The HIV RNA setpoint theory revisited View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-09-21

AUTHORS

Ronald B Geskus, Maria Prins, Jean-Baptiste Hubert, Frank Miedema, Ben Berkhout, Christine Rouzioux, Jean-Francois Delfraissy, Laurence Meyer

ABSTRACT

BackgroundThe evolution of plasma viral load after HIV infection has been described as reaching a setpoint, only to start rising again shortly before AIDS diagnosis. In contrast, CD4 T-cell count is considered to show a stable decrease. However, characteristics of marker evolution over time depend on the scale that is used to visualize trends. In reconsidering the setpoint theory for HIV RNA, we analyzed the evolution of CD4 T-cell count and HIV-1 RNA level from HIV seroconversion to AIDS diagnosis. Follow-up data were used from two cohort studies among homosexual men (N = 400), restricting to the period before highly active antiretroviral therapy became widely available (1984 until 1996). Individual trajectories of both markers were fitted and averaged, both from seroconversion onwards and in the four years preceding AIDS diagnosis, using a bivariate random effects model. Both markers were evaluated on a scale that is directly related to AIDS risk.ResultsIndividuals with faster AIDS progression had higher HIV RNA level six months after seroconversion. For CD4 T-cell count, this ordering was less clearly present. However, HIV RNA level and CD4 T-cell count showed qualitatively similar evolution over time after seroconversion, also when stratified by rate of progression to AIDS. In the four years preceding AIDS diagnosis, a non-significant change in HIV RNA increase was seen, whereas a significant biphasic pattern was present for CD4 T-cell decline.ConclusionHIV RNA level has more setpoint behaviour than CD4 T-cell count as far as the level shortly after seroconversion is concerned. However, with respect to the, clinically more relevant, marker evolution over time after seroconversion, a setpoint theory holds as much for CD4 T-cell count as for HIV RNA level. More... »

PAGES

65

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1742-4690-4-65

DOI

http://dx.doi.org/10.1186/1742-4690-4-65

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003680110

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/17888148


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CD4 Lymphocyte Count", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CD4-Positive T-Lymphocytes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cohort Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Progression", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HIV Infections", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Homosexuality", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Viral", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Viral Load", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cluster Infectious Diseases, Department of Research, Amsterdam Health Service, Nieuwe Achtergracht 100, 1018, Amsterdam, WT, The Netherlands", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Meibergdreef 15, 1105, Amsterdam, AZ, The Netherlands", 
            "Cluster Infectious Diseases, Department of Research, Amsterdam Health Service, Nieuwe Achtergracht 100, 1018, Amsterdam, WT, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geskus", 
        "givenName": "Ronald B", 
        "id": "sg:person.01205235647.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205235647.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Academic Medical Center, Meibergdreef 15, 1105, Amsterdam, A, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5650.6", 
          "name": [
            "Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Meibergdreef 15, 1105, Amsterdam, AZ, The Netherlands", 
            "Department of Internal Medicine, Academic Medical Center, Meibergdreef 15, 1105, Amsterdam, A, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prins", 
        "givenName": "Maria", 
        "id": "sg:person.015770000052.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015770000052.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Univ Paris-Sud, Facult\u00e9 de M\u00e9decine Paris-Sud, F-94276, Le Kremlin-Bic\u00eatre, France", 
          "id": "http://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "Inserm, U822, F-94276, Le Kremlin-Bic\u00eatre, France", 
            "AP-HP, Hopital Bic\u00eatre, Epidemiology and Public Health Service, F-94276, France", 
            "Univ Paris-Sud, Facult\u00e9 de M\u00e9decine Paris-Sud, F-94276, Le Kremlin-Bic\u00eatre, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hubert", 
        "givenName": "Jean-Baptiste", 
        "id": "sg:person.011104131252.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011104131252.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Immunology, University Medical Center, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.7692.a", 
          "name": [
            "Department of Immunology, University Medical Center, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miedema", 
        "givenName": "Frank", 
        "id": "sg:person.012755664317.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012755664317.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Human Retrovirology, Academic Medical Center, Meibergdreef 15, 1105, Amsterdam, AZ, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5650.6", 
          "name": [
            "Department of Human Retrovirology, Academic Medical Center, Meibergdreef 15, 1105, Amsterdam, AZ, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berkhout", 
        "givenName": "Ben", 
        "id": "sg:person.01233471631.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233471631.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Virology, H\u00f4pital Necker, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.412134.1", 
          "name": [
            "Department of Virology, H\u00f4pital Necker, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rouzioux", 
        "givenName": "Christine", 
        "id": "sg:person.0743633237.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743633237.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Univ Paris-Sud, Facult\u00e9 de M\u00e9decine Paris-Sud, F-94276, Le Kremlin-Bic\u00eatre, France", 
          "id": "http://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "Univ Paris-Sud, Facult\u00e9 de M\u00e9decine Paris-Sud, F-94276, Le Kremlin-Bic\u00eatre, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delfraissy", 
        "givenName": "Jean-Francois", 
        "id": "sg:person.01240433035.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240433035.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Immunology, University Medical Center, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.7692.a", 
          "name": [
            "Inserm, U822, F-94276, Le Kremlin-Bic\u00eatre, France", 
            "AP-HP, Hopital Bic\u00eatre, Epidemiology and Public Health Service, F-94276, France", 
            "Department of Immunology, University Medical Center, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meyer", 
        "givenName": "Laurence", 
        "id": "sg:person.0710652211.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710652211.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nm0795-674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000284466", 
          "https://doi.org/10.1038/nm0795-674"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-09-21", 
    "datePublishedReg": "2007-09-21", 
    "description": "BackgroundThe evolution of plasma viral load after HIV infection has been described as reaching a setpoint, only to start rising again shortly before AIDS diagnosis. In contrast, CD4 T-cell count is considered to show a stable decrease. However, characteristics of marker evolution over time depend on the scale that is used to visualize trends. In reconsidering the setpoint theory for HIV RNA, we analyzed the evolution of CD4 T-cell count and HIV-1 RNA level from HIV seroconversion to AIDS diagnosis. Follow-up data were used from two cohort studies among homosexual men (N = 400), restricting to the period before highly active antiretroviral therapy became widely available (1984 until 1996). Individual trajectories of both markers were fitted and averaged, both from seroconversion onwards and in the four years preceding AIDS diagnosis, using a bivariate random effects model. Both markers were evaluated on a scale that is directly related to AIDS risk.ResultsIndividuals with faster AIDS progression had higher HIV RNA level six months after seroconversion. For CD4 T-cell count, this ordering was less clearly present. However, HIV RNA level and CD4 T-cell count showed qualitatively similar evolution over time after seroconversion, also when stratified by rate of progression to AIDS. In the four years preceding AIDS diagnosis, a non-significant change in HIV RNA increase was seen, whereas a significant biphasic pattern was present for CD4 T-cell decline.ConclusionHIV RNA level has more setpoint behaviour than CD4 T-cell count as far as the level shortly after seroconversion is concerned. However, with respect to the, clinically more relevant, marker evolution over time after seroconversion, a setpoint theory holds as much for CD4 T-cell count as for HIV RNA level.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1742-4690-4-65", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1033800", 
        "issn": [
          "1742-4690"
        ], 
        "name": "Retrovirology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "keywords": [
      "CD4 T-cell count", 
      "T-cell counts", 
      "HIV RNA levels", 
      "AIDS diagnosis", 
      "setpoint theory", 
      "RNA levels", 
      "HIV-1 RNA levels", 
      "CD4 T-cell decline", 
      "plasma viral load", 
      "active antiretroviral therapy", 
      "HIV RNA increase", 
      "T-cell decline", 
      "rate of progression", 
      "random-effects model", 
      "bivariate random-effects model", 
      "non-significant changes", 
      "HIV RNA", 
      "HIV seroconversion", 
      "antiretroviral therapy", 
      "HIV infection", 
      "cohort study", 
      "viral load", 
      "AIDS progression", 
      "seroconversion", 
      "homosexual men", 
      "six months", 
      "biphasic pattern", 
      "diagnosis", 
      "marker evolution", 
      "AIDS risk", 
      "stable decrease", 
      "effects model", 
      "count", 
      "progression", 
      "markers", 
      "RNA increases", 
      "levels", 
      "therapy", 
      "infection", 
      "years", 
      "AIDS", 
      "months", 
      "ResultsIndividuals", 
      "men", 
      "risk", 
      "RNA", 
      "time", 
      "period", 
      "decrease", 
      "decline", 
      "study", 
      "rate", 
      "contrast", 
      "increase", 
      "scale", 
      "changes", 
      "patterns", 
      "data", 
      "trends", 
      "individual trajectories", 
      "characteristics", 
      "similar evolution", 
      "model", 
      "respect", 
      "load", 
      "behavior", 
      "trajectories", 
      "evolution", 
      "setpoint", 
      "theory", 
      "ordering"
    ], 
    "name": "The HIV RNA setpoint theory revisited", 
    "pagination": "65", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003680110"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1742-4690-4-65"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "17888148"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1742-4690-4-65", 
      "https://app.dimensions.ai/details/publication/pub.1003680110"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_434.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1742-4690-4-65"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1742-4690-4-65'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1742-4690-4-65'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1742-4690-4-65'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1742-4690-4-65'


 

This table displays all metadata directly associated to this object as RDF triples.

252 TRIPLES      21 PREDICATES      109 URIs      100 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1742-4690-4-65 schema:about N163aff60ca614e1b8ebad755f684a319
2 N23f1138648f641e9b80b83b8d665c53f
3 N2717fe66660a4f74869f685144c023a9
4 N42c5183312c0410581546c563d8b5292
5 N5ac33d1822774a5480fb293ab140b321
6 N704e76c501234e149a664e74c830f05c
7 N9207d8fdd9ba419a885c6079d3fb055c
8 Nad5b1a7d9eb34c6190e7f6a8e7b0296c
9 Nc2602d1b5c0347f48f30a1bad98bd79e
10 Nca681aa7ab594c56b85ee8e3acde9351
11 Ndcfe725947424619970476d228edb519
12 Ne2dc60d0e1ed4521a7e46baad6dba79f
13 anzsrc-for:11
14 anzsrc-for:1103
15 schema:author Nc8667c2530da4dd29c7505b0bc1db81c
16 schema:citation sg:pub.10.1038/nm0795-674
17 schema:datePublished 2007-09-21
18 schema:datePublishedReg 2007-09-21
19 schema:description BackgroundThe evolution of plasma viral load after HIV infection has been described as reaching a setpoint, only to start rising again shortly before AIDS diagnosis. In contrast, CD4 T-cell count is considered to show a stable decrease. However, characteristics of marker evolution over time depend on the scale that is used to visualize trends. In reconsidering the setpoint theory for HIV RNA, we analyzed the evolution of CD4 T-cell count and HIV-1 RNA level from HIV seroconversion to AIDS diagnosis. Follow-up data were used from two cohort studies among homosexual men (N = 400), restricting to the period before highly active antiretroviral therapy became widely available (1984 until 1996). Individual trajectories of both markers were fitted and averaged, both from seroconversion onwards and in the four years preceding AIDS diagnosis, using a bivariate random effects model. Both markers were evaluated on a scale that is directly related to AIDS risk.ResultsIndividuals with faster AIDS progression had higher HIV RNA level six months after seroconversion. For CD4 T-cell count, this ordering was less clearly present. However, HIV RNA level and CD4 T-cell count showed qualitatively similar evolution over time after seroconversion, also when stratified by rate of progression to AIDS. In the four years preceding AIDS diagnosis, a non-significant change in HIV RNA increase was seen, whereas a significant biphasic pattern was present for CD4 T-cell decline.ConclusionHIV RNA level has more setpoint behaviour than CD4 T-cell count as far as the level shortly after seroconversion is concerned. However, with respect to the, clinically more relevant, marker evolution over time after seroconversion, a setpoint theory holds as much for CD4 T-cell count as for HIV RNA level.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf N04a681f976f04ae1b5e296eeac27f956
23 N998fbbef6c2b45e8b27c962c09f7505f
24 sg:journal.1033800
25 schema:keywords AIDS
26 AIDS diagnosis
27 AIDS progression
28 AIDS risk
29 CD4 T-cell count
30 CD4 T-cell decline
31 HIV RNA
32 HIV RNA increase
33 HIV RNA levels
34 HIV infection
35 HIV seroconversion
36 HIV-1 RNA levels
37 RNA
38 RNA increases
39 RNA levels
40 ResultsIndividuals
41 T-cell counts
42 T-cell decline
43 active antiretroviral therapy
44 antiretroviral therapy
45 behavior
46 biphasic pattern
47 bivariate random-effects model
48 changes
49 characteristics
50 cohort study
51 contrast
52 count
53 data
54 decline
55 decrease
56 diagnosis
57 effects model
58 evolution
59 homosexual men
60 increase
61 individual trajectories
62 infection
63 levels
64 load
65 marker evolution
66 markers
67 men
68 model
69 months
70 non-significant changes
71 ordering
72 patterns
73 period
74 plasma viral load
75 progression
76 random-effects model
77 rate
78 rate of progression
79 respect
80 risk
81 scale
82 seroconversion
83 setpoint
84 setpoint theory
85 similar evolution
86 six months
87 stable decrease
88 study
89 theory
90 therapy
91 time
92 trajectories
93 trends
94 viral load
95 years
96 schema:name The HIV RNA setpoint theory revisited
97 schema:pagination 65
98 schema:productId N0a03d662fbae4edca49018819f6fd0e3
99 N7939874b14e4477fb362a31df3af207c
100 Ncb9aea0bae43480a800e34384f2b768b
101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003680110
102 https://doi.org/10.1186/1742-4690-4-65
103 schema:sdDatePublished 2022-09-02T15:51
104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
105 schema:sdPublisher Nb9f87aeca4374b1e8caf3e3a020ddc54
106 schema:url https://doi.org/10.1186/1742-4690-4-65
107 sgo:license sg:explorer/license/
108 sgo:sdDataset articles
109 rdf:type schema:ScholarlyArticle
110 N0153dcd5c7d7432cbfbd959e9ada915a rdf:first sg:person.01240433035.40
111 rdf:rest Nd66e37b52bc44224871e9f564e130d5f
112 N04a681f976f04ae1b5e296eeac27f956 schema:issueNumber 1
113 rdf:type schema:PublicationIssue
114 N0a03d662fbae4edca49018819f6fd0e3 schema:name dimensions_id
115 schema:value pub.1003680110
116 rdf:type schema:PropertyValue
117 N163aff60ca614e1b8ebad755f684a319 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name CD4 Lymphocyte Count
119 rdf:type schema:DefinedTerm
120 N1ff157d7bfde48c6a80c8606fc0be19e rdf:first sg:person.01233471631.26
121 rdf:rest Nccaea9b3e0c24d02869ae076e339a628
122 N23f1138648f641e9b80b83b8d665c53f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name HIV Infections
124 rdf:type schema:DefinedTerm
125 N2717fe66660a4f74869f685144c023a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Disease Progression
127 rdf:type schema:DefinedTerm
128 N3d13d53d8cf3476f9f93dba9a1321f14 rdf:first sg:person.015770000052.12
129 rdf:rest N608e7748be6f4b6abee5cbd2c6c9d711
130 N42c5183312c0410581546c563d8b5292 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Viral Load
132 rdf:type schema:DefinedTerm
133 N5ac33d1822774a5480fb293ab140b321 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Biomarkers
135 rdf:type schema:DefinedTerm
136 N608e7748be6f4b6abee5cbd2c6c9d711 rdf:first sg:person.011104131252.36
137 rdf:rest Nfe03bbf9a0ad4bd991dcce581b946ace
138 N704e76c501234e149a664e74c830f05c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Cohort Studies
140 rdf:type schema:DefinedTerm
141 N7939874b14e4477fb362a31df3af207c schema:name pubmed_id
142 schema:value 17888148
143 rdf:type schema:PropertyValue
144 N9207d8fdd9ba419a885c6079d3fb055c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Humans
146 rdf:type schema:DefinedTerm
147 N998fbbef6c2b45e8b27c962c09f7505f schema:volumeNumber 4
148 rdf:type schema:PublicationVolume
149 Nad5b1a7d9eb34c6190e7f6a8e7b0296c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name CD4-Positive T-Lymphocytes
151 rdf:type schema:DefinedTerm
152 Nb9f87aeca4374b1e8caf3e3a020ddc54 schema:name Springer Nature - SN SciGraph project
153 rdf:type schema:Organization
154 Nc2602d1b5c0347f48f30a1bad98bd79e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Homosexuality
156 rdf:type schema:DefinedTerm
157 Nc8667c2530da4dd29c7505b0bc1db81c rdf:first sg:person.01205235647.85
158 rdf:rest N3d13d53d8cf3476f9f93dba9a1321f14
159 Nca681aa7ab594c56b85ee8e3acde9351 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Adult
161 rdf:type schema:DefinedTerm
162 Ncb9aea0bae43480a800e34384f2b768b schema:name doi
163 schema:value 10.1186/1742-4690-4-65
164 rdf:type schema:PropertyValue
165 Nccaea9b3e0c24d02869ae076e339a628 rdf:first sg:person.0743633237.95
166 rdf:rest N0153dcd5c7d7432cbfbd959e9ada915a
167 Nd66e37b52bc44224871e9f564e130d5f rdf:first sg:person.0710652211.22
168 rdf:rest rdf:nil
169 Ndcfe725947424619970476d228edb519 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Male
171 rdf:type schema:DefinedTerm
172 Ne2dc60d0e1ed4521a7e46baad6dba79f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name RNA, Viral
174 rdf:type schema:DefinedTerm
175 Nfe03bbf9a0ad4bd991dcce581b946ace rdf:first sg:person.012755664317.02
176 rdf:rest N1ff157d7bfde48c6a80c8606fc0be19e
177 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
178 schema:name Medical and Health Sciences
179 rdf:type schema:DefinedTerm
180 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
181 schema:name Clinical Sciences
182 rdf:type schema:DefinedTerm
183 sg:journal.1033800 schema:issn 1742-4690
184 schema:name Retrovirology
185 schema:publisher Springer Nature
186 rdf:type schema:Periodical
187 sg:person.011104131252.36 schema:affiliation grid-institutes:grid.5842.b
188 schema:familyName Hubert
189 schema:givenName Jean-Baptiste
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011104131252.36
191 rdf:type schema:Person
192 sg:person.01205235647.85 schema:affiliation grid-institutes:None
193 schema:familyName Geskus
194 schema:givenName Ronald B
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205235647.85
196 rdf:type schema:Person
197 sg:person.01233471631.26 schema:affiliation grid-institutes:grid.5650.6
198 schema:familyName Berkhout
199 schema:givenName Ben
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233471631.26
201 rdf:type schema:Person
202 sg:person.01240433035.40 schema:affiliation grid-institutes:grid.5842.b
203 schema:familyName Delfraissy
204 schema:givenName Jean-Francois
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240433035.40
206 rdf:type schema:Person
207 sg:person.012755664317.02 schema:affiliation grid-institutes:grid.7692.a
208 schema:familyName Miedema
209 schema:givenName Frank
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012755664317.02
211 rdf:type schema:Person
212 sg:person.015770000052.12 schema:affiliation grid-institutes:grid.5650.6
213 schema:familyName Prins
214 schema:givenName Maria
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015770000052.12
216 rdf:type schema:Person
217 sg:person.0710652211.22 schema:affiliation grid-institutes:grid.7692.a
218 schema:familyName Meyer
219 schema:givenName Laurence
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710652211.22
221 rdf:type schema:Person
222 sg:person.0743633237.95 schema:affiliation grid-institutes:grid.412134.1
223 schema:familyName Rouzioux
224 schema:givenName Christine
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743633237.95
226 rdf:type schema:Person
227 sg:pub.10.1038/nm0795-674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000284466
228 https://doi.org/10.1038/nm0795-674
229 rdf:type schema:CreativeWork
230 grid-institutes:None schema:alternateName Cluster Infectious Diseases, Department of Research, Amsterdam Health Service, Nieuwe Achtergracht 100, 1018, Amsterdam, WT, The Netherlands
231 schema:name Cluster Infectious Diseases, Department of Research, Amsterdam Health Service, Nieuwe Achtergracht 100, 1018, Amsterdam, WT, The Netherlands
232 Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Meibergdreef 15, 1105, Amsterdam, AZ, The Netherlands
233 rdf:type schema:Organization
234 grid-institutes:grid.412134.1 schema:alternateName Department of Virology, Hôpital Necker, Paris, France
235 schema:name Department of Virology, Hôpital Necker, Paris, France
236 rdf:type schema:Organization
237 grid-institutes:grid.5650.6 schema:alternateName Department of Human Retrovirology, Academic Medical Center, Meibergdreef 15, 1105, Amsterdam, AZ, The Netherlands
238 Department of Internal Medicine, Academic Medical Center, Meibergdreef 15, 1105, Amsterdam, A, The Netherlands
239 schema:name Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Meibergdreef 15, 1105, Amsterdam, AZ, The Netherlands
240 Department of Human Retrovirology, Academic Medical Center, Meibergdreef 15, 1105, Amsterdam, AZ, The Netherlands
241 Department of Internal Medicine, Academic Medical Center, Meibergdreef 15, 1105, Amsterdam, A, The Netherlands
242 rdf:type schema:Organization
243 grid-institutes:grid.5842.b schema:alternateName Univ Paris-Sud, Faculté de Médecine Paris-Sud, F-94276, Le Kremlin-Bicêtre, France
244 schema:name AP-HP, Hopital Bicêtre, Epidemiology and Public Health Service, F-94276, France
245 Inserm, U822, F-94276, Le Kremlin-Bicêtre, France
246 Univ Paris-Sud, Faculté de Médecine Paris-Sud, F-94276, Le Kremlin-Bicêtre, France
247 rdf:type schema:Organization
248 grid-institutes:grid.7692.a schema:alternateName Department of Immunology, University Medical Center, Utrecht, The Netherlands
249 schema:name AP-HP, Hopital Bicêtre, Epidemiology and Public Health Service, F-94276, France
250 Department of Immunology, University Medical Center, Utrecht, The Netherlands
251 Inserm, U822, F-94276, Le Kremlin-Bicêtre, France
252 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...