Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-12

AUTHORS

H David Sheets, Kristen M Covino, Joanna M Panasiewicz, Sara R Morris

ABSTRACT

BACKGROUND: Geometric morphometric methods of capturing information about curves or outlines of organismal structures may be used in conjunction with canonical variates analysis (CVA) to assign specimens to groups or populations based on their shapes. This methodological paper examines approaches to optimizing the classification of specimens based on their outlines. This study examines the performance of four approaches to the mathematical representation of outlines and two different approaches to curve measurement as applied to a collection of feather outlines. A new approach to the dimension reduction necessary to carry out a CVA on this type of outline data with modest sample sizes is also presented, and its performance is compared to two other approaches to dimension reduction. RESULTS: Two semi-landmark-based methods, bending energy alignment and perpendicular projection, are shown to produce roughly equal rates of classification, as do elliptical Fourier methods and the extended eigenshape method of outline measurement. Rates of classification were not highly dependent on the number of points used to represent a curve or the manner in which those points were acquired. The new approach to dimensionality reduction, which utilizes a variable number of principal component (PC) axes, produced higher cross-validation assignment rates than either the standard approach of using a fixed number of PC axes or a partial least squares method. CONCLUSION: Classification of specimens based on feather shape was not highly dependent of the details of the method used to capture shape information. The choice of dimensionality reduction approach was more of a factor, and the cross validation rate of assignment may be optimized using the variable number of PC axes method presented herein. More... »

PAGES

15

Journal

TITLE

Frontiers in Zoology

ISSUE

1

VOLUME

3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1742-9994-3-15

DOI

http://dx.doi.org/10.1186/1742-9994-3-15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050446840

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16978414


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Canisius College", 
          "id": "https://www.grid.ac/institutes/grid.253641.7", 
          "name": [
            "Department of Physics, Canisius College, 2001 Main St, 14208, Buffalo, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheets", 
        "givenName": "H David", 
        "id": "sg:person.0721202760.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721202760.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Canisius College", 
          "id": "https://www.grid.ac/institutes/grid.253641.7", 
          "name": [
            "Department of Biology, Canisius College, 2001 Main St, 14208, Buffalo, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Covino", 
        "givenName": "Kristen M", 
        "id": "sg:person.014752732355.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014752732355.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Canisius College", 
          "id": "https://www.grid.ac/institutes/grid.253641.7", 
          "name": [
            "Department of Biology, Canisius College, 2001 Main St, 14208, Buffalo, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panasiewicz", 
        "givenName": "Joanna M", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Canisius College", 
          "id": "https://www.grid.ac/institutes/grid.253641.7", 
          "name": [
            "Department of Biology, Canisius College, 2001 Main St, 14208, Buffalo, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morris", 
        "givenName": "Sara R", 
        "id": "sg:person.01165634760.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165634760.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/aob/mch190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001418384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-9083-2_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001898664", 
          "https://doi.org/10.1007/978-1-4757-9083-2_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/0016-7606(1972)83[1169:faotom]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003352765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-7580.2006.00576.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008075733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008740524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003579900054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011805891", 
          "https://doi.org/10.1007/s003579900054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2001.0977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023796667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0144-8609(99)00035-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023814786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.03411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027447778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jhered/93.5.384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032655714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1095-8312.2004.00385.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035004372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1361-8415(97)85012-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043746563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-9473(93)90111-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043794619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-7439(95)00090-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043822911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0047-2484(02)00201-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043887301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0047-2484(02)00201-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043887301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01033230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052341646", 
          "https://doi.org/10.1007/bf01033230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1997.10474028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150119110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/106351598261094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.24792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061155904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.1972.5008949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061531397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1666/0022-3360(2004)078<0651:capros>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068192966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1938650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069662550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2413076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069921405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2413345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069921612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-08865-4_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090867389", 
          "https://doi.org/10.1007/978-3-662-08865-4_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-08865-4_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090867392", 
          "https://doi.org/10.1007/978-3-662-08865-4_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-08865-4_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090867395", 
          "https://doi.org/10.1007/978-3-662-08865-4_6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-12", 
    "datePublishedReg": "2006-12-01", 
    "description": "BACKGROUND: Geometric morphometric methods of capturing information about curves or outlines of organismal structures may be used in conjunction with canonical variates analysis (CVA) to assign specimens to groups or populations based on their shapes. This methodological paper examines approaches to optimizing the classification of specimens based on their outlines. This study examines the performance of four approaches to the mathematical representation of outlines and two different approaches to curve measurement as applied to a collection of feather outlines. A new approach to the dimension reduction necessary to carry out a CVA on this type of outline data with modest sample sizes is also presented, and its performance is compared to two other approaches to dimension reduction.\nRESULTS: Two semi-landmark-based methods, bending energy alignment and perpendicular projection, are shown to produce roughly equal rates of classification, as do elliptical Fourier methods and the extended eigenshape method of outline measurement. Rates of classification were not highly dependent on the number of points used to represent a curve or the manner in which those points were acquired. The new approach to dimensionality reduction, which utilizes a variable number of principal component (PC) axes, produced higher cross-validation assignment rates than either the standard approach of using a fixed number of PC axes or a partial least squares method.\nCONCLUSION: Classification of specimens based on feather shape was not highly dependent of the details of the method used to capture shape information. The choice of dimensionality reduction approach was more of a factor, and the cross validation rate of assignment may be optimized using the variable number of PC axes method presented herein.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1742-9994-3-15", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034452", 
        "issn": [
          "1742-9994"
        ], 
        "name": "Frontiers in Zoology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape", 
    "pagination": "15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f04fcbbf726571d79b1211d925ca7bdda73d9e023a7e4127f178e6f96e6dc36f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16978414"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101231669"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1742-9994-3-15"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050446840"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1742-9994-3-15", 
      "https://app.dimensions.ai/details/publication/pub.1050446840"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1742-9994-3-15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1742-9994-3-15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1742-9994-3-15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1742-9994-3-15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1742-9994-3-15'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1742-9994-3-15 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6e1f1ca1d2f548398068e4cd81b9f244
4 schema:citation sg:pub.10.1007/978-1-4757-9083-2_18
5 sg:pub.10.1007/978-3-662-08865-4_14
6 sg:pub.10.1007/978-3-662-08865-4_17
7 sg:pub.10.1007/978-3-662-08865-4_6
8 sg:pub.10.1007/bf01033230
9 sg:pub.10.1007/s003579900054
10 https://doi.org/10.1006/nimg.2001.0977
11 https://doi.org/10.1016/0167-9473(93)90111-6
12 https://doi.org/10.1016/0169-7439(95)00090-9
13 https://doi.org/10.1016/s0047-2484(02)00201-4
14 https://doi.org/10.1016/s0144-8609(99)00035-7
15 https://doi.org/10.1016/s1361-8415(97)85012-8
16 https://doi.org/10.1080/01621459.1997.10474028
17 https://doi.org/10.1080/10635150119110
18 https://doi.org/10.1080/106351598261094
19 https://doi.org/10.1093/aob/mch190
20 https://doi.org/10.1093/bioinformatics/btg062
21 https://doi.org/10.1093/jhered/93.5.384
22 https://doi.org/10.1109/34.24792
23 https://doi.org/10.1109/tc.1972.5008949
24 https://doi.org/10.1111/1467-9868.03411
25 https://doi.org/10.1111/j.1095-8312.2004.00385.x
26 https://doi.org/10.1111/j.1469-7580.2006.00576.x
27 https://doi.org/10.1130/0016-7606(1972)83[1169:faotom]2.0.co;2
28 https://doi.org/10.1666/0022-3360(2004)078<0651:capros>2.0.co;2
29 https://doi.org/10.2307/1938650
30 https://doi.org/10.2307/2413076
31 https://doi.org/10.2307/2413345
32 schema:datePublished 2006-12
33 schema:datePublishedReg 2006-12-01
34 schema:description BACKGROUND: Geometric morphometric methods of capturing information about curves or outlines of organismal structures may be used in conjunction with canonical variates analysis (CVA) to assign specimens to groups or populations based on their shapes. This methodological paper examines approaches to optimizing the classification of specimens based on their outlines. This study examines the performance of four approaches to the mathematical representation of outlines and two different approaches to curve measurement as applied to a collection of feather outlines. A new approach to the dimension reduction necessary to carry out a CVA on this type of outline data with modest sample sizes is also presented, and its performance is compared to two other approaches to dimension reduction. RESULTS: Two semi-landmark-based methods, bending energy alignment and perpendicular projection, are shown to produce roughly equal rates of classification, as do elliptical Fourier methods and the extended eigenshape method of outline measurement. Rates of classification were not highly dependent on the number of points used to represent a curve or the manner in which those points were acquired. The new approach to dimensionality reduction, which utilizes a variable number of principal component (PC) axes, produced higher cross-validation assignment rates than either the standard approach of using a fixed number of PC axes or a partial least squares method. CONCLUSION: Classification of specimens based on feather shape was not highly dependent of the details of the method used to capture shape information. The choice of dimensionality reduction approach was more of a factor, and the cross validation rate of assignment may be optimized using the variable number of PC axes method presented herein.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N19ec435139e64793b59f2738a06cc00b
39 N9447ceeeec9e41cfbee7eaa96c0af49d
40 sg:journal.1034452
41 schema:name Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape
42 schema:pagination 15
43 schema:productId N314ea939789e4d0eaa2695e9e1eee466
44 N6ffb55f9d17540e3bdfa4c7b5c36c385
45 N7f800f54a7c647d498e61e2faf4779a9
46 Nc596e54df69544dab32969a447e5898d
47 Nea3a2277be9d4f1aa6caa48058e1bc26
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050446840
49 https://doi.org/10.1186/1742-9994-3-15
50 schema:sdDatePublished 2019-04-10T22:39
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N905ff575725a42918e0cc4a61462f0ce
53 schema:url http://link.springer.com/10.1186%2F1742-9994-3-15
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N19ec435139e64793b59f2738a06cc00b schema:volumeNumber 3
58 rdf:type schema:PublicationVolume
59 N314ea939789e4d0eaa2695e9e1eee466 schema:name dimensions_id
60 schema:value pub.1050446840
61 rdf:type schema:PropertyValue
62 N6e1f1ca1d2f548398068e4cd81b9f244 rdf:first sg:person.0721202760.15
63 rdf:rest Nca1a8e94f96443ffb1c3db17426be8b6
64 N6ffb55f9d17540e3bdfa4c7b5c36c385 schema:name doi
65 schema:value 10.1186/1742-9994-3-15
66 rdf:type schema:PropertyValue
67 N7adbfedca1f24d84846903cca1dc0c08 rdf:first Nceabad39bd4a468eb75979e5cab35209
68 rdf:rest Ne9fcfe46eacb4d0bbb9f9e33c95d177b
69 N7f800f54a7c647d498e61e2faf4779a9 schema:name readcube_id
70 schema:value f04fcbbf726571d79b1211d925ca7bdda73d9e023a7e4127f178e6f96e6dc36f
71 rdf:type schema:PropertyValue
72 N905ff575725a42918e0cc4a61462f0ce schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N9447ceeeec9e41cfbee7eaa96c0af49d schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 Nc596e54df69544dab32969a447e5898d schema:name nlm_unique_id
77 schema:value 101231669
78 rdf:type schema:PropertyValue
79 Nca1a8e94f96443ffb1c3db17426be8b6 rdf:first sg:person.014752732355.23
80 rdf:rest N7adbfedca1f24d84846903cca1dc0c08
81 Nceabad39bd4a468eb75979e5cab35209 schema:affiliation https://www.grid.ac/institutes/grid.253641.7
82 schema:familyName Panasiewicz
83 schema:givenName Joanna M
84 rdf:type schema:Person
85 Ne9fcfe46eacb4d0bbb9f9e33c95d177b rdf:first sg:person.01165634760.76
86 rdf:rest rdf:nil
87 Nea3a2277be9d4f1aa6caa48058e1bc26 schema:name pubmed_id
88 schema:value 16978414
89 rdf:type schema:PropertyValue
90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
91 schema:name Mathematical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
94 schema:name Pure Mathematics
95 rdf:type schema:DefinedTerm
96 sg:journal.1034452 schema:issn 1742-9994
97 schema:name Frontiers in Zoology
98 rdf:type schema:Periodical
99 sg:person.01165634760.76 schema:affiliation https://www.grid.ac/institutes/grid.253641.7
100 schema:familyName Morris
101 schema:givenName Sara R
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165634760.76
103 rdf:type schema:Person
104 sg:person.014752732355.23 schema:affiliation https://www.grid.ac/institutes/grid.253641.7
105 schema:familyName Covino
106 schema:givenName Kristen M
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014752732355.23
108 rdf:type schema:Person
109 sg:person.0721202760.15 schema:affiliation https://www.grid.ac/institutes/grid.253641.7
110 schema:familyName Sheets
111 schema:givenName H David
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721202760.15
113 rdf:type schema:Person
114 sg:pub.10.1007/978-1-4757-9083-2_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001898664
115 https://doi.org/10.1007/978-1-4757-9083-2_18
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-3-662-08865-4_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090867389
118 https://doi.org/10.1007/978-3-662-08865-4_14
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-3-662-08865-4_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090867392
121 https://doi.org/10.1007/978-3-662-08865-4_17
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/978-3-662-08865-4_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090867395
124 https://doi.org/10.1007/978-3-662-08865-4_6
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf01033230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052341646
127 https://doi.org/10.1007/bf01033230
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s003579900054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011805891
130 https://doi.org/10.1007/s003579900054
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1006/nimg.2001.0977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023796667
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0167-9473(93)90111-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043794619
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0169-7439(95)00090-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043822911
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0047-2484(02)00201-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043887301
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0144-8609(99)00035-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023814786
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s1361-8415(97)85012-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043746563
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1080/01621459.1997.10474028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305277
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1080/10635150119110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369150
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1080/106351598261094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369886
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1093/aob/mch190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001418384
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1093/bioinformatics/btg062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008740524
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1093/jhered/93.5.384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032655714
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/34.24792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155904
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/tc.1972.5008949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061531397
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1111/1467-9868.03411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027447778
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1111/j.1095-8312.2004.00385.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035004372
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1111/j.1469-7580.2006.00576.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008075733
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1130/0016-7606(1972)83[1169:faotom]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003352765
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1666/0022-3360(2004)078<0651:capros>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068192966
169 rdf:type schema:CreativeWork
170 https://doi.org/10.2307/1938650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069662550
171 rdf:type schema:CreativeWork
172 https://doi.org/10.2307/2413076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069921405
173 rdf:type schema:CreativeWork
174 https://doi.org/10.2307/2413345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069921612
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.253641.7 schema:alternateName Canisius College
177 schema:name Department of Biology, Canisius College, 2001 Main St, 14208, Buffalo, NY, USA
178 Department of Physics, Canisius College, 2001 Main St, 14208, Buffalo, NY, USA
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...