Aperture undersampling using compressive sensing for synthetic aperture stripmap imaging View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Stefan Leier, Abdelhak M Zoubir

ABSTRACT

Synthetic aperture imaging is a high-resolution imaging technique employed in radar and sonar applications, which construct a large aperture by constantly transmitting pulses while moving along a scene of interest. In order to avoid azimuth image ambiguities, spatial sampling requirements have to be fulfilled along the aperture trajectory. The latter, however, limits the maximum speed and, therefore, the coverage rate of the imaging system. This paper addresses the emerging field of compressive sensing for stripmap synthetic aperture imaging using transceiver as well as single-transmitter and multi-receiver systems so as to overcome the spatial Nyquist criterion. As a consequence, future imaging systems will be able to significantly reduce their mission time due to an increase in coverage rate. We demonstrate the capability of our proposed compressive sensing approach to at least double the maximum sensor speed based on synthetic data and real data examples. Simultaneously, azimuth image ambiguities are successfully suppressed. The real acoustical measurements are obtained by a small-scale ultrasonic synthetic aperture laboratory system. More... »

PAGES

156

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1687-6180-2014-156

DOI

http://dx.doi.org/10.1186/1687-6180-2014-156

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010728662


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Signal Processing Group, Institute of Telecommunications, Technische Universit\u00e4t Darmstadt, Merckstr. 25, 64283, Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leier", 
        "givenName": "Stefan", 
        "id": "sg:person.011347021455.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011347021455.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Signal Processing Group, Institute of Telecommunications, Technische Universit\u00e4t Darmstadt, Merckstr. 25, 64283, Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zoubir", 
        "givenName": "Abdelhak M", 
        "id": "sg:person.013316510015.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316510015.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/jstsp.2007.910281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002268288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.777175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007161187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2006.871582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007222025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.818808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021714879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2009.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024205066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2009.2016892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025951869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1032743003", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-1333-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032743003", 
          "https://doi.org/10.1007/978-1-4613-1333-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-1333-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032743003", 
          "https://doi.org/10.1007/978-1-4613-1333-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00365-007-9003-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048746430", 
          "https://doi.org/10.1007/s00365-007-9003-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00365-007-9003-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048746430", 
          "https://doi.org/10.1007/s00365-007-9003-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-rsn.2009.0071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056835899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-rsn.2009.0071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056835899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.285197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061160980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/48.126958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061175819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.506760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061239472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/joe.2009.2020853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061293017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstsp.2009.2039181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061337956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2007.4286571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061422831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2007.914728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061422951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2007.914730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061422953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2010.2051231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061611497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2012.2204891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061612443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2013.2260863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061612979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2003.819861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2005.862083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2009.2014277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061801533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s003614450037906x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0260305500000604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083770388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/igarss.1998.699529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093314670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/dsp-spe.2011.5739256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093505756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2007.366778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094358072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2011.5946980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094451581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/radar.2008.4720896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095083796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/radar.2007.374203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095589666"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "Synthetic aperture imaging is a high-resolution imaging technique employed in radar and sonar applications, which construct a large aperture by constantly transmitting pulses while moving along a scene of interest. In order to avoid azimuth image ambiguities, spatial sampling requirements have to be fulfilled along the aperture trajectory. The latter, however, limits the maximum speed and, therefore, the coverage rate of the imaging system. This paper addresses the emerging field of compressive sensing for stripmap synthetic aperture imaging using transceiver as well as single-transmitter and multi-receiver systems so as to overcome the spatial Nyquist criterion. As a consequence, future imaging systems will be able to significantly reduce their mission time due to an increase in coverage rate. We demonstrate the capability of our proposed compressive sensing approach to at least double the maximum sensor speed based on synthetic data and real data examples. Simultaneously, azimuth image ambiguities are successfully suppressed. The real acoustical measurements are obtained by a small-scale ultrasonic synthetic aperture laboratory system.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1687-6180-2014-156", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1357355", 
        "issn": [
          "1687-6172", 
          "1687-0433"
        ], 
        "name": "Applied Signal Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2014"
      }
    ], 
    "name": "Aperture undersampling using compressive sensing for synthetic aperture stripmap imaging", 
    "pagination": "156", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "331cb58b0c84a00ca5372deefb5ff209e1bbe5b308120292a6f86bcbc7e95d66"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1687-6180-2014-156"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010728662"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1687-6180-2014-156", 
      "https://app.dimensions.ai/details/publication/pub.1010728662"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1687-6180-2014-156"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1687-6180-2014-156'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1687-6180-2014-156'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1687-6180-2014-156'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1687-6180-2014-156'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1687-6180-2014-156 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc7bc339740f04c6d8df624034f8a33dd
4 schema:citation sg:pub.10.1007/978-1-4613-1333-5
5 sg:pub.10.1007/s00365-007-9003-x
6 https://app.dimensions.ai/details/publication/pub.1032743003
7 https://doi.org/10.1016/j.sigpro.2009.11.009
8 https://doi.org/10.1017/s0260305500000604
9 https://doi.org/10.1049/iet-rsn.2009.0071
10 https://doi.org/10.1109/36.285197
11 https://doi.org/10.1109/48.126958
12 https://doi.org/10.1109/83.506760
13 https://doi.org/10.1109/dsp-spe.2011.5739256
14 https://doi.org/10.1109/icassp.2007.366778
15 https://doi.org/10.1109/icassp.2011.5946980
16 https://doi.org/10.1109/igarss.1998.699529
17 https://doi.org/10.1109/joe.2009.2020853
18 https://doi.org/10.1109/jstsp.2007.910281
19 https://doi.org/10.1109/jstsp.2009.2039181
20 https://doi.org/10.1109/msp.2007.4286571
21 https://doi.org/10.1109/msp.2007.914728
22 https://doi.org/10.1109/msp.2007.914730
23 https://doi.org/10.1109/radar.2007.374203
24 https://doi.org/10.1109/radar.2008.4720896
25 https://doi.org/10.1109/tgrs.2010.2051231
26 https://doi.org/10.1109/tgrs.2012.2204891
27 https://doi.org/10.1109/tgrs.2013.2260863
28 https://doi.org/10.1109/tip.2003.819861
29 https://doi.org/10.1109/tit.2005.862083
30 https://doi.org/10.1109/tit.2006.871582
31 https://doi.org/10.1109/tsp.2009.2014277
32 https://doi.org/10.1109/tsp.2009.2016892
33 https://doi.org/10.1117/12.777175
34 https://doi.org/10.1117/12.818808
35 https://doi.org/10.1137/s003614450037906x
36 schema:datePublished 2014-12
37 schema:datePublishedReg 2014-12-01
38 schema:description Synthetic aperture imaging is a high-resolution imaging technique employed in radar and sonar applications, which construct a large aperture by constantly transmitting pulses while moving along a scene of interest. In order to avoid azimuth image ambiguities, spatial sampling requirements have to be fulfilled along the aperture trajectory. The latter, however, limits the maximum speed and, therefore, the coverage rate of the imaging system. This paper addresses the emerging field of compressive sensing for stripmap synthetic aperture imaging using transceiver as well as single-transmitter and multi-receiver systems so as to overcome the spatial Nyquist criterion. As a consequence, future imaging systems will be able to significantly reduce their mission time due to an increase in coverage rate. We demonstrate the capability of our proposed compressive sensing approach to at least double the maximum sensor speed based on synthetic data and real data examples. Simultaneously, azimuth image ambiguities are successfully suppressed. The real acoustical measurements are obtained by a small-scale ultrasonic synthetic aperture laboratory system.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf Ne054138327b34a3fb061ff4612115e9a
43 Nf408662b980f48a6985d59208488db2a
44 sg:journal.1357355
45 schema:name Aperture undersampling using compressive sensing for synthetic aperture stripmap imaging
46 schema:pagination 156
47 schema:productId N3f973b30eada4d3eb24ba15a849bc105
48 N6135e54f6c2f4b3bbb317b7c73352c01
49 Nf1b971e083134890bb68c3315f96e77b
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010728662
51 https://doi.org/10.1186/1687-6180-2014-156
52 schema:sdDatePublished 2019-04-10T17:31
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N05cf273968084f05b763f7ae756c8945
55 schema:url http://link.springer.com/10.1186%2F1687-6180-2014-156
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N05cf273968084f05b763f7ae756c8945 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N31d05c71edb04682ac047f4a212abb81 rdf:first sg:person.013316510015.38
62 rdf:rest rdf:nil
63 N3f973b30eada4d3eb24ba15a849bc105 schema:name dimensions_id
64 schema:value pub.1010728662
65 rdf:type schema:PropertyValue
66 N6135e54f6c2f4b3bbb317b7c73352c01 schema:name readcube_id
67 schema:value 331cb58b0c84a00ca5372deefb5ff209e1bbe5b308120292a6f86bcbc7e95d66
68 rdf:type schema:PropertyValue
69 Nc7bc339740f04c6d8df624034f8a33dd rdf:first sg:person.011347021455.16
70 rdf:rest N31d05c71edb04682ac047f4a212abb81
71 Ne054138327b34a3fb061ff4612115e9a schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 Nf1b971e083134890bb68c3315f96e77b schema:name doi
74 schema:value 10.1186/1687-6180-2014-156
75 rdf:type schema:PropertyValue
76 Nf408662b980f48a6985d59208488db2a schema:volumeNumber 2014
77 rdf:type schema:PublicationVolume
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
82 schema:name Artificial Intelligence and Image Processing
83 rdf:type schema:DefinedTerm
84 sg:journal.1357355 schema:issn 1687-0433
85 1687-6172
86 schema:name Applied Signal Processing
87 rdf:type schema:Periodical
88 sg:person.011347021455.16 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
89 schema:familyName Leier
90 schema:givenName Stefan
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011347021455.16
92 rdf:type schema:Person
93 sg:person.013316510015.38 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
94 schema:familyName Zoubir
95 schema:givenName Abdelhak M
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316510015.38
97 rdf:type schema:Person
98 sg:pub.10.1007/978-1-4613-1333-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032743003
99 https://doi.org/10.1007/978-1-4613-1333-5
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s00365-007-9003-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048746430
102 https://doi.org/10.1007/s00365-007-9003-x
103 rdf:type schema:CreativeWork
104 https://app.dimensions.ai/details/publication/pub.1032743003 schema:CreativeWork
105 https://doi.org/10.1016/j.sigpro.2009.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024205066
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1017/s0260305500000604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083770388
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1049/iet-rsn.2009.0071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056835899
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/36.285197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061160980
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/48.126958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061175819
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/83.506760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239472
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/dsp-spe.2011.5739256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093505756
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/icassp.2007.366778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094358072
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/icassp.2011.5946980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094451581
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/igarss.1998.699529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093314670
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/joe.2009.2020853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061293017
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/jstsp.2007.910281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002268288
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/jstsp.2009.2039181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061337956
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/msp.2007.4286571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061422831
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/msp.2007.914728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061422951
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/msp.2007.914730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061422953
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/radar.2007.374203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095589666
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/radar.2008.4720896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095083796
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/tgrs.2010.2051231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061611497
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/tgrs.2012.2204891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061612443
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/tgrs.2013.2260863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061612979
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tip.2003.819861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640964
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/tit.2005.862083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061650773
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/tit.2006.871582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007222025
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tsp.2009.2014277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061801533
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tsp.2009.2016892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025951869
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1117/12.777175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007161187
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1117/12.818808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021714879
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1137/s003614450037906x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877747
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.6546.1 schema:alternateName Technical University of Darmstadt
164 schema:name Signal Processing Group, Institute of Telecommunications, Technische Universität Darmstadt, Merckstr. 25, 64283, Darmstadt, Germany
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...