Adaptive local binary pattern with oriented standard deviation (ALBPS) for texture classification View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Oscar García-Olalla, Enrique Alegre, Laura Fernández-Robles, María Teresa García-Ordás, Diego García-Ordás

ABSTRACT

A new method to describe texture images using a hybrid combination of local and global texture descriptors is proposed in this paper. In this regard, a new adaptive local binary pattern (ALBP) descriptor is presented in order to carry out the local description. It is built by adding oriented standard deviation information to an ALBP descriptor in order to achieve a more complete representation of the images, and hence, it has been called adaptive local binary pattern with oriented standard deviation (ALBPS). Regarding semen vitality assessment, ALBPS outperformed previous literature works with an 81.88% accuracy and also yielded higher hit rates than the LBP and ALBP baseline methods. Concerning the global description of the images, several classical texture algorithms were tested and a descriptor based on wavelet transform and Haralick feature extraction (wavelet concurrent feature 13 (WCF13)) obtained the best results. Both local and global descriptors were combined, and the classification was carried out with a support vector machine. Two data sets have been evaluated: textures under varying illumination, pose and scale (KTH-TIPS) 2a data set and a second spermatozoa boar data set used to distinguish between dead or alive sperm heads. Therefore, our proposal is novel in three ways. First, a new local feature extraction method ALBPS is introduced. Second, a hybrid method combining the proposed local ALBPS and a global descriptor is presented, outperforming our first approach and all other methods evaluated for this problem. Third, texture classification accuracy is greatly improved with the two former texture descriptors presented. F score and accuracy values were computed in order to measure the performance. The best overall result was yielded by combining ALBPS with WCF13, reaching an F score = 0.886 and an accuracy of 85.63% in the spermatozoa data set and an 84.45% of hit rate in the KTH-TIPS 2a. More... »

PAGES

31

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1687-5281-2013-31

DOI

http://dx.doi.org/10.1186/1687-5281-2013-31

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022267609


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Leon", 
          "id": "https://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "University of Leon, 24071, Leon, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-Olalla", 
        "givenName": "Oscar", 
        "id": "sg:person.015450152607.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015450152607.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Leon", 
          "id": "https://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "University of Leon, 24071, Leon, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alegre", 
        "givenName": "Enrique", 
        "id": "sg:person.016266057305.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266057305.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Leon", 
          "id": "https://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "University of Leon, 24071, Leon, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fern\u00e1ndez-Robles", 
        "givenName": "Laura", 
        "id": "sg:person.010415303037.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010415303037.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Leon", 
          "id": "https://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "University of Leon, 24071, Leon, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-Ord\u00e1s", 
        "givenName": "Mar\u00eda Teresa", 
        "id": "sg:person.014015622120.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014015622120.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Leon", 
          "id": "https://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "University of Leon, 24071, Leon, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-Ord\u00e1s", 
        "givenName": "Diego", 
        "id": "sg:person.013451236372.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013451236372.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-37410-4_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002800980", 
          "https://doi.org/10.1007/978-3-642-37410-4_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-21257-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004459379", 
          "https://doi.org/10.1007/978-3-642-21257-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-21257-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004459379", 
          "https://doi.org/10.1007/978-3-642-21257-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8655(94)90092-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012463760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8655(94)90092-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012463760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-011-0586-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013738217", 
          "https://doi.org/10.1007/s00521-011-0586-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-21073-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031113269", 
          "https://doi.org/10.1007/978-3-642-21073-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-21073-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031113269", 
          "https://doi.org/10.1007/978-3-642-21073-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(01)00074-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047319703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-8914(34)80259-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048420433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11957959_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049810107", 
          "https://doi.org/10.1007/11957959_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11957959_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049810107", 
          "https://doi.org/10.1007/11957959_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1973.4309314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061792707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077426362", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2005.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093216348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ncoiet.2011.5738820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093266089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ici.2011.20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093812029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2010.5653119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094100016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.1994.576366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094758643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/csae.2011.5953293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094956782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2010.751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095126090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1962.1057692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095556890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icectech.2011.5941793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095570844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iita.2009.206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095654727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icime.2010.5477432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095654882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2010.5652209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095831816"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "A new method to describe texture images using a hybrid combination of local and global texture descriptors is proposed in this paper. In this regard, a new adaptive local binary pattern (ALBP) descriptor is presented in order to carry out the local description. It is built by adding oriented standard deviation information to an ALBP descriptor in order to achieve a more complete representation of the images, and hence, it has been called adaptive local binary pattern with oriented standard deviation (ALBPS). Regarding semen vitality assessment, ALBPS outperformed previous literature works with an 81.88% accuracy and also yielded higher hit rates than the LBP and ALBP baseline methods. Concerning the global description of the images, several classical texture algorithms were tested and a descriptor based on wavelet transform and Haralick feature extraction (wavelet concurrent feature 13 (WCF13)) obtained the best results. Both local and global descriptors were combined, and the classification was carried out with a support vector machine. Two data sets have been evaluated: textures under varying illumination, pose and scale (KTH-TIPS) 2a data set and a second spermatozoa boar data set used to distinguish between dead or alive sperm heads. Therefore, our proposal is novel in three ways. First, a new local feature extraction method ALBPS is introduced. Second, a hybrid method combining the proposed local ALBPS and a global descriptor is presented, outperforming our first approach and all other methods evaluated for this problem. Third, texture classification accuracy is greatly improved with the two former texture descriptors presented. F score and accuracy values were computed in order to measure the performance. The best overall result was yielded by combining ALBPS with WCF13, reaching an F score = 0.886 and an accuracy of 85.63% in the spermatozoa data set and an 84.45% of hit rate in the KTH-TIPS 2a.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1687-5281-2013-31", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1038561", 
        "issn": [
          "1687-5176", 
          "1687-5281"
        ], 
        "name": "EURASIP Journal on Image and Video Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2013"
      }
    ], 
    "name": "Adaptive local binary pattern with oriented standard deviation (ALBPS) for texture classification", 
    "pagination": "31", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6a1677fd32f3fcb6d34c9317790794649960011c055cad15e90a9001fd986798"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1687-5281-2013-31"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022267609"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1687-5281-2013-31", 
      "https://app.dimensions.ai/details/publication/pub.1022267609"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1687-5281-2013-31"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1687-5281-2013-31'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1687-5281-2013-31'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1687-5281-2013-31'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1687-5281-2013-31'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1687-5281-2013-31 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N196a35bf65ff4337b3c6069f0adea543
4 schema:citation sg:pub.10.1007/11957959_20
5 sg:pub.10.1007/978-3-642-21073-0
6 sg:pub.10.1007/978-3-642-21257-4
7 sg:pub.10.1007/978-3-642-37410-4_6
8 sg:pub.10.1007/s00521-011-0586-6
9 https://app.dimensions.ai/details/publication/pub.1077426362
10 https://doi.org/10.1016/0167-8655(94)90092-2
11 https://doi.org/10.1016/s0031-3203(01)00074-7
12 https://doi.org/10.1016/s0031-8914(34)80259-5
13 https://doi.org/10.1109/csae.2011.5953293
14 https://doi.org/10.1109/iccv.2005.54
15 https://doi.org/10.1109/icectech.2011.5941793
16 https://doi.org/10.1109/ici.2011.20
17 https://doi.org/10.1109/icime.2010.5477432
18 https://doi.org/10.1109/icip.2010.5652209
19 https://doi.org/10.1109/icip.2010.5653119
20 https://doi.org/10.1109/icpr.1994.576366
21 https://doi.org/10.1109/icpr.2010.751
22 https://doi.org/10.1109/iita.2009.206
23 https://doi.org/10.1109/ncoiet.2011.5738820
24 https://doi.org/10.1109/tit.1962.1057692
25 https://doi.org/10.1109/tsmc.1973.4309314
26 schema:datePublished 2013-12
27 schema:datePublishedReg 2013-12-01
28 schema:description A new method to describe texture images using a hybrid combination of local and global texture descriptors is proposed in this paper. In this regard, a new adaptive local binary pattern (ALBP) descriptor is presented in order to carry out the local description. It is built by adding oriented standard deviation information to an ALBP descriptor in order to achieve a more complete representation of the images, and hence, it has been called adaptive local binary pattern with oriented standard deviation (ALBPS). Regarding semen vitality assessment, ALBPS outperformed previous literature works with an 81.88% accuracy and also yielded higher hit rates than the LBP and ALBP baseline methods. Concerning the global description of the images, several classical texture algorithms were tested and a descriptor based on wavelet transform and Haralick feature extraction (wavelet concurrent feature 13 (WCF13)) obtained the best results. Both local and global descriptors were combined, and the classification was carried out with a support vector machine. Two data sets have been evaluated: textures under varying illumination, pose and scale (KTH-TIPS) 2a data set and a second spermatozoa boar data set used to distinguish between dead or alive sperm heads. Therefore, our proposal is novel in three ways. First, a new local feature extraction method ALBPS is introduced. Second, a hybrid method combining the proposed local ALBPS and a global descriptor is presented, outperforming our first approach and all other methods evaluated for this problem. Third, texture classification accuracy is greatly improved with the two former texture descriptors presented. F score and accuracy values were computed in order to measure the performance. The best overall result was yielded by combining ALBPS with WCF13, reaching an F score = 0.886 and an accuracy of 85.63% in the spermatozoa data set and an 84.45% of hit rate in the KTH-TIPS 2a.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N0edbda404a8a4e10b60ee722338f2b31
33 N98c00e6943d549ad84b669d70187ca2c
34 sg:journal.1038561
35 schema:name Adaptive local binary pattern with oriented standard deviation (ALBPS) for texture classification
36 schema:pagination 31
37 schema:productId N2130d525a1064bd895eef8a614b7e9bc
38 N8733c7d69a4b4909a00ce60225bc0e6c
39 N96e6eb4a4e1c4c44a46d6f80a79e008a
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022267609
41 https://doi.org/10.1186/1687-5281-2013-31
42 schema:sdDatePublished 2019-04-10T20:47
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N7371e88066414c2eaf3dac70932b6dab
45 schema:url http://link.springer.com/10.1186%2F1687-5281-2013-31
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N0017205535304b648e540b0aae7dbd46 rdf:first sg:person.013451236372.63
50 rdf:rest rdf:nil
51 N0edbda404a8a4e10b60ee722338f2b31 schema:issueNumber 1
52 rdf:type schema:PublicationIssue
53 N17b8c4a287204fd7814675c2b4d48d97 rdf:first sg:person.010415303037.45
54 rdf:rest Nfd8f4a2ac73849b08c75387c5c6148a6
55 N196a35bf65ff4337b3c6069f0adea543 rdf:first sg:person.015450152607.60
56 rdf:rest Nb66ec345416145e78e3fe7b3a1cc669e
57 N2130d525a1064bd895eef8a614b7e9bc schema:name dimensions_id
58 schema:value pub.1022267609
59 rdf:type schema:PropertyValue
60 N7371e88066414c2eaf3dac70932b6dab schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N8733c7d69a4b4909a00ce60225bc0e6c schema:name readcube_id
63 schema:value 6a1677fd32f3fcb6d34c9317790794649960011c055cad15e90a9001fd986798
64 rdf:type schema:PropertyValue
65 N96e6eb4a4e1c4c44a46d6f80a79e008a schema:name doi
66 schema:value 10.1186/1687-5281-2013-31
67 rdf:type schema:PropertyValue
68 N98c00e6943d549ad84b669d70187ca2c schema:volumeNumber 2013
69 rdf:type schema:PublicationVolume
70 Nb66ec345416145e78e3fe7b3a1cc669e rdf:first sg:person.016266057305.75
71 rdf:rest N17b8c4a287204fd7814675c2b4d48d97
72 Nfd8f4a2ac73849b08c75387c5c6148a6 rdf:first sg:person.014015622120.33
73 rdf:rest N0017205535304b648e540b0aae7dbd46
74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
75 schema:name Information and Computing Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
78 schema:name Artificial Intelligence and Image Processing
79 rdf:type schema:DefinedTerm
80 sg:journal.1038561 schema:issn 1687-5176
81 1687-5281
82 schema:name EURASIP Journal on Image and Video Processing
83 rdf:type schema:Periodical
84 sg:person.010415303037.45 schema:affiliation https://www.grid.ac/institutes/grid.4807.b
85 schema:familyName Fernández-Robles
86 schema:givenName Laura
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010415303037.45
88 rdf:type schema:Person
89 sg:person.013451236372.63 schema:affiliation https://www.grid.ac/institutes/grid.4807.b
90 schema:familyName García-Ordás
91 schema:givenName Diego
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013451236372.63
93 rdf:type schema:Person
94 sg:person.014015622120.33 schema:affiliation https://www.grid.ac/institutes/grid.4807.b
95 schema:familyName García-Ordás
96 schema:givenName María Teresa
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014015622120.33
98 rdf:type schema:Person
99 sg:person.015450152607.60 schema:affiliation https://www.grid.ac/institutes/grid.4807.b
100 schema:familyName García-Olalla
101 schema:givenName Oscar
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015450152607.60
103 rdf:type schema:Person
104 sg:person.016266057305.75 schema:affiliation https://www.grid.ac/institutes/grid.4807.b
105 schema:familyName Alegre
106 schema:givenName Enrique
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266057305.75
108 rdf:type schema:Person
109 sg:pub.10.1007/11957959_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049810107
110 https://doi.org/10.1007/11957959_20
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-3-642-21073-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031113269
113 https://doi.org/10.1007/978-3-642-21073-0
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-3-642-21257-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004459379
116 https://doi.org/10.1007/978-3-642-21257-4
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-3-642-37410-4_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002800980
119 https://doi.org/10.1007/978-3-642-37410-4_6
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s00521-011-0586-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013738217
122 https://doi.org/10.1007/s00521-011-0586-6
123 rdf:type schema:CreativeWork
124 https://app.dimensions.ai/details/publication/pub.1077426362 schema:CreativeWork
125 https://doi.org/10.1016/0167-8655(94)90092-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012463760
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0031-3203(01)00074-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047319703
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0031-8914(34)80259-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048420433
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/csae.2011.5953293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094956782
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/iccv.2005.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093216348
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/icectech.2011.5941793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095570844
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/ici.2011.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093812029
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/icime.2010.5477432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095654882
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/icip.2010.5652209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095831816
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/icip.2010.5653119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094100016
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/icpr.1994.576366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094758643
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/icpr.2010.751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095126090
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/iita.2009.206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095654727
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/ncoiet.2011.5738820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093266089
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tit.1962.1057692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095556890
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tsmc.1973.4309314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792707
156 rdf:type schema:CreativeWork
157 https://www.grid.ac/institutes/grid.4807.b schema:alternateName University of Leon
158 schema:name University of Leon, 24071, Leon, Spain
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...