Predictive spatial risk model of poliovirus to aid prioritization and hasten eradication in Nigeria View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Alexander M Upfill-Brown, Hil M Lyons, Muhammad A Pate, Faisal Shuaib, Shahzad Baig, Hao Hu, Philip A Eckhoff, Guillaume Chabot-Couture

ABSTRACT

BACKGROUND: One of the challenges facing the Global Polio Eradication Initiative is efficiently directing limited resources, such as specially trained personnel, community outreach activities, and satellite vaccinator tracking, to the most at-risk areas to maximize the impact of interventions. A validated predictive model of wild poliovirus circulation would greatly inform prioritization efforts by accurately forecasting areas at greatest risk, thus enabling the greatest effect of program interventions. METHODS: Using Nigerian acute flaccid paralysis surveillance data from 2004-2013, we developed a spatial hierarchical Poisson hurdle model fitted within a Bayesian framework to study historical polio caseload patterns and forecast future circulation of type 1 and 3 wild poliovirus within districts in Nigeria. A Bayesian temporal smoothing model was applied to address data sparsity underlying estimates of covariates at the district level. RESULTS: We find that calculated vaccine-derived population immunity is significantly negatively associated with the probability and number of wild poliovirus case(s) within a district. Recent case information is significantly positively associated with probability of a case, but not the number of cases. We used lagged indicators and coefficients from the fitted models to forecast reported cases in the subsequent six-month periods. Over the past three years, the average predictive ability is 86 ± 2% and 85 ± 4% for wild poliovirus type 1 and 3, respectively. Interestingly, the predictive accuracy of historical transmission patterns alone is equivalent (86 ± 2% and 84 ± 4% for type 1 and 3, respectively). We calculate uncertainty in risk ranking to inform assessments of changes in rank between time periods. CONCLUSIONS: The model developed in this study successfully predicts districts at risk for future wild poliovirus cases in Nigeria. The highest predicted district risk was 12.8 WPV1 cases in 2006, while the lowest district risk was 0.001 WPV1 cases in 2013. Model results have been used to direct the allocation of many different interventions, including political and religious advocacy visits. This modeling approach could be applied to other vaccine preventable diseases for use in other control and elimination programs. More... »

PAGES

92

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1741-7015-12-92

DOI

http://dx.doi.org/10.1186/1741-7015-12-92

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016783104

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24894345


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Eradication", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Geography, Medical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Resources", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nigeria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Poisson Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Poliomyelitis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Poliovirus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uncertainty", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Intellectual Ventures (United States)", 
          "id": "https://www.grid.ac/institutes/grid.471104.7", 
          "name": [
            "Institute for Disease Modeling, Intellectual Ventures, 1555 132nd Ave NE, Bellevue, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Upfill-Brown", 
        "givenName": "Alexander M", 
        "id": "sg:person.01250355422.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250355422.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intellectual Ventures (United States)", 
          "id": "https://www.grid.ac/institutes/grid.471104.7", 
          "name": [
            "Institute for Disease Modeling, Intellectual Ventures, 1555 132nd Ave NE, Bellevue, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lyons", 
        "givenName": "Hil M", 
        "id": "sg:person.01316470622.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316470622.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Duke Institute for Global Health, Duke University, Durham, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pate", 
        "givenName": "Muhammad A", 
        "id": "sg:person.0617465344.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617465344.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Alabama at Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "National Polio Emergency Operations Center, Abuja, Nigeria", 
            "National Primary Health Care Development Agency, Abuja, Nigeria", 
            "University of Alabama at Birmingham, Birmingham, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shuaib", 
        "givenName": "Faisal", 
        "id": "sg:person.01263250534.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263250534.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Primary Health Care Development Agency", 
          "id": "https://www.grid.ac/institutes/grid.463521.7", 
          "name": [
            "National Primary Health Care Development Agency, Abuja, Nigeria", 
            "Kano Polio Emergency Operations Center, Kano, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baig", 
        "givenName": "Shahzad", 
        "id": "sg:person.0707313122.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707313122.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intellectual Ventures (United States)", 
          "id": "https://www.grid.ac/institutes/grid.471104.7", 
          "name": [
            "Institute for Disease Modeling, Intellectual Ventures, 1555 132nd Ave NE, Bellevue, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Hao", 
        "id": "sg:person.01207773043.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207773043.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intellectual Ventures (United States)", 
          "id": "https://www.grid.ac/institutes/grid.471104.7", 
          "name": [
            "Institute for Disease Modeling, Intellectual Ventures, 1555 132nd Ave NE, Bellevue, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eckhoff", 
        "givenName": "Philip A", 
        "id": "sg:person.01324221443.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324221443.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intellectual Ventures (United States)", 
          "id": "https://www.grid.ac/institutes/grid.471104.7", 
          "name": [
            "Institute for Disease Modeling, Intellectual Ventures, 1555 132nd Ave NE, Bellevue, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chabot-Couture", 
        "givenName": "Guillaume", 
        "id": "sg:person.01173704633.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173704633.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0140-6736(05)67008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003899884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0000958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004187350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s003118200900599x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006437954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s003118200900599x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006437954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid1410.080366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007924312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2214-109x(13)70168-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011280172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008820505350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012393755", 
          "https://doi.org/10.1023/a:1008820505350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijid.2013.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013463693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014582441", 
          "https://doi.org/10.1186/1471-2105-12-77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014582441", 
          "https://doi.org/10.1186/1471-2105-12-77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/infdis/jis241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015804791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2012.0140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017237674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/496290a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017342067", 
          "https://doi.org/10.1038/496290a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.1000048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017745843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.1000048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017745843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0803259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018646460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aje/kws378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021066876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mbs.2013.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021327297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-5877(00)00115-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022292377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-3156.2006.01594.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023182845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.epirev.a018041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023986771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4076(86)90002-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027975208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020910605990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029067867", 
          "https://doi.org/10.1023/a:1020910605990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1471-4922(01)02223-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029420720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ss/1177011136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029488311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.1001109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030750280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008929526011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031552564", 
          "https://doi.org/10.1023/a:1008929526011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0000250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031698305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0910074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033194966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1539-6924.2012.01891.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034015148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/risa.12032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034355667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-985x.2012.01039.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034992127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.4177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035844873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/rssa.12033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038070084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041821886", 
          "https://doi.org/10.1007/bf00116466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0264-410x(97)00001-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042243868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpara.2005.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043585959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpara.2005.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043585959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0601559103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045488890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047288536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmp1104329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049720631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-2875-5-99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049879030", 
          "https://doi.org/10.1186/1475-2875-5-99"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sim.5457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051268224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(12)60648-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051432825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpara.2007.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051589593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0376892997000088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053798761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0376892997000088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053798761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/82.4.733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059420612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/clinids/13.5.926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059471691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1130388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062454557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1471082x0901000404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064025762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1471082x0901000404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064025762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0962280205sm388oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064155236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0962280205sm388oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064155236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/1471082x05st084oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064158991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/1471082x05st084oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064158991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v012.i03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077467857", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.epirev.a036023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079535703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/146123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102717497"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "BACKGROUND: One of the challenges facing the Global Polio Eradication Initiative is efficiently directing limited resources, such as specially trained personnel, community outreach activities, and satellite vaccinator tracking, to the most at-risk areas to maximize the impact of interventions. A validated predictive model of wild poliovirus circulation would greatly inform prioritization efforts by accurately forecasting areas at greatest risk, thus enabling the greatest effect of program interventions.\nMETHODS: Using Nigerian acute flaccid paralysis surveillance data from 2004-2013, we developed a spatial hierarchical Poisson hurdle model fitted within a Bayesian framework to study historical polio caseload patterns and forecast future circulation of type 1 and 3 wild poliovirus within districts in Nigeria. A Bayesian temporal smoothing model was applied to address data sparsity underlying estimates of covariates at the district level.\nRESULTS: We find that calculated vaccine-derived population immunity is significantly negatively associated with the probability and number of wild poliovirus case(s) within a district. Recent case information is significantly positively associated with probability of a case, but not the number of cases. We used lagged indicators and coefficients from the fitted models to forecast reported cases in the subsequent six-month periods. Over the past three years, the average predictive ability is 86 \u00b1 2% and 85 \u00b1 4% for wild poliovirus type 1 and 3, respectively. Interestingly, the predictive accuracy of historical transmission patterns alone is equivalent (86 \u00b1 2% and 84 \u00b1 4% for type 1 and 3, respectively). We calculate uncertainty in risk ranking to inform assessments of changes in rank between time periods.\nCONCLUSIONS: The model developed in this study successfully predicts districts at risk for future wild poliovirus cases in Nigeria. The highest predicted district risk was 12.8 WPV1 cases in 2006, while the lowest district risk was 0.001 WPV1 cases in 2013. Model results have been used to direct the allocation of many different interventions, including political and religious advocacy visits. This modeling approach could be applied to other vaccine preventable diseases for use in other control and elimination programs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1741-7015-12-92", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1032885", 
        "issn": [
          "1741-7015"
        ], 
        "name": "BMC Medicine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Predictive spatial risk model of poliovirus to aid prioritization and hasten eradication in Nigeria", 
    "pagination": "92", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4ff70bc9a38c87bd91c1a94bfcbead396870f327b2960283302c9aad50204091"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24894345"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101190723"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1741-7015-12-92"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016783104"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1741-7015-12-92", 
      "https://app.dimensions.ai/details/publication/pub.1016783104"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1741-7015-12-92"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1741-7015-12-92'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1741-7015-12-92'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1741-7015-12-92'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1741-7015-12-92'


 

This table displays all metadata directly associated to this object as RDF triples.

347 TRIPLES      21 PREDICATES      95 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1741-7015-12-92 schema:about N026baca2380c477184ebbc355a9e98e9
2 N036eed16ec234989b3c033e53cd42c59
3 N055021e925ea44818cebcf7d0fb7ee5c
4 N15103972a1c34991921245e4f9e0e4d3
5 N1e95e7c98fb1432aa9e8bc259f65ab2d
6 N243bff65782e48f4874d6809277a31ea
7 N5ff68ffa96a1429abcb98b32d02ef630
8 N64b37559c49d4c899871091cdd7b62c3
9 Nb140eae0daf3426a81c8b776bad16f29
10 Nb81f10996997442a8dd8cfa21c98c9a3
11 Ndbc9db32e179461e94789cb54784a693
12 Nf391af9bd14948f8b2e2e02ef12370b1
13 Nf8776957f24e4257b72cbf843d0afe2a
14 Nf9ee2fc4cf884d138f8335d90372a354
15 anzsrc-for:01
16 anzsrc-for:0104
17 schema:author Na9cce05037e34908a5fa9308462be548
18 schema:citation sg:pub.10.1007/bf00116466
19 sg:pub.10.1023/a:1008820505350
20 sg:pub.10.1023/a:1008929526011
21 sg:pub.10.1023/a:1020910605990
22 sg:pub.10.1038/496290a
23 sg:pub.10.1186/1471-2105-12-77
24 sg:pub.10.1186/1475-2875-5-99
25 https://app.dimensions.ai/details/publication/pub.1077467857
26 https://doi.org/10.1002/sim.4177
27 https://doi.org/10.1002/sim.5457
28 https://doi.org/10.1016/0304-4076(86)90002-3
29 https://doi.org/10.1016/j.ijid.2013.09.005
30 https://doi.org/10.1016/j.ijpara.2005.09.003
31 https://doi.org/10.1016/j.ijpara.2007.08.001
32 https://doi.org/10.1016/j.mbs.2013.04.013
33 https://doi.org/10.1016/s0140-6736(05)67008-0
34 https://doi.org/10.1016/s0140-6736(12)60648-5
35 https://doi.org/10.1016/s0167-5877(00)00115-x
36 https://doi.org/10.1016/s0264-410x(97)00001-7
37 https://doi.org/10.1016/s1471-4922(01)02223-1
38 https://doi.org/10.1016/s2214-109x(13)70168-2
39 https://doi.org/10.1017/s003118200900599x
40 https://doi.org/10.1017/s0376892997000088
41 https://doi.org/10.1056/nejmoa0803259
42 https://doi.org/10.1056/nejmoa0910074
43 https://doi.org/10.1056/nejmp1104329
44 https://doi.org/10.1073/pnas.0601559103
45 https://doi.org/10.1093/aje/kws378
46 https://doi.org/10.1093/biomet/82.4.733
47 https://doi.org/10.1093/clinids/13.5.926
48 https://doi.org/10.1093/infdis/jis241
49 https://doi.org/10.1093/oxfordjournals.epirev.a018041
50 https://doi.org/10.1093/oxfordjournals.epirev.a036023
51 https://doi.org/10.1098/rstb.2012.0140
52 https://doi.org/10.1111/1467-9868.00353
53 https://doi.org/10.1111/j.1365-3156.2006.01594.x
54 https://doi.org/10.1111/j.1467-985x.2012.01039.x
55 https://doi.org/10.1111/j.1539-6924.2012.01891.x
56 https://doi.org/10.1111/risa.12032
57 https://doi.org/10.1111/rssa.12033
58 https://doi.org/10.1126/science.1130388
59 https://doi.org/10.1177/1471082x0901000404
60 https://doi.org/10.1191/0962280205sm388oa
61 https://doi.org/10.1191/1471082x05st084oa
62 https://doi.org/10.1214/ss/1177011136
63 https://doi.org/10.1371/journal.pmed.1000048
64 https://doi.org/10.1371/journal.pmed.1001109
65 https://doi.org/10.1371/journal.pntd.0000250
66 https://doi.org/10.1371/journal.pntd.0000958
67 https://doi.org/10.18637/jss.v012.i03
68 https://doi.org/10.2307/146123
69 https://doi.org/10.3201/eid1410.080366
70 schema:datePublished 2014-12
71 schema:datePublishedReg 2014-12-01
72 schema:description BACKGROUND: One of the challenges facing the Global Polio Eradication Initiative is efficiently directing limited resources, such as specially trained personnel, community outreach activities, and satellite vaccinator tracking, to the most at-risk areas to maximize the impact of interventions. A validated predictive model of wild poliovirus circulation would greatly inform prioritization efforts by accurately forecasting areas at greatest risk, thus enabling the greatest effect of program interventions. METHODS: Using Nigerian acute flaccid paralysis surveillance data from 2004-2013, we developed a spatial hierarchical Poisson hurdle model fitted within a Bayesian framework to study historical polio caseload patterns and forecast future circulation of type 1 and 3 wild poliovirus within districts in Nigeria. A Bayesian temporal smoothing model was applied to address data sparsity underlying estimates of covariates at the district level. RESULTS: We find that calculated vaccine-derived population immunity is significantly negatively associated with the probability and number of wild poliovirus case(s) within a district. Recent case information is significantly positively associated with probability of a case, but not the number of cases. We used lagged indicators and coefficients from the fitted models to forecast reported cases in the subsequent six-month periods. Over the past three years, the average predictive ability is 86 ± 2% and 85 ± 4% for wild poliovirus type 1 and 3, respectively. Interestingly, the predictive accuracy of historical transmission patterns alone is equivalent (86 ± 2% and 84 ± 4% for type 1 and 3, respectively). We calculate uncertainty in risk ranking to inform assessments of changes in rank between time periods. CONCLUSIONS: The model developed in this study successfully predicts districts at risk for future wild poliovirus cases in Nigeria. The highest predicted district risk was 12.8 WPV1 cases in 2006, while the lowest district risk was 0.001 WPV1 cases in 2013. Model results have been used to direct the allocation of many different interventions, including political and religious advocacy visits. This modeling approach could be applied to other vaccine preventable diseases for use in other control and elimination programs.
73 schema:genre research_article
74 schema:inLanguage en
75 schema:isAccessibleForFree true
76 schema:isPartOf N670da32aa3fc45b1889055d879679e22
77 Ne576781d2d014ae694c17edc4c3f0abc
78 sg:journal.1032885
79 schema:name Predictive spatial risk model of poliovirus to aid prioritization and hasten eradication in Nigeria
80 schema:pagination 92
81 schema:productId N2094c89db37b4805903c9660ece8de71
82 N5f0b3d4ecb604f91b4128486a3d92a7b
83 Nc2805ce31c4147e2be5ab32cc7253556
84 Ncf1d1b60685645a6bf26b89c257ff9a3
85 Ndb10be91a4f84d8dacded8654d1f5fd2
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016783104
87 https://doi.org/10.1186/1741-7015-12-92
88 schema:sdDatePublished 2019-04-11T00:15
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher Nf0df34f23b5a41e9bd1f391b62561d15
91 schema:url http://link.springer.com/10.1186%2F1741-7015-12-92
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N026baca2380c477184ebbc355a9e98e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Health Resources
97 rdf:type schema:DefinedTerm
98 N036eed16ec234989b3c033e53cd42c59 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Models, Statistical
100 rdf:type schema:DefinedTerm
101 N055021e925ea44818cebcf7d0fb7ee5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Bayes Theorem
103 rdf:type schema:DefinedTerm
104 N075110c58ae64e24927ba5f287628bd8 rdf:first sg:person.0617465344.57
105 rdf:rest N7c9b81a6e14c46f1ab60694735d42c1b
106 N15103972a1c34991921245e4f9e0e4d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Uncertainty
108 rdf:type schema:DefinedTerm
109 N1e95e7c98fb1432aa9e8bc259f65ab2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Disease Eradication
111 rdf:type schema:DefinedTerm
112 N2094c89db37b4805903c9660ece8de71 schema:name nlm_unique_id
113 schema:value 101190723
114 rdf:type schema:PropertyValue
115 N243bff65782e48f4874d6809277a31ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Poliovirus
117 rdf:type schema:DefinedTerm
118 N249915898dae405b9039f38b3dbd9ddd rdf:first sg:person.0707313122.03
119 rdf:rest N28bb7cae448a4c08aba7cba66e829e56
120 N28bb7cae448a4c08aba7cba66e829e56 rdf:first sg:person.01207773043.50
121 rdf:rest N92237a00fb724ea4bd7c6035222dffaa
122 N2eb79c09f0c2494d8aa8d14eb8818456 rdf:first sg:person.01173704633.46
123 rdf:rest rdf:nil
124 N5f0b3d4ecb604f91b4128486a3d92a7b schema:name dimensions_id
125 schema:value pub.1016783104
126 rdf:type schema:PropertyValue
127 N5ff68ffa96a1429abcb98b32d02ef630 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Risk
129 rdf:type schema:DefinedTerm
130 N64b37559c49d4c899871091cdd7b62c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Poliomyelitis
132 rdf:type schema:DefinedTerm
133 N670da32aa3fc45b1889055d879679e22 schema:issueNumber 1
134 rdf:type schema:PublicationIssue
135 N7c9b81a6e14c46f1ab60694735d42c1b rdf:first sg:person.01263250534.83
136 rdf:rest N249915898dae405b9039f38b3dbd9ddd
137 N92237a00fb724ea4bd7c6035222dffaa rdf:first sg:person.01324221443.45
138 rdf:rest N2eb79c09f0c2494d8aa8d14eb8818456
139 Na9cce05037e34908a5fa9308462be548 rdf:first sg:person.01250355422.92
140 rdf:rest Nf3d0bf85e48f4ef2b6c1c5fb3f71c27e
141 Nb140eae0daf3426a81c8b776bad16f29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Time Factors
143 rdf:type schema:DefinedTerm
144 Nb81f10996997442a8dd8cfa21c98c9a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Female
146 rdf:type schema:DefinedTerm
147 Nc2805ce31c4147e2be5ab32cc7253556 schema:name readcube_id
148 schema:value 4ff70bc9a38c87bd91c1a94bfcbead396870f327b2960283302c9aad50204091
149 rdf:type schema:PropertyValue
150 Ncf1d1b60685645a6bf26b89c257ff9a3 schema:name pubmed_id
151 schema:value 24894345
152 rdf:type schema:PropertyValue
153 Ndb10be91a4f84d8dacded8654d1f5fd2 schema:name doi
154 schema:value 10.1186/1741-7015-12-92
155 rdf:type schema:PropertyValue
156 Ndbc9db32e179461e94789cb54784a693 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Humans
158 rdf:type schema:DefinedTerm
159 Ne576781d2d014ae694c17edc4c3f0abc schema:volumeNumber 12
160 rdf:type schema:PublicationVolume
161 Nf0df34f23b5a41e9bd1f391b62561d15 schema:name Springer Nature - SN SciGraph project
162 rdf:type schema:Organization
163 Nf391af9bd14948f8b2e2e02ef12370b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Geography, Medical
165 rdf:type schema:DefinedTerm
166 Nf3d0bf85e48f4ef2b6c1c5fb3f71c27e rdf:first sg:person.01316470622.01
167 rdf:rest N075110c58ae64e24927ba5f287628bd8
168 Nf8776957f24e4257b72cbf843d0afe2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Poisson Distribution
170 rdf:type schema:DefinedTerm
171 Nf9ee2fc4cf884d138f8335d90372a354 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Nigeria
173 rdf:type schema:DefinedTerm
174 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
175 schema:name Mathematical Sciences
176 rdf:type schema:DefinedTerm
177 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
178 schema:name Statistics
179 rdf:type schema:DefinedTerm
180 sg:journal.1032885 schema:issn 1741-7015
181 schema:name BMC Medicine
182 rdf:type schema:Periodical
183 sg:person.01173704633.46 schema:affiliation https://www.grid.ac/institutes/grid.471104.7
184 schema:familyName Chabot-Couture
185 schema:givenName Guillaume
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173704633.46
187 rdf:type schema:Person
188 sg:person.01207773043.50 schema:affiliation https://www.grid.ac/institutes/grid.471104.7
189 schema:familyName Hu
190 schema:givenName Hao
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207773043.50
192 rdf:type schema:Person
193 sg:person.01250355422.92 schema:affiliation https://www.grid.ac/institutes/grid.471104.7
194 schema:familyName Upfill-Brown
195 schema:givenName Alexander M
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250355422.92
197 rdf:type schema:Person
198 sg:person.01263250534.83 schema:affiliation https://www.grid.ac/institutes/grid.265892.2
199 schema:familyName Shuaib
200 schema:givenName Faisal
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263250534.83
202 rdf:type schema:Person
203 sg:person.01316470622.01 schema:affiliation https://www.grid.ac/institutes/grid.471104.7
204 schema:familyName Lyons
205 schema:givenName Hil M
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316470622.01
207 rdf:type schema:Person
208 sg:person.01324221443.45 schema:affiliation https://www.grid.ac/institutes/grid.471104.7
209 schema:familyName Eckhoff
210 schema:givenName Philip A
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324221443.45
212 rdf:type schema:Person
213 sg:person.0617465344.57 schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
214 schema:familyName Pate
215 schema:givenName Muhammad A
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617465344.57
217 rdf:type schema:Person
218 sg:person.0707313122.03 schema:affiliation https://www.grid.ac/institutes/grid.463521.7
219 schema:familyName Baig
220 schema:givenName Shahzad
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0707313122.03
222 rdf:type schema:Person
223 sg:pub.10.1007/bf00116466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041821886
224 https://doi.org/10.1007/bf00116466
225 rdf:type schema:CreativeWork
226 sg:pub.10.1023/a:1008820505350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012393755
227 https://doi.org/10.1023/a:1008820505350
228 rdf:type schema:CreativeWork
229 sg:pub.10.1023/a:1008929526011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031552564
230 https://doi.org/10.1023/a:1008929526011
231 rdf:type schema:CreativeWork
232 sg:pub.10.1023/a:1020910605990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029067867
233 https://doi.org/10.1023/a:1020910605990
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/496290a schema:sameAs https://app.dimensions.ai/details/publication/pub.1017342067
236 https://doi.org/10.1038/496290a
237 rdf:type schema:CreativeWork
238 sg:pub.10.1186/1471-2105-12-77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014582441
239 https://doi.org/10.1186/1471-2105-12-77
240 rdf:type schema:CreativeWork
241 sg:pub.10.1186/1475-2875-5-99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049879030
242 https://doi.org/10.1186/1475-2875-5-99
243 rdf:type schema:CreativeWork
244 https://app.dimensions.ai/details/publication/pub.1077467857 schema:CreativeWork
245 https://doi.org/10.1002/sim.4177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035844873
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1002/sim.5457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051268224
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/0304-4076(86)90002-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027975208
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.ijid.2013.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013463693
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.ijpara.2005.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043585959
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.ijpara.2007.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051589593
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.mbs.2013.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021327297
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/s0140-6736(05)67008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003899884
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/s0140-6736(12)60648-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051432825
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/s0167-5877(00)00115-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022292377
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/s0264-410x(97)00001-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042243868
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1016/s1471-4922(01)02223-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029420720
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1016/s2214-109x(13)70168-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011280172
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1017/s003118200900599x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006437954
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1017/s0376892997000088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053798761
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1056/nejmoa0803259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018646460
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1056/nejmoa0910074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033194966
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1056/nejmp1104329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049720631
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1073/pnas.0601559103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045488890
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1093/aje/kws378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021066876
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1093/biomet/82.4.733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059420612
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1093/clinids/13.5.926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059471691
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1093/infdis/jis241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015804791
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1093/oxfordjournals.epirev.a018041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023986771
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1093/oxfordjournals.epirev.a036023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079535703
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1098/rstb.2012.0140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017237674
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1111/1467-9868.00353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047288536
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1111/j.1365-3156.2006.01594.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023182845
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1111/j.1467-985x.2012.01039.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034992127
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1111/j.1539-6924.2012.01891.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034015148
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1111/risa.12032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034355667
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1111/rssa.12033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038070084
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1126/science.1130388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062454557
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1177/1471082x0901000404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064025762
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1191/0962280205sm388oa schema:sameAs https://app.dimensions.ai/details/publication/pub.1064155236
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1191/1471082x05st084oa schema:sameAs https://app.dimensions.ai/details/publication/pub.1064158991
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1214/ss/1177011136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029488311
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1371/journal.pmed.1000048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017745843
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1371/journal.pmed.1001109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030750280
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1371/journal.pntd.0000250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031698305
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1371/journal.pntd.0000958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004187350
326 rdf:type schema:CreativeWork
327 https://doi.org/10.18637/jss.v012.i03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672181
328 rdf:type schema:CreativeWork
329 https://doi.org/10.2307/146123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102717497
330 rdf:type schema:CreativeWork
331 https://doi.org/10.3201/eid1410.080366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007924312
332 rdf:type schema:CreativeWork
333 https://www.grid.ac/institutes/grid.26009.3d schema:alternateName Duke University
334 schema:name Duke Institute for Global Health, Duke University, Durham, USA
335 rdf:type schema:Organization
336 https://www.grid.ac/institutes/grid.265892.2 schema:alternateName University of Alabama at Birmingham
337 schema:name National Polio Emergency Operations Center, Abuja, Nigeria
338 National Primary Health Care Development Agency, Abuja, Nigeria
339 University of Alabama at Birmingham, Birmingham, USA
340 rdf:type schema:Organization
341 https://www.grid.ac/institutes/grid.463521.7 schema:alternateName National Primary Health Care Development Agency
342 schema:name Kano Polio Emergency Operations Center, Kano, Nigeria
343 National Primary Health Care Development Agency, Abuja, Nigeria
344 rdf:type schema:Organization
345 https://www.grid.ac/institutes/grid.471104.7 schema:alternateName Intellectual Ventures (United States)
346 schema:name Institute for Disease Modeling, Intellectual Ventures, 1555 132nd Ave NE, Bellevue, USA
347 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...