Estimating the returns to UK publicly funded cancer-related research in terms of the net value of improved health outcomes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Matthew Glover, Martin Buxton, Susan Guthrie, Stephen Hanney, Alexandra Pollitt, Jonathan Grant

ABSTRACT

BACKGROUND: Building on an approach developed to assess the economic returns to cardiovascular research, we estimated the economic returns from UK public and charitable funded cancer-related research that arise from the net value of the improved health outcomes. METHODS: To assess these economic returns from cancer-related research in the UK we estimated: 1) public and charitable expenditure on cancer-related research in the UK from 1970 to 2009; 2) net monetary benefit (NMB), that is, the health benefit measured in quality adjusted life years (QALYs) valued in monetary terms (using a base-case value of a QALY of GB£25,000) minus the cost of delivering that benefit, for a prioritised list of interventions from 1991 to 2010; 3) the proportion of NMB attributable to UK research; 4) the elapsed time between research funding and health gain; and 5) the internal rate of return (IRR) from cancer-related research investments on health benefits. We analysed the uncertainties in the IRR estimate using sensitivity analyses to illustrate the effect of some key parameters. RESULTS: In 2011/12 prices, total expenditure on cancer-related research from 1970 to 2009 was £15 billion. The NMB of the 5.9 million QALYs gained from the prioritised interventions from 1991 to 2010 was £124 billion. Calculation of the IRR incorporated an estimated elapsed time of 15 years. We related 17% of the annual NMB estimated to be attributable to UK research (for each of the 20 years 1991 to 2010) to 20 years of research investment 15 years earlier (that is, for 1976 to 1995). This produced a best-estimate IRR of 10%, compared with 9% previously estimated for cardiovascular disease research. The sensitivity analysis demonstrated the importance of smoking reduction as a major source of improved cancer-related health outcomes. CONCLUSIONS: We have demonstrated a substantive IRR from net health gain to public and charitable funding of cancer-related research in the UK, and further validated the approach that we originally used in assessing the returns from cardiovascular research. In doing so, we have highlighted a number of weaknesses and key assumptions that need strengthening in further investigations. Nevertheless, these cautious estimates demonstrate that the returns from past cancer research have been substantial, and justify the investments made during the period 1976 to 1995. More... »

PAGES

99

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1741-7015-12-99

DOI

http://dx.doi.org/10.1186/1741-7015-12-99

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006565540

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24930803


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomedical Research", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cost-Benefit Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Costs and Cost Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Foundations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Status", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Public Sector", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality-Adjusted Life Years", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Support as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Smoking Cessation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Smoking Prevention", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United Kingdom", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Brunel University London", 
          "id": "https://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "Health Economics Research Group, Brunel University, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glover", 
        "givenName": "Matthew", 
        "id": "sg:person.01137153570.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137153570.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brunel University London", 
          "id": "https://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "Health Economics Research Group, Brunel University, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buxton", 
        "givenName": "Martin", 
        "id": "sg:person.01123604615.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123604615.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RAND Europe", 
          "id": "https://www.grid.ac/institutes/grid.425785.9", 
          "name": [
            "RAND Europe, Westbrook Centre, Milton Road, CB4 1YG, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guthrie", 
        "givenName": "Susan", 
        "id": "sg:person.01052724140.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052724140.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brunel University London", 
          "id": "https://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "Health Economics Research Group, Brunel University, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanney", 
        "givenName": "Stephen", 
        "id": "sg:person.01236410736.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236410736.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RAND Europe", 
          "id": "https://www.grid.ac/institutes/grid.425785.9", 
          "name": [
            "RAND Europe, Westbrook Centre, Milton Road, CB4 1YG, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pollitt", 
        "givenName": "Alexandra", 
        "id": "sg:person.01335400150.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335400150.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "RAND Europe, Westbrook Centre, Milton Road, CB4 1YG, Cambridge, UK", 
            "King\u2019s Policy Institute, King\u2019s College London, Virginia Woolf Building, 22 Kingsway, WC2R 2LA, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grant", 
        "givenName": "Jonathan", 
        "id": "sg:person.01055471415.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055471415.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.socscimed.2004.06.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004486803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/rheumatology/keh708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008752227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/rheumatology/keh708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008752227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhealeco.2010.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008860770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm0602-551b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009367418", 
          "https://doi.org/10.1038/nm0602-551b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm0602-551b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009367418", 
          "https://doi.org/10.1038/nm0602-551b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.320.7242.1107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010284812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(12)61611-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010347035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aap.0000000000000102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017044552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aap.0000000000000102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017044552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aap.0000000000000102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017044552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(13)60355-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021176069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2007.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025907215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.f2618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026432528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clon.2008.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027974447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(06)68578-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033246574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.2012.277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045408038", 
          "https://doi.org/10.1038/bjc.2012.277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.22169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045726096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/465665b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047248411", 
          "https://doi.org/10.1038/465665b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/465665a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048289713", 
          "https://doi.org/10.1038/465665a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0277-9536(92)90128-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051300710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3310/hta8200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071139778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3310/hta8500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071139808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/135581969600100107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074346452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/135581969600100107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074346452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076992046", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077330831", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5694/j.1326-5377.2006.tb00661.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077330831"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Building on an approach developed to assess the economic returns to cardiovascular research, we estimated the economic returns from UK public and charitable funded cancer-related research that arise from the net value of the improved health outcomes.\nMETHODS: To assess these economic returns from cancer-related research in the UK we estimated: 1) public and charitable expenditure on cancer-related research in the UK from 1970 to 2009; 2) net monetary benefit (NMB), that is, the health benefit measured in quality adjusted life years (QALYs) valued in monetary terms (using a base-case value of a QALY of GB\u00a325,000) minus the cost of delivering that benefit, for a prioritised list of interventions from 1991 to 2010; 3) the proportion of NMB attributable to UK research; 4) the elapsed time between research funding and health gain; and 5) the internal rate of return (IRR) from cancer-related research investments on health benefits. We analysed the uncertainties in the IRR estimate using sensitivity analyses to illustrate the effect of some key parameters.\nRESULTS: In 2011/12 prices, total expenditure on cancer-related research from 1970 to 2009 was \u00a315 billion. The NMB of the 5.9 million QALYs gained from the prioritised interventions from 1991 to 2010 was \u00a3124 billion. Calculation of the IRR incorporated an estimated elapsed time of 15 years. We related 17% of the annual NMB estimated to be attributable to UK research (for each of the 20 years 1991 to 2010) to 20 years of research investment 15 years earlier (that is, for 1976 to 1995). This produced a best-estimate IRR of 10%, compared with 9% previously estimated for cardiovascular disease research. The sensitivity analysis demonstrated the importance of smoking reduction as a major source of improved cancer-related health outcomes.\nCONCLUSIONS: We have demonstrated a substantive IRR from net health gain to public and charitable funding of cancer-related research in the UK, and further validated the approach that we originally used in assessing the returns from cardiovascular research. In doing so, we have highlighted a number of weaknesses and key assumptions that need strengthening in further investigations. Nevertheless, these cautious estimates demonstrate that the returns from past cancer research have been substantial, and justify the investments made during the period 1976 to 1995.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1741-7015-12-99", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032885", 
        "issn": [
          "1741-7015"
        ], 
        "name": "BMC Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Estimating the returns to UK publicly funded cancer-related research in terms of the net value of improved health outcomes", 
    "pagination": "99", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1f45c887d93de0aa9a34589d8b44fe2e316239b2fdbd1e8a79ff99221e6b349d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24930803"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101190723"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1741-7015-12-99"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006565540"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1741-7015-12-99", 
      "https://app.dimensions.ai/details/publication/pub.1006565540"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1741-7015-12-99"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1741-7015-12-99'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1741-7015-12-99'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1741-7015-12-99'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1741-7015-12-99'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      66 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1741-7015-12-99 schema:about N1131db6a2d4f4d5495f208b306209623
2 N1b3e2a281d2d478ea350e5e2fe92ecb3
3 N22a2c3e79d354e788588e17ff5a7d8d8
4 N23fe25250bdc4a78bb5bf87d44e5e5a6
5 N6c51a28f18544b6cb9cb5999c8b01d3d
6 N72c64f6484114d8d8a94a781ba1ce28d
7 N7d3afa6789c849ebb4db9563fabaf283
8 N8b4e3f69ffb54c50b1ef4b03189fa185
9 N9c4530045df24777a8aaf3f0cf7d31fc
10 Na26f5ea234be4a88b27119f64f67f78c
11 Nc5fdf3d87068426681ab09c58852b9c6
12 Nca1ef5b88db741f2ac9e79ce2b90f1cd
13 Nd108de47a6ac4628a2cf2ade4c7b2d4a
14 Nef41253aa7e346c494cbb8c1f6ff0698
15 anzsrc-for:14
16 anzsrc-for:1402
17 schema:author Nea0b02276e3141c7bddfd914539fabc5
18 schema:citation sg:pub.10.1038/465665a
19 sg:pub.10.1038/465665b
20 sg:pub.10.1038/bjc.2012.277
21 sg:pub.10.1038/nm0602-551b
22 https://app.dimensions.ai/details/publication/pub.1076992046
23 https://app.dimensions.ai/details/publication/pub.1077330831
24 https://doi.org/10.1002/ijc.22169
25 https://doi.org/10.1016/0277-9536(92)90128-d
26 https://doi.org/10.1016/j.clon.2008.12.008
27 https://doi.org/10.1016/j.ejca.2007.12.015
28 https://doi.org/10.1016/j.jhealeco.2010.02.006
29 https://doi.org/10.1016/j.socscimed.2004.06.038
30 https://doi.org/10.1016/s0140-6736(06)68578-4
31 https://doi.org/10.1016/s0140-6736(12)61611-0
32 https://doi.org/10.1016/s0140-6736(13)60355-4
33 https://doi.org/10.1093/rheumatology/keh708
34 https://doi.org/10.1097/aap.0000000000000102
35 https://doi.org/10.1136/bmj.320.7242.1107
36 https://doi.org/10.1136/bmj.f2618
37 https://doi.org/10.1177/135581969600100107
38 https://doi.org/10.3310/hta8200
39 https://doi.org/10.3310/hta8500
40 https://doi.org/10.5694/j.1326-5377.2006.tb00661.x
41 schema:datePublished 2014-12
42 schema:datePublishedReg 2014-12-01
43 schema:description BACKGROUND: Building on an approach developed to assess the economic returns to cardiovascular research, we estimated the economic returns from UK public and charitable funded cancer-related research that arise from the net value of the improved health outcomes. METHODS: To assess these economic returns from cancer-related research in the UK we estimated: 1) public and charitable expenditure on cancer-related research in the UK from 1970 to 2009; 2) net monetary benefit (NMB), that is, the health benefit measured in quality adjusted life years (QALYs) valued in monetary terms (using a base-case value of a QALY of GB£25,000) minus the cost of delivering that benefit, for a prioritised list of interventions from 1991 to 2010; 3) the proportion of NMB attributable to UK research; 4) the elapsed time between research funding and health gain; and 5) the internal rate of return (IRR) from cancer-related research investments on health benefits. We analysed the uncertainties in the IRR estimate using sensitivity analyses to illustrate the effect of some key parameters. RESULTS: In 2011/12 prices, total expenditure on cancer-related research from 1970 to 2009 was £15 billion. The NMB of the 5.9 million QALYs gained from the prioritised interventions from 1991 to 2010 was £124 billion. Calculation of the IRR incorporated an estimated elapsed time of 15 years. We related 17% of the annual NMB estimated to be attributable to UK research (for each of the 20 years 1991 to 2010) to 20 years of research investment 15 years earlier (that is, for 1976 to 1995). This produced a best-estimate IRR of 10%, compared with 9% previously estimated for cardiovascular disease research. The sensitivity analysis demonstrated the importance of smoking reduction as a major source of improved cancer-related health outcomes. CONCLUSIONS: We have demonstrated a substantive IRR from net health gain to public and charitable funding of cancer-related research in the UK, and further validated the approach that we originally used in assessing the returns from cardiovascular research. In doing so, we have highlighted a number of weaknesses and key assumptions that need strengthening in further investigations. Nevertheless, these cautious estimates demonstrate that the returns from past cancer research have been substantial, and justify the investments made during the period 1976 to 1995.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N9ee9a97d16c545858f5012e756f0b4d2
48 Nab39112916d04f928b312d72c8216fac
49 sg:journal.1032885
50 schema:name Estimating the returns to UK publicly funded cancer-related research in terms of the net value of improved health outcomes
51 schema:pagination 99
52 schema:productId N263410f7b2f7427494c5d475bccf0f7f
53 N4a586091148f45d6824c7129de34c1a1
54 N9b82fbaad3754450a725f3aa3ae7944b
55 Nf0d6ed61375f4756bdb51280d34d9cef
56 Nf963ae4dcb1d4dc09b3e5289e43b6efa
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006565540
58 https://doi.org/10.1186/1741-7015-12-99
59 schema:sdDatePublished 2019-04-10T18:20
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N9e2fa14ea592478eb4fd5e911095cc73
62 schema:url http://link.springer.com/10.1186%2F1741-7015-12-99
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N1131db6a2d4f4d5495f208b306209623 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Public Sector
68 rdf:type schema:DefinedTerm
69 N17c141b33e564fff9ae85889f810e052 rdf:first sg:person.01123604615.70
70 rdf:rest N96b976b0bbea40419fe0bd37bf140ee7
71 N1b3e2a281d2d478ea350e5e2fe92ecb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Smoking Cessation
73 rdf:type schema:DefinedTerm
74 N22a2c3e79d354e788588e17ff5a7d8d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Biomedical Research
76 rdf:type schema:DefinedTerm
77 N23fe25250bdc4a78bb5bf87d44e5e5a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Costs and Cost Analysis
79 rdf:type schema:DefinedTerm
80 N25ac2ba918524137a7e377ad5b1ac018 rdf:first sg:person.01335400150.85
81 rdf:rest N58a853e2952d4e42973cdba73a17066a
82 N263410f7b2f7427494c5d475bccf0f7f schema:name dimensions_id
83 schema:value pub.1006565540
84 rdf:type schema:PropertyValue
85 N4a586091148f45d6824c7129de34c1a1 schema:name readcube_id
86 schema:value 1f45c887d93de0aa9a34589d8b44fe2e316239b2fdbd1e8a79ff99221e6b349d
87 rdf:type schema:PropertyValue
88 N4d492b2b74ab4c60ba2d6cfe167ff1a0 rdf:first sg:person.01236410736.55
89 rdf:rest N25ac2ba918524137a7e377ad5b1ac018
90 N58a853e2952d4e42973cdba73a17066a rdf:first sg:person.01055471415.15
91 rdf:rest rdf:nil
92 N6c51a28f18544b6cb9cb5999c8b01d3d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Smoking Prevention
94 rdf:type schema:DefinedTerm
95 N72c64f6484114d8d8a94a781ba1ce28d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Foundations
97 rdf:type schema:DefinedTerm
98 N7d3afa6789c849ebb4db9563fabaf283 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name United Kingdom
100 rdf:type schema:DefinedTerm
101 N8b4e3f69ffb54c50b1ef4b03189fa185 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Research Support as Topic
103 rdf:type schema:DefinedTerm
104 N96b976b0bbea40419fe0bd37bf140ee7 rdf:first sg:person.01052724140.09
105 rdf:rest N4d492b2b74ab4c60ba2d6cfe167ff1a0
106 N9b82fbaad3754450a725f3aa3ae7944b schema:name doi
107 schema:value 10.1186/1741-7015-12-99
108 rdf:type schema:PropertyValue
109 N9c4530045df24777a8aaf3f0cf7d31fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Incidence
111 rdf:type schema:DefinedTerm
112 N9e2fa14ea592478eb4fd5e911095cc73 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N9ee9a97d16c545858f5012e756f0b4d2 schema:volumeNumber 12
115 rdf:type schema:PublicationVolume
116 Na26f5ea234be4a88b27119f64f67f78c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Health Status
118 rdf:type schema:DefinedTerm
119 Nab39112916d04f928b312d72c8216fac schema:issueNumber 1
120 rdf:type schema:PublicationIssue
121 Nc5fdf3d87068426681ab09c58852b9c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Quality-Adjusted Life Years
123 rdf:type schema:DefinedTerm
124 Nca1ef5b88db741f2ac9e79ce2b90f1cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Neoplasms
126 rdf:type schema:DefinedTerm
127 Nd108de47a6ac4628a2cf2ade4c7b2d4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Humans
129 rdf:type schema:DefinedTerm
130 Nea0b02276e3141c7bddfd914539fabc5 rdf:first sg:person.01137153570.55
131 rdf:rest N17c141b33e564fff9ae85889f810e052
132 Nef41253aa7e346c494cbb8c1f6ff0698 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Cost-Benefit Analysis
134 rdf:type schema:DefinedTerm
135 Nf0d6ed61375f4756bdb51280d34d9cef schema:name pubmed_id
136 schema:value 24930803
137 rdf:type schema:PropertyValue
138 Nf963ae4dcb1d4dc09b3e5289e43b6efa schema:name nlm_unique_id
139 schema:value 101190723
140 rdf:type schema:PropertyValue
141 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
142 schema:name Economics
143 rdf:type schema:DefinedTerm
144 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
145 schema:name Applied Economics
146 rdf:type schema:DefinedTerm
147 sg:journal.1032885 schema:issn 1741-7015
148 schema:name BMC Medicine
149 rdf:type schema:Periodical
150 sg:person.01052724140.09 schema:affiliation https://www.grid.ac/institutes/grid.425785.9
151 schema:familyName Guthrie
152 schema:givenName Susan
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052724140.09
154 rdf:type schema:Person
155 sg:person.01055471415.15 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
156 schema:familyName Grant
157 schema:givenName Jonathan
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055471415.15
159 rdf:type schema:Person
160 sg:person.01123604615.70 schema:affiliation https://www.grid.ac/institutes/grid.7728.a
161 schema:familyName Buxton
162 schema:givenName Martin
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123604615.70
164 rdf:type schema:Person
165 sg:person.01137153570.55 schema:affiliation https://www.grid.ac/institutes/grid.7728.a
166 schema:familyName Glover
167 schema:givenName Matthew
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137153570.55
169 rdf:type schema:Person
170 sg:person.01236410736.55 schema:affiliation https://www.grid.ac/institutes/grid.7728.a
171 schema:familyName Hanney
172 schema:givenName Stephen
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236410736.55
174 rdf:type schema:Person
175 sg:person.01335400150.85 schema:affiliation https://www.grid.ac/institutes/grid.425785.9
176 schema:familyName Pollitt
177 schema:givenName Alexandra
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335400150.85
179 rdf:type schema:Person
180 sg:pub.10.1038/465665a schema:sameAs https://app.dimensions.ai/details/publication/pub.1048289713
181 https://doi.org/10.1038/465665a
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/465665b schema:sameAs https://app.dimensions.ai/details/publication/pub.1047248411
184 https://doi.org/10.1038/465665b
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/bjc.2012.277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045408038
187 https://doi.org/10.1038/bjc.2012.277
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nm0602-551b schema:sameAs https://app.dimensions.ai/details/publication/pub.1009367418
190 https://doi.org/10.1038/nm0602-551b
191 rdf:type schema:CreativeWork
192 https://app.dimensions.ai/details/publication/pub.1076992046 schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1077330831 schema:CreativeWork
194 https://doi.org/10.1002/ijc.22169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045726096
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/0277-9536(92)90128-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1051300710
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.clon.2008.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027974447
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.ejca.2007.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025907215
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.jhealeco.2010.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008860770
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.socscimed.2004.06.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004486803
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/s0140-6736(06)68578-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033246574
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/s0140-6736(12)61611-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010347035
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s0140-6736(13)60355-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021176069
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/rheumatology/keh708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008752227
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1097/aap.0000000000000102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017044552
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1136/bmj.320.7242.1107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010284812
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1136/bmj.f2618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026432528
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1177/135581969600100107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074346452
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3310/hta8200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071139778
223 rdf:type schema:CreativeWork
224 https://doi.org/10.3310/hta8500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071139808
225 rdf:type schema:CreativeWork
226 https://doi.org/10.5694/j.1326-5377.2006.tb00661.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1077330831
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.13097.3c schema:alternateName King's College London
229 schema:name King’s Policy Institute, King’s College London, Virginia Woolf Building, 22 Kingsway, WC2R 2LA, London, UK
230 RAND Europe, Westbrook Centre, Milton Road, CB4 1YG, Cambridge, UK
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.425785.9 schema:alternateName RAND Europe
233 schema:name RAND Europe, Westbrook Centre, Milton Road, CB4 1YG, Cambridge, UK
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.7728.a schema:alternateName Brunel University London
236 schema:name Health Economics Research Group, Brunel University, Uxbridge, UK
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...