Application of receptor models on water quality data in source apportionment in Kuantan River Basin View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Mohd Fahmi Mohd Nasir, Munirah Abdul Zali, Hafizan Juahir, Hashimah Hussain, Sharifuddin M Zain, Norlafifah Ramli

ABSTRACT

Recent techniques in the management of surface river water have been expanding the demand on the method that can provide more representative of multivariate data set. A proper technique of the architecture of artificial neural network (ANN) model and multiple linear regression (MLR) provides an advance tool for surface water modeling and forecasting. The development of receptor model was applied in order to determine the major sources of pollutants at Kuantan River Basin, Malaysia. Thirteen water quality parameters were used in principal component analysis (PCA) and new variables of fertilizer waste, surface runoff, anthropogenic input, chemical and mineral changes and erosion are successfully developed for modeling purposes. Two models were compared in terms of efficiency and goodness-of-fit for water quality index (WQI) prediction. The results show that APCS-ANN model gives better performance with high R2 value (0.9680) and small root mean square error (RMSE) value (2.6409) compared to APCS-MLR model. Meanwhile from the sensitivity analysis, fertilizer waste acts as the dominant pollutant contributor (59.82%) to the basin studied followed by anthropogenic input (22.48%), surface runoff (13.42%), erosion (2.33%) and lastly chemical and mineral changes (1.95%). Thus, this study concluded that receptor modeling of APCS-ANN can be used to solve various constraints in environmental problem that exist between water distribution variables toward appropriate water quality management. More... »

PAGES

18

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1735-2746-9-18

DOI

http://dx.doi.org/10.1186/1735-2746-9-18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008921500

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23369363


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universiti Putra Malaysia", 
          "id": "https://www.grid.ac/institutes/grid.11142.37", 
          "name": [
            "Department of Environmental Sciences, Faculty of Environmental Studies, UPM Serdang, Selangor, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nasir", 
        "givenName": "Mohd Fahmi Mohd", 
        "id": "sg:person.01352215642.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352215642.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universiti Putra Malaysia", 
          "id": "https://www.grid.ac/institutes/grid.11142.37", 
          "name": [
            "Department of Environmental Sciences, Faculty of Environmental Studies, UPM Serdang, Selangor, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zali", 
        "givenName": "Munirah Abdul", 
        "id": "sg:person.0743040142.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743040142.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universiti Putra Malaysia", 
          "id": "https://www.grid.ac/institutes/grid.11142.37", 
          "name": [
            "Department of Environmental Sciences, Faculty of Environmental Studies, UPM Serdang, Selangor, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Juahir", 
        "givenName": "Hafizan", 
        "id": "sg:person.01146470217.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146470217.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Environment, Federal Government Administrative Centre, Environment Institute of Malaysia, Putrajaya, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hussain", 
        "givenName": "Hashimah", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Malaya", 
          "id": "https://www.grid.ac/institutes/grid.10347.31", 
          "name": [
            "Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zain", 
        "givenName": "Sharifuddin M", 
        "id": "sg:person.0621060730.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621060730.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Surface Water Monitoring Unit, Water and Marine Division, Department of Environment Malaysia, Federal Government Administrative Centre, Putrajaya, Malaysia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramli", 
        "givenName": "Norlafifah", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0168-583x(95)01220-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000309641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.marpolbul.2008.05.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003176398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3800(02)00281-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006139188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3800(02)00281-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006139188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0048-9697(02)00683-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006735398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0048-9697(02)00683-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006735398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2005.05.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010445686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2005.06.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012694544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1352-2310(00)00261-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014287739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2009.12.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014624355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wasman.2009.06.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015503726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2006.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015942467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/1352-2310(94)00239-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016349382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(99)00225-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016451477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-6981(87)90123-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017420058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-6981(87)90123-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017420058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-010-1358-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017937917", 
          "https://doi.org/10.1007/s10661-010-1358-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-010-1358-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017937917", 
          "https://doi.org/10.1007/s10661-010-1358-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15275920902877385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018786720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2004.08.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019856377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-6981(85)90132-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020212567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-6981(85)90132-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020212567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(01)00123-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021565959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03325972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023222448", 
          "https://doi.org/10.1007/bf03325972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.marpolbul.2010.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023367072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(92)90046-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023807980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(92)90046-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023807980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jenvman.2008.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023874043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10661-006-9497-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024536181", 
          "https://doi.org/10.1007/s10661-006-9497-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.1896.0007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024609968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(03)00398-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027464082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(03)00398-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027464082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(98)00138-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028806455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2008.12.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032347245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-6981(84)90375-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034662872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0004-6981(84)90375-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034662872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2009.04.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035296246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0048-9697(03)00335-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037047316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0048-9697(03)00335-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037047316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3800(99)00098-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038445763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.21471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040585552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.21471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040585552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsoft.2005.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040665637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1354(00)00592-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045827085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2010.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046122304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2004.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048418466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2009.08.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049016627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2010.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049099473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.6916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050523245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2004.06.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051583263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es00175a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055492129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es0206184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055494321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es0206184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055494321"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": " Recent techniques in the management of surface river water have been expanding the demand on the method that can provide more representative of multivariate data set. A proper technique of the architecture of artificial neural network (ANN) model and multiple linear regression (MLR) provides an advance tool for surface water modeling and forecasting. The development of receptor model was applied in order to determine the major sources of pollutants at Kuantan River Basin, Malaysia. Thirteen water quality parameters were used in principal component analysis (PCA) and new variables of fertilizer waste, surface runoff, anthropogenic input, chemical and mineral changes and erosion are successfully developed for modeling purposes. Two models were compared in terms of efficiency and goodness-of-fit for water quality index (WQI) prediction. The results show that APCS-ANN model gives better performance with high R2 value (0.9680) and small root mean square error (RMSE) value (2.6409) compared to APCS-MLR model. Meanwhile from the sensitivity analysis, fertilizer waste acts as the dominant pollutant contributor (59.82%) to the basin studied followed by anthropogenic input (22.48%), surface runoff (13.42%), erosion (2.33%) and lastly chemical and mineral changes (1.95%). Thus, this study concluded that receptor modeling of APCS-ANN can be used to solve various constraints in environmental problem that exist between water distribution variables toward appropriate water quality management.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1735-2746-9-18", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1297408", 
        "issn": [
          "1735-1979", 
          "1735-2746"
        ], 
        "name": "Journal of Environmental Health Science and Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Application of receptor models on water quality data in source apportionment in Kuantan River Basin", 
    "pagination": "18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2a80d16442996a95ddb6df3ce9c4bbc0eb944379882bb3094582993d309e3c18"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23369363"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101282409"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1735-2746-9-18"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008921500"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1735-2746-9-18", 
      "https://app.dimensions.ai/details/publication/pub.1008921500"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1735-2746-9-18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1735-2746-9-18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1735-2746-9-18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1735-2746-9-18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1735-2746-9-18'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      21 PREDICATES      71 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1735-2746-9-18 schema:about anzsrc-for:09
2 anzsrc-for:0907
3 schema:author Ndfd1592674d34d99bae883f3cbe2f73e
4 schema:citation sg:pub.10.1007/bf03325972
5 sg:pub.10.1007/s10661-006-9497-x
6 sg:pub.10.1007/s10661-010-1358-y
7 https://doi.org/10.1002/hyp.6916
8 https://doi.org/10.1002/jcc.21471
9 https://doi.org/10.1016/0004-6981(84)90375-5
10 https://doi.org/10.1016/0004-6981(85)90132-5
11 https://doi.org/10.1016/0004-6981(87)90123-5
12 https://doi.org/10.1016/0022-1694(92)90046-x
13 https://doi.org/10.1016/0168-583x(95)01220-6
14 https://doi.org/10.1016/1352-2310(94)00239-h
15 https://doi.org/10.1016/j.aca.2005.06.056
16 https://doi.org/10.1016/j.aca.2006.10.011
17 https://doi.org/10.1016/j.ecolmodel.2004.06.043
18 https://doi.org/10.1016/j.ecolmodel.2010.01.007
19 https://doi.org/10.1016/j.ecolmodel.2010.03.007
20 https://doi.org/10.1016/j.envsoft.2005.12.002
21 https://doi.org/10.1016/j.geoderma.2009.12.025
22 https://doi.org/10.1016/j.jenvman.2008.06.004
23 https://doi.org/10.1016/j.jhazmat.2008.12.131
24 https://doi.org/10.1016/j.jhazmat.2009.04.065
25 https://doi.org/10.1016/j.jhydrol.2005.05.028
26 https://doi.org/10.1016/j.marpolbul.2008.05.021
27 https://doi.org/10.1016/j.marpolbul.2010.01.007
28 https://doi.org/10.1016/j.talanta.2004.08.047
29 https://doi.org/10.1016/j.wasman.2009.06.027
30 https://doi.org/10.1016/j.watres.2004.06.011
31 https://doi.org/10.1016/j.watres.2009.08.052
32 https://doi.org/10.1016/s0043-1354(00)00592-3
33 https://doi.org/10.1016/s0043-1354(01)00123-3
34 https://doi.org/10.1016/s0043-1354(03)00398-1
35 https://doi.org/10.1016/s0043-1354(98)00138-9
36 https://doi.org/10.1016/s0043-1354(99)00225-0
37 https://doi.org/10.1016/s0048-9697(02)00683-6
38 https://doi.org/10.1016/s0048-9697(03)00335-8
39 https://doi.org/10.1016/s0304-3800(02)00281-8
40 https://doi.org/10.1016/s0304-3800(99)00098-8
41 https://doi.org/10.1016/s1352-2310(00)00261-2
42 https://doi.org/10.1021/es00175a002
43 https://doi.org/10.1021/es0206184
44 https://doi.org/10.1080/15275920902877385
45 https://doi.org/10.1098/rsta.1896.0007
46 schema:datePublished 2012-12
47 schema:datePublishedReg 2012-12-01
48 schema:description Recent techniques in the management of surface river water have been expanding the demand on the method that can provide more representative of multivariate data set. A proper technique of the architecture of artificial neural network (ANN) model and multiple linear regression (MLR) provides an advance tool for surface water modeling and forecasting. The development of receptor model was applied in order to determine the major sources of pollutants at Kuantan River Basin, Malaysia. Thirteen water quality parameters were used in principal component analysis (PCA) and new variables of fertilizer waste, surface runoff, anthropogenic input, chemical and mineral changes and erosion are successfully developed for modeling purposes. Two models were compared in terms of efficiency and goodness-of-fit for water quality index (WQI) prediction. The results show that APCS-ANN model gives better performance with high R2 value (0.9680) and small root mean square error (RMSE) value (2.6409) compared to APCS-MLR model. Meanwhile from the sensitivity analysis, fertilizer waste acts as the dominant pollutant contributor (59.82%) to the basin studied followed by anthropogenic input (22.48%), surface runoff (13.42%), erosion (2.33%) and lastly chemical and mineral changes (1.95%). Thus, this study concluded that receptor modeling of APCS-ANN can be used to solve various constraints in environmental problem that exist between water distribution variables toward appropriate water quality management.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf Nc0801b812cdd45eb92072c3a5417e697
53 Nf68516de0d22421cac81a2bb2a461a6d
54 sg:journal.1297408
55 schema:name Application of receptor models on water quality data in source apportionment in Kuantan River Basin
56 schema:pagination 18
57 schema:productId N5c821253a25041c89108599e95c73b39
58 N613a1320efd543ad9a3f89088f61f14c
59 Na662ee6721464b3c98bb200ed999380c
60 Nc9a25122d11549a49718b2f3627460d1
61 Ned563055d4034c0b81b1c032bf7d9f01
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008921500
63 https://doi.org/10.1186/1735-2746-9-18
64 schema:sdDatePublished 2019-04-11T02:15
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N3afa3c2769194634b2c243d35664abf5
67 schema:url http://link.springer.com/10.1186%2F1735-2746-9-18
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N041db0e6f6414b958d172c3745e7d4f4 schema:name Department of Environment, Federal Government Administrative Centre, Environment Institute of Malaysia, Putrajaya, Malaysia
72 rdf:type schema:Organization
73 N3afa3c2769194634b2c243d35664abf5 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N3f5cc34072a34ef8bdaf60f0750f1170 schema:name Surface Water Monitoring Unit, Water and Marine Division, Department of Environment Malaysia, Federal Government Administrative Centre, Putrajaya, Malaysia
76 rdf:type schema:Organization
77 N55f383a955944bfeb8a97667689c55ad rdf:first sg:person.0621060730.37
78 rdf:rest N72721bc22b754ebda3e930632eaad87e
79 N5c821253a25041c89108599e95c73b39 schema:name doi
80 schema:value 10.1186/1735-2746-9-18
81 rdf:type schema:PropertyValue
82 N613a1320efd543ad9a3f89088f61f14c schema:name readcube_id
83 schema:value 2a80d16442996a95ddb6df3ce9c4bbc0eb944379882bb3094582993d309e3c18
84 rdf:type schema:PropertyValue
85 N72721bc22b754ebda3e930632eaad87e rdf:first N88fa386efb3444f48411ed374e03baa3
86 rdf:rest rdf:nil
87 N77ba4d8219bb41c7ab84038aec4c52bd rdf:first sg:person.01146470217.62
88 rdf:rest Nf1a3fa55dbc04f56bf5ba3c9e4fb0e22
89 N88fa386efb3444f48411ed374e03baa3 schema:affiliation N3f5cc34072a34ef8bdaf60f0750f1170
90 schema:familyName Ramli
91 schema:givenName Norlafifah
92 rdf:type schema:Person
93 Na662ee6721464b3c98bb200ed999380c schema:name pubmed_id
94 schema:value 23369363
95 rdf:type schema:PropertyValue
96 Nc0801b812cdd45eb92072c3a5417e697 schema:volumeNumber 9
97 rdf:type schema:PublicationVolume
98 Nc9a25122d11549a49718b2f3627460d1 schema:name dimensions_id
99 schema:value pub.1008921500
100 rdf:type schema:PropertyValue
101 Ndfd1592674d34d99bae883f3cbe2f73e rdf:first sg:person.01352215642.81
102 rdf:rest Nff160ea48b1d4d6483af898f52be2643
103 Ned563055d4034c0b81b1c032bf7d9f01 schema:name nlm_unique_id
104 schema:value 101282409
105 rdf:type schema:PropertyValue
106 Nf1a3fa55dbc04f56bf5ba3c9e4fb0e22 rdf:first Nfd948f4146e34160b3e7e7e4bc41473a
107 rdf:rest N55f383a955944bfeb8a97667689c55ad
108 Nf68516de0d22421cac81a2bb2a461a6d schema:issueNumber 1
109 rdf:type schema:PublicationIssue
110 Nfd948f4146e34160b3e7e7e4bc41473a schema:affiliation N041db0e6f6414b958d172c3745e7d4f4
111 schema:familyName Hussain
112 schema:givenName Hashimah
113 rdf:type schema:Person
114 Nff160ea48b1d4d6483af898f52be2643 rdf:first sg:person.0743040142.37
115 rdf:rest N77ba4d8219bb41c7ab84038aec4c52bd
116 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
117 schema:name Engineering
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
120 schema:name Environmental Engineering
121 rdf:type schema:DefinedTerm
122 sg:journal.1297408 schema:issn 1735-1979
123 1735-2746
124 schema:name Journal of Environmental Health Science and Engineering
125 rdf:type schema:Periodical
126 sg:person.01146470217.62 schema:affiliation https://www.grid.ac/institutes/grid.11142.37
127 schema:familyName Juahir
128 schema:givenName Hafizan
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146470217.62
130 rdf:type schema:Person
131 sg:person.01352215642.81 schema:affiliation https://www.grid.ac/institutes/grid.11142.37
132 schema:familyName Nasir
133 schema:givenName Mohd Fahmi Mohd
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352215642.81
135 rdf:type schema:Person
136 sg:person.0621060730.37 schema:affiliation https://www.grid.ac/institutes/grid.10347.31
137 schema:familyName Zain
138 schema:givenName Sharifuddin M
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621060730.37
140 rdf:type schema:Person
141 sg:person.0743040142.37 schema:affiliation https://www.grid.ac/institutes/grid.11142.37
142 schema:familyName Zali
143 schema:givenName Munirah Abdul
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743040142.37
145 rdf:type schema:Person
146 sg:pub.10.1007/bf03325972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023222448
147 https://doi.org/10.1007/bf03325972
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s10661-006-9497-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024536181
150 https://doi.org/10.1007/s10661-006-9497-x
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s10661-010-1358-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1017937917
153 https://doi.org/10.1007/s10661-010-1358-y
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/hyp.6916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050523245
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/jcc.21471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040585552
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0004-6981(84)90375-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034662872
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0004-6981(85)90132-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020212567
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/0004-6981(87)90123-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017420058
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/0022-1694(92)90046-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023807980
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/0168-583x(95)01220-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000309641
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/1352-2310(94)00239-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1016349382
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.aca.2005.06.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012694544
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.aca.2006.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015942467
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.ecolmodel.2004.06.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051583263
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.ecolmodel.2010.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049099473
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.ecolmodel.2010.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046122304
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.envsoft.2005.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040665637
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.geoderma.2009.12.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014624355
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.jenvman.2008.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023874043
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.jhazmat.2008.12.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032347245
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.jhazmat.2009.04.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035296246
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.jhydrol.2005.05.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010445686
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.marpolbul.2008.05.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003176398
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.marpolbul.2010.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023367072
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.talanta.2004.08.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019856377
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.wasman.2009.06.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015503726
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.watres.2004.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048418466
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.watres.2009.08.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049016627
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/s0043-1354(00)00592-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045827085
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/s0043-1354(01)00123-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021565959
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/s0043-1354(03)00398-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027464082
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/s0043-1354(98)00138-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028806455
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/s0043-1354(99)00225-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016451477
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/s0048-9697(02)00683-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006735398
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/s0048-9697(03)00335-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037047316
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/s0304-3800(02)00281-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006139188
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/s0304-3800(99)00098-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038445763
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/s1352-2310(00)00261-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014287739
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1021/es00175a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055492129
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1021/es0206184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055494321
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1080/15275920902877385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018786720
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1098/rsta.1896.0007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024609968
232 rdf:type schema:CreativeWork
233 https://www.grid.ac/institutes/grid.10347.31 schema:alternateName University of Malaya
234 schema:name Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.11142.37 schema:alternateName Universiti Putra Malaysia
237 schema:name Department of Environmental Sciences, Faculty of Environmental Studies, UPM Serdang, Selangor, Malaysia
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...