Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-05-19

AUTHORS

Mart Krupovic, Kira S Makarova, Patrick Forterre, David Prangishvili, Eugene V Koonin

ABSTRACT

BACKGROUND: Diverse transposable elements are abundant in genomes of cellular organisms from all three domains of life. Although transposons are often regarded as junk DNA, a growing body of evidence indicates that they are behind some of the major evolutionary innovations. With the growth in the number and diversity of sequenced genomes, previously unnoticed mobile elements continue to be discovered. RESULTS: We describe a new superfamily of archaeal and bacterial mobile elements which we denote casposons because they encode Cas1 endonuclease, a key enzyme of the CRISPR-Cas adaptive immunity systems of archaea and bacteria. The casposons share several features with self-synthesizing eukaryotic DNA transposons of the Polinton/Maverick class, including terminal inverted repeats and genes for B family DNA polymerases. However, unlike any other known mobile elements, the casposons are predicted to rely on Cas1 for integration and excision, via a mechanism similar to the integration of new spacers into CRISPR loci. We identify three distinct families of casposons that differ in their gene repertoires and evolutionary provenance of the DNA polymerases. Deep branching of the casposon-encoded endonuclease in the Cas1 phylogeny suggests that casposons played a pivotal role in the emergence of CRISPR-Cas immunity. CONCLUSIONS: The casposons are a novel superfamily of mobile elements, the first family of putative self-synthesizing transposons discovered in prokaryotes. The likely contribution of capsosons to the evolution of CRISPR-Cas parallels the involvement of the RAG1 transposase in vertebrate immunoglobulin gene rearrangement, suggesting that recruitment of endonucleases from mobile elements as ready-made tools for genome manipulation is a general route of evolution of adaptive immunity. More... »

PAGES

36-36

References to SciGraph publications

  • 2001-02-15. Initial sequencing and analysis of the human genome in NATURE
  • 2001-04. Comparative architecture of transposase and integrase complexes in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2014-06-18. Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses in SCIENTIFIC REPORTS
  • 2014-01-02. Analysis of Retrotransposon Activity in Plants in PLANT EPIGENETICS AND EPIGENOMICS
  • 2011-05-09. Evolution and classification of the CRISPR–Cas systems in NATURE REVIEWS MICROBIOLOGY
  • 2005-09. Isolation of an autotrophic ammonia-oxidizing marine archaeon in NATURE
  • 2007-05-12. Linear Protein-Primed Replicating Plasmids in Eukaryotic Microbes in MICROBIAL LINEAR PLASMIDS
  • 2006-07. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents in NATURE
  • 2012-01. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system in NATURE COMMUNICATIONS
  • 2007-12. A unified classification system for eukaryotic transposable elements in NATURE REVIEWS GENETICS
  • 2014-05-04. Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2011-07-14. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems in BIOLOGY DIRECT
  • 2009-03-18. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ε and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors in BIOLOGY DIRECT
  • 2004-08-19. MUSCLE: a multiple sequence alignment method with reduced time and space complexity in BMC BIOINFORMATICS
  • 2011-03-17. The struggle for life of the genome's selfish architects in BIOLOGY DIRECT
  • 2010-11-30. Correlated evolution of LTR retrotransposons and genome size in the genus eleocharis in BMC PLANT BIOLOGY
  • 2002-06. Evolution of DNA Polymerase Families: Evidences for Multiple Gene Exchange Between Cellular and Viral Proteins in JOURNAL OF MOLECULAR EVOLUTION
  • 2010-03-29. Bacteriophage resistance mechanisms in NATURE REVIEWS MICROBIOLOGY
  • 2001-11. Tn7: smarter than we thought in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2013-07-08. Breaking and joining single-stranded DNA: the HUH endonuclease superfamily in NATURE REVIEWS MICROBIOLOGY
  • 2013-11-06. A proposed mechanism for IS607-family serine transposases in MOBILE DNA
  • 2014-04-29. Conservation of major and minor jelly-roll capsid proteins in Polinton (Maverick) transposons suggests that they are bona fide viruses in BIOLOGY DIRECT
  • 2008-05. A universal classification of eukaryotic transposable elements implemented in Repbase in NATURE REVIEWS GENETICS
  • 2004-04-16. A novel family of P-loop NTPases with an unusual phyletic distribution and transmembrane segments inserted within the NTPase domain in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1186/1741-7007-12-36

    DOI

    http://dx.doi.org/10.1186/1741-7007-12-36

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028143526

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24884953


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Archaea", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Archaeal Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Attachment Sites, Microbiological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CRISPR-Cas Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Replication", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Transposable Elements", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA-Directed DNA Polymerase", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomic Islands", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Immunity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phylogeny", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prokaryotic Cells", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut Pasteur, Unit\u00e9 Biologie Mol\u00e9culaire du G\u00e8ne chez les Extr\u00eamophiles, 25 rue du Docteur Roux, 75015 Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.428999.7", 
              "name": [
                "Institut Pasteur, Unit\u00e9 Biologie Mol\u00e9culaire du G\u00e8ne chez les Extr\u00eamophiles, 25 rue du Docteur Roux, 75015 Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krupovic", 
            "givenName": "Mart", 
            "id": "sg:person.01032701646.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032701646.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA", 
              "id": "http://www.grid.ac/institutes/grid.419234.9", 
              "name": [
                "National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Makarova", 
            "givenName": "Kira S", 
            "id": "sg:person.0676725351.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676725351.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut Pasteur, Unit\u00e9 Biologie Mol\u00e9culaire du G\u00e8ne chez les Extr\u00eamophiles, 25 rue du Docteur Roux, 75015 Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.428999.7", 
              "name": [
                "Institut Pasteur, Unit\u00e9 Biologie Mol\u00e9culaire du G\u00e8ne chez les Extr\u00eamophiles, 25 rue du Docteur Roux, 75015 Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Forterre", 
            "givenName": "Patrick", 
            "id": "sg:person.01170427166.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170427166.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut Pasteur, Unit\u00e9 Biologie Mol\u00e9culaire du G\u00e8ne chez les Extr\u00eamophiles, 25 rue du Docteur Roux, 75015 Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.428999.7", 
              "name": [
                "Institut Pasteur, Unit\u00e9 Biologie Mol\u00e9culaire du G\u00e8ne chez les Extr\u00eamophiles, 25 rue du Docteur Roux, 75015 Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prangishvili", 
            "givenName": "David", 
            "id": "sg:person.01332500224.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332500224.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA", 
              "id": "http://www.grid.ac/institutes/grid.419234.9", 
              "name": [
                "National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koonin", 
            "givenName": "Eugene V", 
            "id": "sg:person.01017015051.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017015051.78"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1745-6150-9-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015316770", 
              "https://doi.org/10.1186/1745-6150-9-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35057062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042854081", 
              "https://doi.org/10.1038/35057062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35099006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017303196", 
              "https://doi.org/10.1038/35099006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-5-r30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029322874", 
              "https://doi.org/10.1186/gb-2004-5-5-r30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1745-6150-6-19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000128333", 
              "https://doi.org/10.1186/1745-6150-6-19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1745-6150-4-11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044400750", 
              "https://doi.org/10.1186/1745-6150-4-11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035378322", 
              "https://doi.org/10.1038/nrmicro2315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep05347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043513037", 
              "https://doi.org/10.1038/srep05347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/86166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045878558", 
              "https://doi.org/10.1038/86166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro2577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020345829", 
              "https://doi.org/10.1038/nrmicro2577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.2820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005186267", 
              "https://doi.org/10.1038/nsmb.2820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/7171_2007_095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040632508", 
              "https://doi.org/10.1007/7171_2007_095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2165-c1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031708839", 
              "https://doi.org/10.1038/nrg2165-c1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-5-113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040413794", 
              "https://doi.org/10.1186/1471-2105-5-113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026211758", 
              "https://doi.org/10.1038/ncomms1937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1745-6150-6-38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036092892", 
              "https://doi.org/10.1186/1745-6150-6-38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03911", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049439003", 
              "https://doi.org/10.1038/nature03911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00239-001-0078-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032190033", 
              "https://doi.org/10.1007/s00239-001-0078-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro3067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014381933", 
              "https://doi.org/10.1038/nrmicro3067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature04921", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021475860", 
              "https://doi.org/10.1038/nature04921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-62703-773-0_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005150071", 
              "https://doi.org/10.1007/978-1-62703-773-0_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2229-10-265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041398976", 
              "https://doi.org/10.1186/1471-2229-10-265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1759-8753-4-24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027753831", 
              "https://doi.org/10.1186/1759-8753-4-24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053647019", 
              "https://doi.org/10.1038/nrg2165"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-05-19", 
        "datePublishedReg": "2014-05-19", 
        "description": "BACKGROUND: Diverse transposable elements are abundant in genomes of cellular organisms from all three domains of life. Although transposons are often regarded as junk DNA, a growing body of evidence indicates that they are behind some of the major evolutionary innovations. With the growth in the number and diversity of sequenced genomes, previously unnoticed mobile elements continue to be discovered.\nRESULTS: We describe a new superfamily of archaeal and bacterial mobile elements which we denote casposons because they encode Cas1 endonuclease, a key enzyme of the CRISPR-Cas adaptive immunity systems of archaea and bacteria. The casposons share several features with self-synthesizing eukaryotic DNA transposons of the Polinton/Maverick class, including terminal inverted repeats and genes for B family DNA polymerases. However, unlike any other known mobile elements, the casposons are predicted to rely on Cas1 for integration and excision, via a mechanism similar to the integration of new spacers into CRISPR loci. We identify three distinct families of casposons that differ in their gene repertoires and evolutionary provenance of the DNA polymerases. Deep branching of the casposon-encoded endonuclease in the Cas1 phylogeny suggests that casposons played a pivotal role in the emergence of CRISPR-Cas immunity.\nCONCLUSIONS: The casposons are a novel superfamily of mobile elements, the first family of putative self-synthesizing transposons discovered in prokaryotes. The likely contribution of capsosons to the evolution of CRISPR-Cas parallels the involvement of the RAG1 transposase in vertebrate immunoglobulin gene rearrangement, suggesting that recruitment of endonucleases from mobile elements as ready-made tools for genome manipulation is a general route of evolution of adaptive immunity.", 
        "genre": "article", 
        "id": "sg:pub.10.1186/1741-7007-12-36", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2726032", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2726029", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1032884", 
            "issn": [
              "1478-5854", 
              "1741-7007"
            ], 
            "name": "BMC Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "12"
          }
        ], 
        "keywords": [
          "CRISPR-Cas immunity", 
          "DNA transposons", 
          "mobile elements", 
          "new superfamily", 
          "CRISPR-Cas adaptive immunity systems", 
          "major evolutionary innovations", 
          "eukaryotic DNA transposons", 
          "domains of life", 
          "diverse transposable elements", 
          "DNA polymerase", 
          "adaptive immunity system", 
          "bacterial mobile elements", 
          "family DNA polymerases", 
          "evolutionary provenance", 
          "junk DNA", 
          "evolutionary innovation", 
          "cellular organisms", 
          "deep branching", 
          "genome manipulation", 
          "Cas1 endonuclease", 
          "transposable elements", 
          "casposons", 
          "gene repertoire", 
          "CRISPR loci", 
          "CRISPR-Cas", 
          "key enzyme", 
          "distinct families", 
          "transposon", 
          "endonuclease", 
          "immunity system", 
          "genome", 
          "new spacers", 
          "superfamily", 
          "polymerase", 
          "immunoglobulin gene rearrangements", 
          "pivotal role", 
          "adaptive immunity", 
          "gene rearrangements", 
          "body of evidence", 
          "prokaryotes", 
          "archaea", 
          "phylogeny", 
          "likely contribution", 
          "Cas1", 
          "family", 
          "genes", 
          "repeats", 
          "loci", 
          "transposase", 
          "organisms", 
          "DNA", 
          "diversity", 
          "evolution", 
          "enzyme", 
          "bacteria", 
          "immunity", 
          "recruitment", 
          "rearrangement", 
          "repertoire", 
          "first family", 
          "domain", 
          "branching", 
          "growth", 
          "spacer", 
          "elements", 
          "mechanism", 
          "role", 
          "origin", 
          "manipulation", 
          "emergence", 
          "involvement", 
          "evidence", 
          "provenance", 
          "body", 
          "number", 
          "novel", 
          "class", 
          "integration", 
          "tool", 
          "contribution", 
          "features", 
          "system", 
          "route", 
          "general route", 
          "life", 
          "excision", 
          "innovation", 
          "unnoticed mobile elements", 
          "self-synthesizing eukaryotic DNA transposons", 
          "Polinton/Maverick class", 
          "Maverick class", 
          "Cas1 phylogeny", 
          "putative self-synthesizing transposons", 
          "self-synthesizing transposons", 
          "capsosons", 
          "RAG1 transposase", 
          "vertebrate immunoglobulin gene rearrangement", 
          "recruitment of endonucleases", 
          "self-synthesizing DNA transposons", 
          "prokaryotic CRISPR-Cas immunity"
        ], 
        "name": "Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity", 
        "pagination": "36-36", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028143526"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1186/1741-7007-12-36"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24884953"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1186/1741-7007-12-36", 
          "https://app.dimensions.ai/details/publication/pub.1028143526"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_635.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1186/1741-7007-12-36"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1741-7007-12-36'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1741-7007-12-36'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1741-7007-12-36'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1741-7007-12-36'


     

    This table displays all metadata directly associated to this object as RDF triples.

    353 TRIPLES      22 PREDICATES      165 URIs      133 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1186/1741-7007-12-36 schema:about N0728c15db86a41a691aa198b5b20c284
    2 N295d5509dd6947688bd30ac39cb951ac
    3 N4178165899094365af365f08d8c9baa2
    4 N581c8852af2a443e82ce99dce363fadb
    5 N6ae8a3f1d45846ad862cb37ded4cfd27
    6 N6e36ece08d524f778979ac60d8029372
    7 N8615e19c81ce4fdfbb129bf195353ec0
    8 N94c29e67794042a986821f42b5ab2e68
    9 Nb58daa734d81401b8ffcaf189ec57a95
    10 Nc0e9e58461364cfc81b6aec11e9653fb
    11 Nc328621d39294d5481d23871d1b08f37
    12 Nc56547ab3eb94429a40c309cb6e82615
    13 Ndbdd4b4a0f484ec396b9160b04b1e5ad
    14 Nf9df3a4b25fb49d6b7f425c0082b059b
    15 Nf9f63e2e72474c7688cfb7bb3a878360
    16 anzsrc-for:06
    17 anzsrc-for:0604
    18 schema:author N5586a8dd2b244e53a3fd7c000ccafaa8
    19 schema:citation sg:pub.10.1007/7171_2007_095
    20 sg:pub.10.1007/978-1-62703-773-0_13
    21 sg:pub.10.1007/s00239-001-0078-x
    22 sg:pub.10.1038/35057062
    23 sg:pub.10.1038/35099006
    24 sg:pub.10.1038/86166
    25 sg:pub.10.1038/nature03911
    26 sg:pub.10.1038/nature04921
    27 sg:pub.10.1038/ncomms1937
    28 sg:pub.10.1038/nrg2165
    29 sg:pub.10.1038/nrg2165-c1
    30 sg:pub.10.1038/nrmicro2315
    31 sg:pub.10.1038/nrmicro2577
    32 sg:pub.10.1038/nrmicro3067
    33 sg:pub.10.1038/nsmb.2820
    34 sg:pub.10.1038/srep05347
    35 sg:pub.10.1186/1471-2105-5-113
    36 sg:pub.10.1186/1471-2229-10-265
    37 sg:pub.10.1186/1745-6150-4-11
    38 sg:pub.10.1186/1745-6150-6-19
    39 sg:pub.10.1186/1745-6150-6-38
    40 sg:pub.10.1186/1745-6150-9-6
    41 sg:pub.10.1186/1759-8753-4-24
    42 sg:pub.10.1186/gb-2004-5-5-r30
    43 schema:datePublished 2014-05-19
    44 schema:datePublishedReg 2014-05-19
    45 schema:description BACKGROUND: Diverse transposable elements are abundant in genomes of cellular organisms from all three domains of life. Although transposons are often regarded as junk DNA, a growing body of evidence indicates that they are behind some of the major evolutionary innovations. With the growth in the number and diversity of sequenced genomes, previously unnoticed mobile elements continue to be discovered. RESULTS: We describe a new superfamily of archaeal and bacterial mobile elements which we denote casposons because they encode Cas1 endonuclease, a key enzyme of the CRISPR-Cas adaptive immunity systems of archaea and bacteria. The casposons share several features with self-synthesizing eukaryotic DNA transposons of the Polinton/Maverick class, including terminal inverted repeats and genes for B family DNA polymerases. However, unlike any other known mobile elements, the casposons are predicted to rely on Cas1 for integration and excision, via a mechanism similar to the integration of new spacers into CRISPR loci. We identify three distinct families of casposons that differ in their gene repertoires and evolutionary provenance of the DNA polymerases. Deep branching of the casposon-encoded endonuclease in the Cas1 phylogeny suggests that casposons played a pivotal role in the emergence of CRISPR-Cas immunity. CONCLUSIONS: The casposons are a novel superfamily of mobile elements, the first family of putative self-synthesizing transposons discovered in prokaryotes. The likely contribution of capsosons to the evolution of CRISPR-Cas parallels the involvement of the RAG1 transposase in vertebrate immunoglobulin gene rearrangement, suggesting that recruitment of endonucleases from mobile elements as ready-made tools for genome manipulation is a general route of evolution of adaptive immunity.
    46 schema:genre article
    47 schema:inLanguage en
    48 schema:isAccessibleForFree true
    49 schema:isPartOf N127d113e4ab8469393ac551ea0ace3ad
    50 N886c34fdca484a06a7cc9a76a506369a
    51 sg:journal.1032884
    52 schema:keywords CRISPR loci
    53 CRISPR-Cas
    54 CRISPR-Cas adaptive immunity systems
    55 CRISPR-Cas immunity
    56 Cas1
    57 Cas1 endonuclease
    58 Cas1 phylogeny
    59 DNA
    60 DNA polymerase
    61 DNA transposons
    62 Maverick class
    63 Polinton/Maverick class
    64 RAG1 transposase
    65 adaptive immunity
    66 adaptive immunity system
    67 archaea
    68 bacteria
    69 bacterial mobile elements
    70 body
    71 body of evidence
    72 branching
    73 capsosons
    74 casposons
    75 cellular organisms
    76 class
    77 contribution
    78 deep branching
    79 distinct families
    80 diverse transposable elements
    81 diversity
    82 domain
    83 domains of life
    84 elements
    85 emergence
    86 endonuclease
    87 enzyme
    88 eukaryotic DNA transposons
    89 evidence
    90 evolution
    91 evolutionary innovation
    92 evolutionary provenance
    93 excision
    94 family
    95 family DNA polymerases
    96 features
    97 first family
    98 gene rearrangements
    99 gene repertoire
    100 general route
    101 genes
    102 genome
    103 genome manipulation
    104 growth
    105 immunity
    106 immunity system
    107 immunoglobulin gene rearrangements
    108 innovation
    109 integration
    110 involvement
    111 junk DNA
    112 key enzyme
    113 life
    114 likely contribution
    115 loci
    116 major evolutionary innovations
    117 manipulation
    118 mechanism
    119 mobile elements
    120 new spacers
    121 new superfamily
    122 novel
    123 number
    124 organisms
    125 origin
    126 phylogeny
    127 pivotal role
    128 polymerase
    129 prokaryotes
    130 prokaryotic CRISPR-Cas immunity
    131 provenance
    132 putative self-synthesizing transposons
    133 rearrangement
    134 recruitment
    135 recruitment of endonucleases
    136 repeats
    137 repertoire
    138 role
    139 route
    140 self-synthesizing DNA transposons
    141 self-synthesizing eukaryotic DNA transposons
    142 self-synthesizing transposons
    143 spacer
    144 superfamily
    145 system
    146 tool
    147 transposable elements
    148 transposase
    149 transposon
    150 unnoticed mobile elements
    151 vertebrate immunoglobulin gene rearrangement
    152 schema:name Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity
    153 schema:pagination 36-36
    154 schema:productId N37331c3eba4d4d36bebcc2194d2638af
    155 N41a1434e58624648a119c8e307dfc280
    156 Nc8556b211ab242678273c701260f0e31
    157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028143526
    158 https://doi.org/10.1186/1741-7007-12-36
    159 schema:sdDatePublished 2022-01-01T18:33
    160 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    161 schema:sdPublisher Nd41a95ca0c0e4200908260e17a549afd
    162 schema:url https://doi.org/10.1186/1741-7007-12-36
    163 sgo:license sg:explorer/license/
    164 sgo:sdDataset articles
    165 rdf:type schema:ScholarlyArticle
    166 N0728c15db86a41a691aa198b5b20c284 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Archaea
    168 rdf:type schema:DefinedTerm
    169 N127d113e4ab8469393ac551ea0ace3ad schema:volumeNumber 12
    170 rdf:type schema:PublicationVolume
    171 N295d5509dd6947688bd30ac39cb951ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Amino Acid Sequence
    173 rdf:type schema:DefinedTerm
    174 N37331c3eba4d4d36bebcc2194d2638af schema:name doi
    175 schema:value 10.1186/1741-7007-12-36
    176 rdf:type schema:PropertyValue
    177 N38863dbd0f34417096be3c9f86f27c40 rdf:first sg:person.01017015051.78
    178 rdf:rest rdf:nil
    179 N4178165899094365af365f08d8c9baa2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    180 schema:name DNA Replication
    181 rdf:type schema:DefinedTerm
    182 N41a1434e58624648a119c8e307dfc280 schema:name pubmed_id
    183 schema:value 24884953
    184 rdf:type schema:PropertyValue
    185 N461991b6e48d42d999478387ee06b63a rdf:first sg:person.01170427166.75
    186 rdf:rest Nbc8f27c52b1146e183e4f398ae725373
    187 N465a8da386a34813a31bc9428a592316 rdf:first sg:person.0676725351.01
    188 rdf:rest N461991b6e48d42d999478387ee06b63a
    189 N5586a8dd2b244e53a3fd7c000ccafaa8 rdf:first sg:person.01032701646.39
    190 rdf:rest N465a8da386a34813a31bc9428a592316
    191 N581c8852af2a443e82ce99dce363fadb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name DNA Transposable Elements
    193 rdf:type schema:DefinedTerm
    194 N6ae8a3f1d45846ad862cb37ded4cfd27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name DNA-Directed DNA Polymerase
    196 rdf:type schema:DefinedTerm
    197 N6e36ece08d524f778979ac60d8029372 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Bacterial Proteins
    199 rdf:type schema:DefinedTerm
    200 N8615e19c81ce4fdfbb129bf195353ec0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    201 schema:name Models, Biological
    202 rdf:type schema:DefinedTerm
    203 N886c34fdca484a06a7cc9a76a506369a schema:issueNumber 1
    204 rdf:type schema:PublicationIssue
    205 N94c29e67794042a986821f42b5ab2e68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Attachment Sites, Microbiological
    207 rdf:type schema:DefinedTerm
    208 Nb58daa734d81401b8ffcaf189ec57a95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name Immunity
    210 rdf:type schema:DefinedTerm
    211 Nbc8f27c52b1146e183e4f398ae725373 rdf:first sg:person.01332500224.95
    212 rdf:rest N38863dbd0f34417096be3c9f86f27c40
    213 Nc0e9e58461364cfc81b6aec11e9653fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    214 schema:name Phylogeny
    215 rdf:type schema:DefinedTerm
    216 Nc328621d39294d5481d23871d1b08f37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    217 schema:name Archaeal Proteins
    218 rdf:type schema:DefinedTerm
    219 Nc56547ab3eb94429a40c309cb6e82615 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    220 schema:name Genomic Islands
    221 rdf:type schema:DefinedTerm
    222 Nc8556b211ab242678273c701260f0e31 schema:name dimensions_id
    223 schema:value pub.1028143526
    224 rdf:type schema:PropertyValue
    225 Nd41a95ca0c0e4200908260e17a549afd schema:name Springer Nature - SN SciGraph project
    226 rdf:type schema:Organization
    227 Ndbdd4b4a0f484ec396b9160b04b1e5ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    228 schema:name CRISPR-Cas Systems
    229 rdf:type schema:DefinedTerm
    230 Nf9df3a4b25fb49d6b7f425c0082b059b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    231 schema:name Prokaryotic Cells
    232 rdf:type schema:DefinedTerm
    233 Nf9f63e2e72474c7688cfb7bb3a878360 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    234 schema:name Bacteria
    235 rdf:type schema:DefinedTerm
    236 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    237 schema:name Biological Sciences
    238 rdf:type schema:DefinedTerm
    239 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    240 schema:name Genetics
    241 rdf:type schema:DefinedTerm
    242 sg:grant.2726029 http://pending.schema.org/fundedItem sg:pub.10.1186/1741-7007-12-36
    243 rdf:type schema:MonetaryGrant
    244 sg:grant.2726032 http://pending.schema.org/fundedItem sg:pub.10.1186/1741-7007-12-36
    245 rdf:type schema:MonetaryGrant
    246 sg:journal.1032884 schema:issn 1478-5854
    247 1741-7007
    248 schema:name BMC Biology
    249 schema:publisher Springer Nature
    250 rdf:type schema:Periodical
    251 sg:person.01017015051.78 schema:affiliation grid-institutes:grid.419234.9
    252 schema:familyName Koonin
    253 schema:givenName Eugene V
    254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017015051.78
    255 rdf:type schema:Person
    256 sg:person.01032701646.39 schema:affiliation grid-institutes:grid.428999.7
    257 schema:familyName Krupovic
    258 schema:givenName Mart
    259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032701646.39
    260 rdf:type schema:Person
    261 sg:person.01170427166.75 schema:affiliation grid-institutes:grid.428999.7
    262 schema:familyName Forterre
    263 schema:givenName Patrick
    264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170427166.75
    265 rdf:type schema:Person
    266 sg:person.01332500224.95 schema:affiliation grid-institutes:grid.428999.7
    267 schema:familyName Prangishvili
    268 schema:givenName David
    269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332500224.95
    270 rdf:type schema:Person
    271 sg:person.0676725351.01 schema:affiliation grid-institutes:grid.419234.9
    272 schema:familyName Makarova
    273 schema:givenName Kira S
    274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676725351.01
    275 rdf:type schema:Person
    276 sg:pub.10.1007/7171_2007_095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040632508
    277 https://doi.org/10.1007/7171_2007_095
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1007/978-1-62703-773-0_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005150071
    280 https://doi.org/10.1007/978-1-62703-773-0_13
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1007/s00239-001-0078-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032190033
    283 https://doi.org/10.1007/s00239-001-0078-x
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/35057062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042854081
    286 https://doi.org/10.1038/35057062
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/35099006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017303196
    289 https://doi.org/10.1038/35099006
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/86166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045878558
    292 https://doi.org/10.1038/86166
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/nature03911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049439003
    295 https://doi.org/10.1038/nature03911
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/nature04921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021475860
    298 https://doi.org/10.1038/nature04921
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/ncomms1937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026211758
    301 https://doi.org/10.1038/ncomms1937
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/nrg2165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053647019
    304 https://doi.org/10.1038/nrg2165
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/nrg2165-c1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031708839
    307 https://doi.org/10.1038/nrg2165-c1
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/nrmicro2315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035378322
    310 https://doi.org/10.1038/nrmicro2315
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1038/nrmicro2577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020345829
    313 https://doi.org/10.1038/nrmicro2577
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1038/nrmicro3067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014381933
    316 https://doi.org/10.1038/nrmicro3067
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1038/nsmb.2820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005186267
    319 https://doi.org/10.1038/nsmb.2820
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1038/srep05347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043513037
    322 https://doi.org/10.1038/srep05347
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1186/1471-2105-5-113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040413794
    325 https://doi.org/10.1186/1471-2105-5-113
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1186/1471-2229-10-265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041398976
    328 https://doi.org/10.1186/1471-2229-10-265
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1186/1745-6150-4-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044400750
    331 https://doi.org/10.1186/1745-6150-4-11
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1186/1745-6150-6-19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000128333
    334 https://doi.org/10.1186/1745-6150-6-19
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1186/1745-6150-6-38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036092892
    337 https://doi.org/10.1186/1745-6150-6-38
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1186/1745-6150-9-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015316770
    340 https://doi.org/10.1186/1745-6150-9-6
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1186/1759-8753-4-24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027753831
    343 https://doi.org/10.1186/1759-8753-4-24
    344 rdf:type schema:CreativeWork
    345 sg:pub.10.1186/gb-2004-5-5-r30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029322874
    346 https://doi.org/10.1186/gb-2004-5-5-r30
    347 rdf:type schema:CreativeWork
    348 grid-institutes:grid.419234.9 schema:alternateName National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
    349 schema:name National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
    350 rdf:type schema:Organization
    351 grid-institutes:grid.428999.7 schema:alternateName Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Docteur Roux, 75015 Paris, France
    352 schema:name Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 25 rue du Docteur Roux, 75015 Paris, France
    353 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...