Estimating the returns to UK publicly funded cancer-related research in terms of the net value of improved health outcomes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Matthew Glover, Martin Buxton, Susan Guthrie, Stephen Hanney, Alexandra Pollitt, Jonathan Grant

ABSTRACT

BACKGROUND: Building on an approach developed to assess the economic returns to cardiovascular research, we estimated the economic returns from UK public and charitable funded cancer-related research that arise from the net value of the improved health outcomes. METHODS: To assess these economic returns from cancer-related research in the UK we estimated: 1) public and charitable expenditure on cancer-related research in the UK from 1970 to 2009; 2) net monetary benefit (NMB), that is, the health benefit measured in quality adjusted life years (QALYs) valued in monetary terms (using a base-case value of a QALY of GB£25,000) minus the cost of delivering that benefit, for a prioritised list of interventions from 1991 to 2010; 3) the proportion of NMB attributable to UK research; 4) the elapsed time between research funding and health gain; and 5) the internal rate of return (IRR) from cancer-related research investments on health benefits. We analysed the uncertainties in the IRR estimate using sensitivity analyses to illustrate the effect of some key parameters. RESULTS: In 2011/12 prices, total expenditure on cancer-related research from 1970 to 2009 was £15 billion. The NMB of the 5.9 million QALYs gained from the prioritised interventions from 1991 to 2010 was £124 billion. Calculation of the IRR incorporated an estimated elapsed time of 15 years. We related 17% of the annual NMB estimated to be attributable to UK research (for each of the 20 years 1991 to 2010) to 20 years of research investment 15 years earlier (that is, for 1976 to 1995). This produced a best-estimate IRR of 10%, compared with 9% previously estimated for cardiovascular disease research. The sensitivity analysis demonstrated the importance of smoking reduction as a major source of improved cancer-related health outcomes. CONCLUSIONS: We have demonstrated a substantive IRR from net health gain to public and charitable funding of cancer-related research in the UK, and further validated the approach that we originally used in assessing the returns from cardiovascular research. In doing so, we have highlighted a number of weaknesses and key assumptions that need strengthening in further investigations. Nevertheless, these cautious estimates demonstrate that the returns from past cancer research have been substantial, and justify the investments made during the period 1976 to 1995. More... »

PAGES

99

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1741-7015-12-99

DOI

http://dx.doi.org/10.1186/1741-7015-12-99

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006565540

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24930803


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomedical Research", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cost-Benefit Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Costs and Cost Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Foundations", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Status", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Incidence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Public Sector", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality-Adjusted Life Years", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Support as Topic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Smoking Cessation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Smoking Prevention", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "United Kingdom", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Brunel University London", 
          "id": "https://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "Health Economics Research Group, Brunel University, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glover", 
        "givenName": "Matthew", 
        "id": "sg:person.01137153570.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137153570.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brunel University London", 
          "id": "https://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "Health Economics Research Group, Brunel University, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buxton", 
        "givenName": "Martin", 
        "id": "sg:person.01123604615.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123604615.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RAND Europe", 
          "id": "https://www.grid.ac/institutes/grid.425785.9", 
          "name": [
            "RAND Europe, Westbrook Centre, Milton Road, CB4 1YG, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guthrie", 
        "givenName": "Susan", 
        "id": "sg:person.01052724140.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052724140.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brunel University London", 
          "id": "https://www.grid.ac/institutes/grid.7728.a", 
          "name": [
            "Health Economics Research Group, Brunel University, Uxbridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanney", 
        "givenName": "Stephen", 
        "id": "sg:person.01236410736.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236410736.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RAND Europe", 
          "id": "https://www.grid.ac/institutes/grid.425785.9", 
          "name": [
            "RAND Europe, Westbrook Centre, Milton Road, CB4 1YG, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pollitt", 
        "givenName": "Alexandra", 
        "id": "sg:person.01335400150.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335400150.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "RAND Europe, Westbrook Centre, Milton Road, CB4 1YG, Cambridge, UK", 
            "King\u2019s Policy Institute, King\u2019s College London, Virginia Woolf Building, 22 Kingsway, WC2R 2LA, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grant", 
        "givenName": "Jonathan", 
        "id": "sg:person.01055471415.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055471415.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.socscimed.2004.06.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004486803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/rheumatology/keh708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008752227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/rheumatology/keh708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008752227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhealeco.2010.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008860770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm0602-551b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009367418", 
          "https://doi.org/10.1038/nm0602-551b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm0602-551b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009367418", 
          "https://doi.org/10.1038/nm0602-551b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.320.7242.1107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010284812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(12)61611-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010347035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aap.0000000000000102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017044552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aap.0000000000000102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017044552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aap.0000000000000102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017044552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(13)60355-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021176069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejca.2007.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025907215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.f2618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026432528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clon.2008.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027974447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(06)68578-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033246574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/bjc.2012.277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045408038", 
          "https://doi.org/10.1038/bjc.2012.277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.22169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045726096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/465665b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047248411", 
          "https://doi.org/10.1038/465665b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/465665a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048289713", 
          "https://doi.org/10.1038/465665a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0277-9536(92)90128-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051300710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3310/hta8200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071139778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3310/hta8500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071139808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/135581969600100107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074346452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/135581969600100107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074346452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076992046", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077330831", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5694/j.1326-5377.2006.tb00661.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077330831"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: Building on an approach developed to assess the economic returns to cardiovascular research, we estimated the economic returns from UK public and charitable funded cancer-related research that arise from the net value of the improved health outcomes.\nMETHODS: To assess these economic returns from cancer-related research in the UK we estimated: 1) public and charitable expenditure on cancer-related research in the UK from 1970 to 2009; 2) net monetary benefit (NMB), that is, the health benefit measured in quality adjusted life years (QALYs) valued in monetary terms (using a base-case value of a QALY of GB\u00a325,000) minus the cost of delivering that benefit, for a prioritised list of interventions from 1991 to 2010; 3) the proportion of NMB attributable to UK research; 4) the elapsed time between research funding and health gain; and 5) the internal rate of return (IRR) from cancer-related research investments on health benefits. We analysed the uncertainties in the IRR estimate using sensitivity analyses to illustrate the effect of some key parameters.\nRESULTS: In 2011/12 prices, total expenditure on cancer-related research from 1970 to 2009 was \u00a315 billion. The NMB of the 5.9 million QALYs gained from the prioritised interventions from 1991 to 2010 was \u00a3124 billion. Calculation of the IRR incorporated an estimated elapsed time of 15 years. We related 17% of the annual NMB estimated to be attributable to UK research (for each of the 20 years 1991 to 2010) to 20 years of research investment 15 years earlier (that is, for 1976 to 1995). This produced a best-estimate IRR of 10%, compared with 9% previously estimated for cardiovascular disease research. The sensitivity analysis demonstrated the importance of smoking reduction as a major source of improved cancer-related health outcomes.\nCONCLUSIONS: We have demonstrated a substantive IRR from net health gain to public and charitable funding of cancer-related research in the UK, and further validated the approach that we originally used in assessing the returns from cardiovascular research. In doing so, we have highlighted a number of weaknesses and key assumptions that need strengthening in further investigations. Nevertheless, these cautious estimates demonstrate that the returns from past cancer research have been substantial, and justify the investments made during the period 1976 to 1995.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1741-7015-12-99", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032885", 
        "issn": [
          "1741-7015"
        ], 
        "name": "BMC Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Estimating the returns to UK publicly funded cancer-related research in terms of the net value of improved health outcomes", 
    "pagination": "99", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1f45c887d93de0aa9a34589d8b44fe2e316239b2fdbd1e8a79ff99221e6b349d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24930803"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101190723"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1741-7015-12-99"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006565540"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1741-7015-12-99", 
      "https://app.dimensions.ai/details/publication/pub.1006565540"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1741-7015-12-99"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1741-7015-12-99'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1741-7015-12-99'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1741-7015-12-99'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1741-7015-12-99'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      66 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1741-7015-12-99 schema:about N45b038600c6d4d99ae240ca1747f62a1
2 N4db68b79ed994dcdafe3cc76507f5926
3 N63dd564e5d5948fd913b14d691994dfe
4 N68427b754dd14bd7beefc26d30e82a1a
5 N771dcc3228d440a8b40f9b98b4bd67ce
6 N7ace45a6d2d84646b02d8e55e0f0fa26
7 N85cab369219444ad96e98e530fd28a20
8 N88e6b12558644924aec2b84386c4b225
9 Nb9b9e72fe86d442c95d8ca1e8a073008
10 Ncfc3354ef5fc4600baa2837fcd020a2d
11 Nf16ac5c949934f3cb4e9c92dd82c1127
12 Nfac5c1490c1e4b9c8861754f05d20d40
13 Nfc347c079d4748e0b576605bfcb0d9d8
14 Nfe6b3e2988454c4cb35e3d161b817243
15 anzsrc-for:14
16 anzsrc-for:1402
17 schema:author N7bfc2131242e4a4d8728898380fbc866
18 schema:citation sg:pub.10.1038/465665a
19 sg:pub.10.1038/465665b
20 sg:pub.10.1038/bjc.2012.277
21 sg:pub.10.1038/nm0602-551b
22 https://app.dimensions.ai/details/publication/pub.1076992046
23 https://app.dimensions.ai/details/publication/pub.1077330831
24 https://doi.org/10.1002/ijc.22169
25 https://doi.org/10.1016/0277-9536(92)90128-d
26 https://doi.org/10.1016/j.clon.2008.12.008
27 https://doi.org/10.1016/j.ejca.2007.12.015
28 https://doi.org/10.1016/j.jhealeco.2010.02.006
29 https://doi.org/10.1016/j.socscimed.2004.06.038
30 https://doi.org/10.1016/s0140-6736(06)68578-4
31 https://doi.org/10.1016/s0140-6736(12)61611-0
32 https://doi.org/10.1016/s0140-6736(13)60355-4
33 https://doi.org/10.1093/rheumatology/keh708
34 https://doi.org/10.1097/aap.0000000000000102
35 https://doi.org/10.1136/bmj.320.7242.1107
36 https://doi.org/10.1136/bmj.f2618
37 https://doi.org/10.1177/135581969600100107
38 https://doi.org/10.3310/hta8200
39 https://doi.org/10.3310/hta8500
40 https://doi.org/10.5694/j.1326-5377.2006.tb00661.x
41 schema:datePublished 2014-12
42 schema:datePublishedReg 2014-12-01
43 schema:description BACKGROUND: Building on an approach developed to assess the economic returns to cardiovascular research, we estimated the economic returns from UK public and charitable funded cancer-related research that arise from the net value of the improved health outcomes. METHODS: To assess these economic returns from cancer-related research in the UK we estimated: 1) public and charitable expenditure on cancer-related research in the UK from 1970 to 2009; 2) net monetary benefit (NMB), that is, the health benefit measured in quality adjusted life years (QALYs) valued in monetary terms (using a base-case value of a QALY of GB£25,000) minus the cost of delivering that benefit, for a prioritised list of interventions from 1991 to 2010; 3) the proportion of NMB attributable to UK research; 4) the elapsed time between research funding and health gain; and 5) the internal rate of return (IRR) from cancer-related research investments on health benefits. We analysed the uncertainties in the IRR estimate using sensitivity analyses to illustrate the effect of some key parameters. RESULTS: In 2011/12 prices, total expenditure on cancer-related research from 1970 to 2009 was £15 billion. The NMB of the 5.9 million QALYs gained from the prioritised interventions from 1991 to 2010 was £124 billion. Calculation of the IRR incorporated an estimated elapsed time of 15 years. We related 17% of the annual NMB estimated to be attributable to UK research (for each of the 20 years 1991 to 2010) to 20 years of research investment 15 years earlier (that is, for 1976 to 1995). This produced a best-estimate IRR of 10%, compared with 9% previously estimated for cardiovascular disease research. The sensitivity analysis demonstrated the importance of smoking reduction as a major source of improved cancer-related health outcomes. CONCLUSIONS: We have demonstrated a substantive IRR from net health gain to public and charitable funding of cancer-related research in the UK, and further validated the approach that we originally used in assessing the returns from cardiovascular research. In doing so, we have highlighted a number of weaknesses and key assumptions that need strengthening in further investigations. Nevertheless, these cautious estimates demonstrate that the returns from past cancer research have been substantial, and justify the investments made during the period 1976 to 1995.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf Nd18f5e77938f42d4b8286a089679fa57
48 Neb8f4bdeb4454175884ffdd83ee3c4de
49 sg:journal.1032885
50 schema:name Estimating the returns to UK publicly funded cancer-related research in terms of the net value of improved health outcomes
51 schema:pagination 99
52 schema:productId N2d903da0926344a6bfd07cbf6923e424
53 N8a0016ad4ed242a69cb99dd56eae02ae
54 Nddaf9c0d0a2741d883bb229f0e1d2d23
55 Nea53dcc8ddcb48e29062972ea52dc603
56 Nf9a9787465524bb9aec9f96881615b33
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006565540
58 https://doi.org/10.1186/1741-7015-12-99
59 schema:sdDatePublished 2019-04-10T18:20
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nee31ce3cc56a4864ae5f5ae6a35f6e87
62 schema:url http://link.springer.com/10.1186%2F1741-7015-12-99
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0c1f3b8b15ae4b5e95fb53fc43cb1950 rdf:first sg:person.01055471415.15
67 rdf:rest rdf:nil
68 N2d903da0926344a6bfd07cbf6923e424 schema:name pubmed_id
69 schema:value 24930803
70 rdf:type schema:PropertyValue
71 N377e853d0af54fedbf0abd4ae4fc01ef rdf:first sg:person.01236410736.55
72 rdf:rest Ne198420536054effb0e7d13b7b8ff407
73 N45b038600c6d4d99ae240ca1747f62a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Public Sector
75 rdf:type schema:DefinedTerm
76 N4db68b79ed994dcdafe3cc76507f5926 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Humans
78 rdf:type schema:DefinedTerm
79 N63dd564e5d5948fd913b14d691994dfe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Foundations
81 rdf:type schema:DefinedTerm
82 N68427b754dd14bd7beefc26d30e82a1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Smoking Prevention
84 rdf:type schema:DefinedTerm
85 N6c182772353b4ebdb50a8a0d192437a2 rdf:first sg:person.01052724140.09
86 rdf:rest N377e853d0af54fedbf0abd4ae4fc01ef
87 N771dcc3228d440a8b40f9b98b4bd67ce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Cost-Benefit Analysis
89 rdf:type schema:DefinedTerm
90 N7ace45a6d2d84646b02d8e55e0f0fa26 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Biomedical Research
92 rdf:type schema:DefinedTerm
93 N7bfc2131242e4a4d8728898380fbc866 rdf:first sg:person.01137153570.55
94 rdf:rest N9255f35a500a49ce8e0809923a8a4e9c
95 N85cab369219444ad96e98e530fd28a20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Incidence
97 rdf:type schema:DefinedTerm
98 N88e6b12558644924aec2b84386c4b225 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Quality-Adjusted Life Years
100 rdf:type schema:DefinedTerm
101 N8a0016ad4ed242a69cb99dd56eae02ae schema:name readcube_id
102 schema:value 1f45c887d93de0aa9a34589d8b44fe2e316239b2fdbd1e8a79ff99221e6b349d
103 rdf:type schema:PropertyValue
104 N9255f35a500a49ce8e0809923a8a4e9c rdf:first sg:person.01123604615.70
105 rdf:rest N6c182772353b4ebdb50a8a0d192437a2
106 Nb9b9e72fe86d442c95d8ca1e8a073008 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Health Status
108 rdf:type schema:DefinedTerm
109 Ncfc3354ef5fc4600baa2837fcd020a2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Research Support as Topic
111 rdf:type schema:DefinedTerm
112 Nd18f5e77938f42d4b8286a089679fa57 schema:issueNumber 1
113 rdf:type schema:PublicationIssue
114 Nddaf9c0d0a2741d883bb229f0e1d2d23 schema:name nlm_unique_id
115 schema:value 101190723
116 rdf:type schema:PropertyValue
117 Ne198420536054effb0e7d13b7b8ff407 rdf:first sg:person.01335400150.85
118 rdf:rest N0c1f3b8b15ae4b5e95fb53fc43cb1950
119 Nea53dcc8ddcb48e29062972ea52dc603 schema:name doi
120 schema:value 10.1186/1741-7015-12-99
121 rdf:type schema:PropertyValue
122 Neb8f4bdeb4454175884ffdd83ee3c4de schema:volumeNumber 12
123 rdf:type schema:PublicationVolume
124 Nee31ce3cc56a4864ae5f5ae6a35f6e87 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 Nf16ac5c949934f3cb4e9c92dd82c1127 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name United Kingdom
128 rdf:type schema:DefinedTerm
129 Nf9a9787465524bb9aec9f96881615b33 schema:name dimensions_id
130 schema:value pub.1006565540
131 rdf:type schema:PropertyValue
132 Nfac5c1490c1e4b9c8861754f05d20d40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Costs and Cost Analysis
134 rdf:type schema:DefinedTerm
135 Nfc347c079d4748e0b576605bfcb0d9d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Neoplasms
137 rdf:type schema:DefinedTerm
138 Nfe6b3e2988454c4cb35e3d161b817243 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Smoking Cessation
140 rdf:type schema:DefinedTerm
141 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
142 schema:name Economics
143 rdf:type schema:DefinedTerm
144 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
145 schema:name Applied Economics
146 rdf:type schema:DefinedTerm
147 sg:journal.1032885 schema:issn 1741-7015
148 schema:name BMC Medicine
149 rdf:type schema:Periodical
150 sg:person.01052724140.09 schema:affiliation https://www.grid.ac/institutes/grid.425785.9
151 schema:familyName Guthrie
152 schema:givenName Susan
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052724140.09
154 rdf:type schema:Person
155 sg:person.01055471415.15 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
156 schema:familyName Grant
157 schema:givenName Jonathan
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055471415.15
159 rdf:type schema:Person
160 sg:person.01123604615.70 schema:affiliation https://www.grid.ac/institutes/grid.7728.a
161 schema:familyName Buxton
162 schema:givenName Martin
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123604615.70
164 rdf:type schema:Person
165 sg:person.01137153570.55 schema:affiliation https://www.grid.ac/institutes/grid.7728.a
166 schema:familyName Glover
167 schema:givenName Matthew
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137153570.55
169 rdf:type schema:Person
170 sg:person.01236410736.55 schema:affiliation https://www.grid.ac/institutes/grid.7728.a
171 schema:familyName Hanney
172 schema:givenName Stephen
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236410736.55
174 rdf:type schema:Person
175 sg:person.01335400150.85 schema:affiliation https://www.grid.ac/institutes/grid.425785.9
176 schema:familyName Pollitt
177 schema:givenName Alexandra
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335400150.85
179 rdf:type schema:Person
180 sg:pub.10.1038/465665a schema:sameAs https://app.dimensions.ai/details/publication/pub.1048289713
181 https://doi.org/10.1038/465665a
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/465665b schema:sameAs https://app.dimensions.ai/details/publication/pub.1047248411
184 https://doi.org/10.1038/465665b
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/bjc.2012.277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045408038
187 https://doi.org/10.1038/bjc.2012.277
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nm0602-551b schema:sameAs https://app.dimensions.ai/details/publication/pub.1009367418
190 https://doi.org/10.1038/nm0602-551b
191 rdf:type schema:CreativeWork
192 https://app.dimensions.ai/details/publication/pub.1076992046 schema:CreativeWork
193 https://app.dimensions.ai/details/publication/pub.1077330831 schema:CreativeWork
194 https://doi.org/10.1002/ijc.22169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045726096
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/0277-9536(92)90128-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1051300710
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.clon.2008.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027974447
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.ejca.2007.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025907215
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.jhealeco.2010.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008860770
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.socscimed.2004.06.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004486803
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/s0140-6736(06)68578-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033246574
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/s0140-6736(12)61611-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010347035
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s0140-6736(13)60355-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021176069
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/rheumatology/keh708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008752227
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1097/aap.0000000000000102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017044552
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1136/bmj.320.7242.1107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010284812
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1136/bmj.f2618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026432528
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1177/135581969600100107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074346452
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3310/hta8200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071139778
223 rdf:type schema:CreativeWork
224 https://doi.org/10.3310/hta8500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071139808
225 rdf:type schema:CreativeWork
226 https://doi.org/10.5694/j.1326-5377.2006.tb00661.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1077330831
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.13097.3c schema:alternateName King's College London
229 schema:name King’s Policy Institute, King’s College London, Virginia Woolf Building, 22 Kingsway, WC2R 2LA, London, UK
230 RAND Europe, Westbrook Centre, Milton Road, CB4 1YG, Cambridge, UK
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.425785.9 schema:alternateName RAND Europe
233 schema:name RAND Europe, Westbrook Centre, Milton Road, CB4 1YG, Cambridge, UK
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.7728.a schema:alternateName Brunel University London
236 schema:name Health Economics Research Group, Brunel University, Uxbridge, UK
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...