least one glycosylation site (any of the three) is required for expression. Glycosylation did not affect binding to ACE2. Alanine scanning mutagenesis of the fragment S319-518 resulted in the identification of ten residues (K390, R426, D429, T431, I455, N473, F483, Q492, Y494, R495) that significantly reduced binding to ACE2, and one residue (D393) that appears to increase binding. Mutation of residue T431 reduced binding by about 2-fold, and mutation of the other eight residues--by more than 10-fold. Analysis of these data and the mapping of these mutations on the recently determined crystal structure of a fragment containing the RBD complexed to ACE2 (Li, F, Li, W, Farzan, M, and Harrison, S. C., submitted) suggested the existence of two hot spots on the S RBD surface, R426 and N473, which are likely to contribute significant portion of the binding energy. The finding that most of the mutations (23 out of 34 including glycosylation sites) do not affect the RBD binding function indicates possible mechanisms for evasion of immune responses.
27 schema:genre article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N52574b8757ac43dea7e771fbf1ad686a
31 N5c1703fa89a14ec08d3f3c0ea2daffa0
32 sg:journal.1034449
33 schema:keywords ACE2
34 Coronavirus S Glycoprotein Receptor Binding Domain
35 Glycoprotein Receptor Binding Domain
36 N473
37 R426
38 RBD surface
39 S Glycoprotein Receptor Binding Domain
40 S319
41 SARS Coronavirus S Glycoprotein Receptor Binding Domain
42 SARS coronavirus
43 T431
44 acid residue 318
45 alanine
46 alanine scanning mutagenesis
47 amino acid residue 318
48 analysis
49 binding domains
50 cells
51 characterization
52 coronavirus
53 crystal structure
54 data
55 decrease
56 domain
57 energy
58 entry
59 envelope glycoprotein
60 evasion
61 existence
62 expression
63 findings
64 fine mapping
65 fragment S319
66 fragments
67 function
68 functional characterization
69 glycoprotein
70 glycosylation
71 glycosylation sites
72 hot spots
73 identification
74 immune response
75 lack
76 lack of expression
77 length
78 long fragment
79 mapping
80 mechanism
81 molecular weight
82 mutagenesis
83 mutations
84 partner of ACE2
85 partners
86 portion
87 possible mechanism
88 potential glycosylation sites
89 receptor ACE2
90 receptor binding domains
91 receptor-binding domain
92 receptors
93 residue 318
94 residue T431
95 residues
96 response
97 role
98 role of glycosylation
99 same decrease
100 scanning mutagenesis
101 significant portion
102 simultaneous mutations
103 sites
104 soluble fragment
105 spike envelope glycoprotein
106 spots
107 structure
108 surface
109 weight
110 schema:name The SARS Coronavirus S Glycoprotein Receptor Binding Domain: Fine Mapping and Functional Characterization
111 schema:pagination 73-73
112 schema:productId N245d6935c92b4bc08cfd2b25caff8b4d
113 Nca7685d8be8441c59dcd1564c7039a6d
114 Nf79057f51c9d46f2a395ea268e7e7583
115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006105779
116 https://doi.org/10.1186/1743-422x-2-73
117 schema:sdDatePublished 2021-12-01T19:17
118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
119 schema:sdPublisher N3a5ec9f3587d46bfa8ca499da385042f
120 schema:url https://doi.org/10.1186/1743-422x-2-73
121 sgo:license sg:explorer/license/
122 sgo:sdDataset articles
123 rdf:type schema:ScholarlyArticle
124 N02da4c6216b1492f9e390ee3c04f53d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Amino Acid Substitution
126 rdf:type schema:DefinedTerm
127 N059a43a016be41a0a140f280b2521c0e rdf:first sg:person.01030646403.51
128 rdf:rest Neffcf71e4d1140f1bf1baa68d47fce1f
129 N0681dd9627074a3b8c7636b170e3a46d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Sequence Alignment
131 rdf:type schema:DefinedTerm
132 N0f9454ad262e4e13a95bb3dc33d8ee24 rdf:first sg:person.012247636637.59
133 rdf:rest rdf:nil
134 N245d6935c92b4bc08cfd2b25caff8b4d schema:name pubmed_id
135 schema:value 16122388
136 rdf:type schema:PropertyValue
137 N3715c7faf6924754bf1cf0d72cc98e70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Peptidyl-Dipeptidase A
139 rdf:type schema:DefinedTerm
140 N38239160b8e646999b8ff11e38deb250 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Protein Structure, Tertiary
142 rdf:type schema:DefinedTerm
143 N3a5ec9f3587d46bfa8ca499da385042f schema:name Springer Nature - SN SciGraph project
144 rdf:type schema:Organization
145 N52574b8757ac43dea7e771fbf1ad686a schema:issueNumber 1
146 rdf:type schema:PublicationIssue
147 N585332deefb145c4a4a6226540ab1ea6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Spike Glycoprotein, Coronavirus
149 rdf:type schema:DefinedTerm
150 N5c1703fa89a14ec08d3f3c0ea2daffa0 schema:volumeNumber 2
151 rdf:type schema:PublicationVolume
152 N5f87817cb22547e992f5960a582868d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Glycosylation
154 rdf:type schema:DefinedTerm
155 N615c4a0cbe28493397eb63163721eb21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Protein Interaction Mapping
157 rdf:type schema:DefinedTerm
158 N6851d173af304632a7400ef43976642d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Viral Envelope Proteins
160 rdf:type schema:DefinedTerm
161 N8611c8445c1a44e991f7f2f0d5b151fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Molecular Sequence Data
163 rdf:type schema:DefinedTerm
164 N90e8f26357b245839abc868db993434d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Protein Binding
166 rdf:type schema:DefinedTerm
167 Nbcc2e7ef80914f2988f56bd24036d970 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name SARS Virus
169 rdf:type schema:DefinedTerm
170 Nbd54e27aa2f34004a67bf1ba6a127a44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Membrane Glycoproteins
172 rdf:type schema:DefinedTerm
173 Nbeef1ec907cb47908eb63736281d96b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Virus Attachment
175 rdf:type schema:DefinedTerm
176 Nca7685d8be8441c59dcd1564c7039a6d schema:name dimensions_id
177 schema:value pub.1006105779
178 rdf:type schema:PropertyValue
179 Ne0bc7b59e9844732b6618d61beae9d4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Angiotensin-Converting Enzyme 2
181 rdf:type schema:DefinedTerm
182 Ne29db08ded2d4ea4bb4b5fe0a6365047 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Models, Molecular
184 rdf:type schema:DefinedTerm
185 Ne7b34d8d6268417bafcb244459a08d0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Amino Acid Sequence
187 rdf:type schema:DefinedTerm
188 Necf54b491f5c43e584c44f28e066156d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Mutagenesis, Site-Directed
190 rdf:type schema:DefinedTerm
191 Neffcf71e4d1140f1bf1baa68d47fce1f rdf:first sg:person.0675260434.36
192 rdf:rest N0f9454ad262e4e13a95bb3dc33d8ee24
193 Nf79057f51c9d46f2a395ea268e7e7583 schema:name doi
194 schema:value 10.1186/1743-422x-2-73
195 rdf:type schema:PropertyValue
196 Nfb214a78f35b43f7b1284527bb049073 rdf:first sg:person.01030270310.33
197 rdf:rest N059a43a016be41a0a140f280b2521c0e
198 Nffd1c10fa31f409a835ee47eaa1a2c7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Phylogeny
200 rdf:type schema:DefinedTerm
201 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
202 schema:name Biological Sciences
203 rdf:type schema:DefinedTerm
204 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
205 schema:name Biochemistry and Cell Biology
206 rdf:type schema:DefinedTerm
207 sg:journal.1034449 schema:issn 1743-422X
208 schema:name Virology Journal
209 schema:publisher Springer Nature
210 rdf:type schema:Periodical
211 sg:person.01030270310.33 schema:affiliation grid-institutes:grid.429651.d
212 schema:familyName Chakraborti
213 schema:givenName Samitabh
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030270310.33
215 rdf:type schema:Person
216 sg:person.01030646403.51 schema:affiliation grid-institutes:grid.429651.d
217 schema:familyName Prabakaran
218 schema:givenName Ponraj
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030646403.51
220 rdf:type schema:Person
221 sg:person.012247636637.59 schema:affiliation grid-institutes:grid.429651.d
222 schema:familyName Dimitrov
223 schema:givenName Dimiter S
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012247636637.59
225 rdf:type schema:Person
226 sg:person.0675260434.36 schema:affiliation grid-institutes:grid.429651.d
227 schema:familyName Xiao
228 schema:givenName Xiaodong
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675260434.36
230 rdf:type schema:Person
231 sg:pub.10.1038/nature02145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040468747
232 https://doi.org/10.1038/nature02145
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/nrmicro817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044058158
235 https://doi.org/10.1038/nrmicro817
236 rdf:type schema:CreativeWork
237 grid-institutes:grid.429651.d schema:alternateName Protein Interactions Group, LECB, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201
238 schema:name Protein Interactions Group, LECB, CCR, NCI-Frederick, NIH, Frederick, MD 21702-1201
239 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...