Quantitative shape analysis with weighted covariance estimates for increased statistical efficiency View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Hossein Ragheb, Neil A Thacker, Paul A Bromiley, Diethard Tautz, Anja C Schunke

ABSTRACT

BACKGROUND: The introduction and statistical formalisation of landmark-based methods for analysing biological shape has made a major impact on comparative morphometric analyses. However, a satisfactory solution for including information from 2D/3D shapes represented by 'semi-landmarks' alongside well-defined landmarks into the analyses is still missing. Also, there has not been an integration of a statistical treatment of measurement error in the current approaches. RESULTS: We propose a procedure based upon the description of landmarks with measurement covariance, which extends statistical linear modelling processes to semi-landmarks for further analysis. Our formulation is based upon a self consistent approach to the construction of likelihood-based parameter estimation and includes corrections for parameter bias, induced by the degrees of freedom within the linear model. The method has been implemented and tested on measurements from 2D fly wing, 2D mouse mandible and 3D mouse skull data. We use these data to explore possible advantages and disadvantages over the use of standard Procrustes/PCA analysis via a combination of Monte-Carlo studies and quantitative statistical tests. In the process we show how appropriate weighting provides not only greater stability but also more efficient use of the available landmark data. The set of new landmarks generated in our procedure ('ghost points') can then be used in any further downstream statistical analysis. CONCLUSIONS: Our approach provides a consistent way of including different forms of landmarks into an analysis and reduces instabilities due to poorly defined points. Our results suggest that the method has the potential to be utilised for the analysis of 2D/3D data, and in particular, for the inclusion of information from surfaces represented by multiple landmark points. More... »

PAGES

16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1742-9994-10-16

DOI

http://dx.doi.org/10.1186/1742-9994-10-16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042872554

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23548043


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "Imaging Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ragheb", 
        "givenName": "Hossein", 
        "id": "sg:person.0670035114.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670035114.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "Imaging Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thacker", 
        "givenName": "Neil A", 
        "id": "sg:person.01110507554.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110507554.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Manchester", 
          "id": "https://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "Imaging Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bromiley", 
        "givenName": "Paul A", 
        "id": "sg:person.0725244667.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725244667.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Evolutionary Biology", 
          "id": "https://www.grid.ac/institutes/grid.419520.b", 
          "name": [
            "Max-Planck Institute for Evolutionary Biology, Pl\u00f6n, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tautz", 
        "givenName": "Diethard", 
        "id": "sg:person.01254737604.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254737604.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Evolutionary Biology", 
          "id": "https://www.grid.ac/institutes/grid.419520.b", 
          "name": [
            "Max-Planck Institute for Evolutionary Biology, Pl\u00f6n, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schunke", 
        "givenName": "Anja C", 
        "id": "sg:person.011117026644.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011117026644.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00890247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000381679", 
          "https://doi.org/10.1007/bf00890247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-7580.2006.00576.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008075733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0262-8856(02)00010-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008870614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.parint.2010.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012440566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015007392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015858711", 
          "https://doi.org/10.1038/nrg2829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015858711", 
          "https://doi.org/10.1038/nrg2829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.anthro.34.081804.120613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018178356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0026425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019485815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/cviu.1995.1004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021804206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1742-9994-9-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023332826", 
          "https://doi.org/10.1186/1742-9994-9-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11692-011-9109-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026878183", 
          "https://doi.org/10.1007/s11692-011-9109-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.813887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029169357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03014468400007321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032367099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11692-008-9029-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032689442", 
          "https://doi.org/10.1007/s11692-008-9029-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/11250000409356545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033422809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/blms/16.2.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038472811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11692-009-9055-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041140831", 
          "https://doi.org/10.1007/s11692-009-9055-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004420100720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041807192", 
          "https://doi.org/10.1007/s004420100720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-27614-9_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042952090", 
          "https://doi.org/10.1007/0-387-27614-9_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11692-011-9158-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043033037", 
          "https://doi.org/10.1007/s11692-011-9158-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1361-8415(97)85012-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043746563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1558-5646.2011.01244.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046686634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11692-008-9020-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049374211", 
          "https://doi.org/10.1007/s11692-008-9020-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0047-2484(03)00047-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049838110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0047-2484(03)00047-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049838110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.10174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050334011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1077-3142(03)00009-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050999329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1077-3142(03)00009-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050999329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0508445103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052873510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/106351500750049770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058369115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.736021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.929618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1974.1100705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061471419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1162/biot.2009.4.1.84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063351304", 
          "https://doi.org/10.1162/biot.2009.4.1.84"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/004017004000000563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177013696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064410204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2992207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070161844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2992208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070161845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076973412", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081518966", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.25.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099341355"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "BACKGROUND: The introduction and statistical formalisation of landmark-based methods for analysing biological shape has made a major impact on comparative morphometric analyses. However, a satisfactory solution for including information from 2D/3D shapes represented by 'semi-landmarks' alongside well-defined landmarks into the analyses is still missing. Also, there has not been an integration of a statistical treatment of measurement error in the current approaches.\nRESULTS: We propose a procedure based upon the description of landmarks with measurement covariance, which extends statistical linear modelling processes to semi-landmarks for further analysis. Our formulation is based upon a self consistent approach to the construction of likelihood-based parameter estimation and includes corrections for parameter bias, induced by the degrees of freedom within the linear model. The method has been implemented and tested on measurements from 2D fly wing, 2D mouse mandible and 3D mouse skull data. We use these data to explore possible advantages and disadvantages over the use of standard Procrustes/PCA analysis via a combination of Monte-Carlo studies and quantitative statistical tests. In the process we show how appropriate weighting provides not only greater stability but also more efficient use of the available landmark data. The set of new landmarks generated in our procedure ('ghost points') can then be used in any further downstream statistical analysis.\nCONCLUSIONS: Our approach provides a consistent way of including different forms of landmarks into an analysis and reduces instabilities due to poorly defined points. Our results suggest that the method has the potential to be utilised for the analysis of 2D/3D data, and in particular, for the inclusion of information from surfaces represented by multiple landmark points.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1742-9994-10-16", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034452", 
        "issn": [
          "1742-9994"
        ], 
        "name": "Frontiers in Zoology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Quantitative shape analysis with weighted covariance estimates for increased statistical efficiency", 
    "pagination": "16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cc382fcff651d0435c672fb0964224711c03c0827825abd6bb67c13dcc6681e5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23548043"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101231669"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1742-9994-10-16"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042872554"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1742-9994-10-16", 
      "https://app.dimensions.ai/details/publication/pub.1042872554"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1742-9994-10-16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1742-9994-10-16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1742-9994-10-16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1742-9994-10-16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1742-9994-10-16'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      68 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1742-9994-10-16 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N10c2759d0d2648a0b5d24ccc49d5fb31
4 schema:citation sg:pub.10.1007/0-387-27614-9_3
5 sg:pub.10.1007/bf00890247
6 sg:pub.10.1007/s004420100720
7 sg:pub.10.1007/s11692-008-9020-0
8 sg:pub.10.1007/s11692-008-9029-4
9 sg:pub.10.1007/s11692-009-9055-x
10 sg:pub.10.1007/s11692-011-9109-8
11 sg:pub.10.1007/s11692-011-9158-z
12 sg:pub.10.1038/nrg2829
13 sg:pub.10.1162/biot.2009.4.1.84
14 sg:pub.10.1186/1742-9994-9-6
15 https://app.dimensions.ai/details/publication/pub.1076973412
16 https://app.dimensions.ai/details/publication/pub.1081518966
17 https://doi.org/10.1002/ajpa.10174
18 https://doi.org/10.1006/cviu.1995.1004
19 https://doi.org/10.1016/j.parint.2010.01.006
20 https://doi.org/10.1016/s0047-2484(03)00047-2
21 https://doi.org/10.1016/s0262-8856(02)00010-0
22 https://doi.org/10.1016/s1077-3142(03)00009-2
23 https://doi.org/10.1016/s1361-8415(97)85012-8
24 https://doi.org/10.1073/pnas.0508445103
25 https://doi.org/10.1080/03014468400007321
26 https://doi.org/10.1080/106351500750049770
27 https://doi.org/10.1080/11250000409356545
28 https://doi.org/10.1109/42.736021
29 https://doi.org/10.1109/42.929618
30 https://doi.org/10.1109/tac.1974.1100705
31 https://doi.org/10.1111/1467-9868.00196
32 https://doi.org/10.1111/j.1469-7580.2006.00576.x
33 https://doi.org/10.1111/j.1558-5646.2011.01244.x
34 https://doi.org/10.1112/blms/16.2.81
35 https://doi.org/10.1117/12.813887
36 https://doi.org/10.1146/annurev.anthro.34.081804.120613
37 https://doi.org/10.1198/004017004000000563
38 https://doi.org/10.1214/ss/1177013696
39 https://doi.org/10.1371/journal.pone.0026425
40 https://doi.org/10.2307/2992207
41 https://doi.org/10.2307/2992208
42 https://doi.org/10.5244/c.25.131
43 schema:datePublished 2013-12
44 schema:datePublishedReg 2013-12-01
45 schema:description BACKGROUND: The introduction and statistical formalisation of landmark-based methods for analysing biological shape has made a major impact on comparative morphometric analyses. However, a satisfactory solution for including information from 2D/3D shapes represented by 'semi-landmarks' alongside well-defined landmarks into the analyses is still missing. Also, there has not been an integration of a statistical treatment of measurement error in the current approaches. RESULTS: We propose a procedure based upon the description of landmarks with measurement covariance, which extends statistical linear modelling processes to semi-landmarks for further analysis. Our formulation is based upon a self consistent approach to the construction of likelihood-based parameter estimation and includes corrections for parameter bias, induced by the degrees of freedom within the linear model. The method has been implemented and tested on measurements from 2D fly wing, 2D mouse mandible and 3D mouse skull data. We use these data to explore possible advantages and disadvantages over the use of standard Procrustes/PCA analysis via a combination of Monte-Carlo studies and quantitative statistical tests. In the process we show how appropriate weighting provides not only greater stability but also more efficient use of the available landmark data. The set of new landmarks generated in our procedure ('ghost points') can then be used in any further downstream statistical analysis. CONCLUSIONS: Our approach provides a consistent way of including different forms of landmarks into an analysis and reduces instabilities due to poorly defined points. Our results suggest that the method has the potential to be utilised for the analysis of 2D/3D data, and in particular, for the inclusion of information from surfaces represented by multiple landmark points.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N246cff6d3b884e72932566eebae213dc
50 Nd4e6e976455e406eb36cc869134f455f
51 sg:journal.1034452
52 schema:name Quantitative shape analysis with weighted covariance estimates for increased statistical efficiency
53 schema:pagination 16
54 schema:productId N11f1deb16262429f8c0c8c9fccd6e8fc
55 N2fda56d4c5b14248b7a0d5f974717b32
56 N8c416a0ec8d048c58de6cf06525c7ebe
57 Nbee1f96ab9ec4414b7d26bd0b4b2f662
58 Ndcefd2cff0a74e34915f3bcf3fdd44bb
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042872554
60 https://doi.org/10.1186/1742-9994-10-16
61 schema:sdDatePublished 2019-04-11T00:21
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Na4cb678fbc444960840b14e58cfddac6
64 schema:url http://link.springer.com/10.1186%2F1742-9994-10-16
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N10c2759d0d2648a0b5d24ccc49d5fb31 rdf:first sg:person.0670035114.00
69 rdf:rest Nae9550c3bb5d4be6a5447346a24536fa
70 N11f1deb16262429f8c0c8c9fccd6e8fc schema:name dimensions_id
71 schema:value pub.1042872554
72 rdf:type schema:PropertyValue
73 N246cff6d3b884e72932566eebae213dc schema:volumeNumber 10
74 rdf:type schema:PublicationVolume
75 N2fda56d4c5b14248b7a0d5f974717b32 schema:name nlm_unique_id
76 schema:value 101231669
77 rdf:type schema:PropertyValue
78 N5261da37299e4148b76ccfa2327ef9c5 rdf:first sg:person.0725244667.17
79 rdf:rest Nceac847f9bc84d748ac6fa8ddf8e2327
80 N8c416a0ec8d048c58de6cf06525c7ebe schema:name pubmed_id
81 schema:value 23548043
82 rdf:type schema:PropertyValue
83 Na4cb678fbc444960840b14e58cfddac6 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nae9550c3bb5d4be6a5447346a24536fa rdf:first sg:person.01110507554.90
86 rdf:rest N5261da37299e4148b76ccfa2327ef9c5
87 Nbee1f96ab9ec4414b7d26bd0b4b2f662 schema:name readcube_id
88 schema:value cc382fcff651d0435c672fb0964224711c03c0827825abd6bb67c13dcc6681e5
89 rdf:type schema:PropertyValue
90 Nceac847f9bc84d748ac6fa8ddf8e2327 rdf:first sg:person.01254737604.06
91 rdf:rest Nfd17742562684cb5a9101c3a2af090ea
92 Nd4e6e976455e406eb36cc869134f455f schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 Ndcefd2cff0a74e34915f3bcf3fdd44bb schema:name doi
95 schema:value 10.1186/1742-9994-10-16
96 rdf:type schema:PropertyValue
97 Nfd17742562684cb5a9101c3a2af090ea rdf:first sg:person.011117026644.44
98 rdf:rest rdf:nil
99 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
100 schema:name Mathematical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
103 schema:name Statistics
104 rdf:type schema:DefinedTerm
105 sg:journal.1034452 schema:issn 1742-9994
106 schema:name Frontiers in Zoology
107 rdf:type schema:Periodical
108 sg:person.01110507554.90 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
109 schema:familyName Thacker
110 schema:givenName Neil A
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110507554.90
112 rdf:type schema:Person
113 sg:person.011117026644.44 schema:affiliation https://www.grid.ac/institutes/grid.419520.b
114 schema:familyName Schunke
115 schema:givenName Anja C
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011117026644.44
117 rdf:type schema:Person
118 sg:person.01254737604.06 schema:affiliation https://www.grid.ac/institutes/grid.419520.b
119 schema:familyName Tautz
120 schema:givenName Diethard
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254737604.06
122 rdf:type schema:Person
123 sg:person.0670035114.00 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
124 schema:familyName Ragheb
125 schema:givenName Hossein
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670035114.00
127 rdf:type schema:Person
128 sg:person.0725244667.17 schema:affiliation https://www.grid.ac/institutes/grid.5379.8
129 schema:familyName Bromiley
130 schema:givenName Paul A
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725244667.17
132 rdf:type schema:Person
133 sg:pub.10.1007/0-387-27614-9_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042952090
134 https://doi.org/10.1007/0-387-27614-9_3
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf00890247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000381679
137 https://doi.org/10.1007/bf00890247
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s004420100720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041807192
140 https://doi.org/10.1007/s004420100720
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s11692-008-9020-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049374211
143 https://doi.org/10.1007/s11692-008-9020-0
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s11692-008-9029-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032689442
146 https://doi.org/10.1007/s11692-008-9029-4
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s11692-009-9055-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041140831
149 https://doi.org/10.1007/s11692-009-9055-x
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s11692-011-9109-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026878183
152 https://doi.org/10.1007/s11692-011-9109-8
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s11692-011-9158-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1043033037
155 https://doi.org/10.1007/s11692-011-9158-z
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nrg2829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015858711
158 https://doi.org/10.1038/nrg2829
159 rdf:type schema:CreativeWork
160 sg:pub.10.1162/biot.2009.4.1.84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063351304
161 https://doi.org/10.1162/biot.2009.4.1.84
162 rdf:type schema:CreativeWork
163 sg:pub.10.1186/1742-9994-9-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023332826
164 https://doi.org/10.1186/1742-9994-9-6
165 rdf:type schema:CreativeWork
166 https://app.dimensions.ai/details/publication/pub.1076973412 schema:CreativeWork
167 https://app.dimensions.ai/details/publication/pub.1081518966 schema:CreativeWork
168 https://doi.org/10.1002/ajpa.10174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050334011
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1006/cviu.1995.1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021804206
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.parint.2010.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012440566
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0047-2484(03)00047-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049838110
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0262-8856(02)00010-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008870614
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s1077-3142(03)00009-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050999329
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/s1361-8415(97)85012-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043746563
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1073/pnas.0508445103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052873510
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1080/03014468400007321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032367099
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1080/106351500750049770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058369115
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1080/11250000409356545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033422809
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/42.736021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170685
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1109/42.929618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171047
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1109/tac.1974.1100705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471419
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1111/1467-9868.00196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015007392
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1111/j.1469-7580.2006.00576.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008075733
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1111/j.1558-5646.2011.01244.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046686634
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1112/blms/16.2.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038472811
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1117/12.813887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029169357
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1146/annurev.anthro.34.081804.120613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018178356
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1198/004017004000000563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197587
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1214/ss/1177013696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064410204
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1371/journal.pone.0026425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019485815
213 rdf:type schema:CreativeWork
214 https://doi.org/10.2307/2992207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070161844
215 rdf:type schema:CreativeWork
216 https://doi.org/10.2307/2992208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070161845
217 rdf:type schema:CreativeWork
218 https://doi.org/10.5244/c.25.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099341355
219 rdf:type schema:CreativeWork
220 https://www.grid.ac/institutes/grid.419520.b schema:alternateName Max Planck Institute for Evolutionary Biology
221 schema:name Max-Planck Institute for Evolutionary Biology, Plön, Germany
222 rdf:type schema:Organization
223 https://www.grid.ac/institutes/grid.5379.8 schema:alternateName University of Manchester
224 schema:name Imaging Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...