J-self-adjoint extensions for second-order linear difference equations with complex coefficients View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-01-07

AUTHORS

Huaqing Sun, Guojing Ren

ABSTRACT

This paper is concerned with second-order linear difference equations with complex coefficients which are formally J-symmetric. Both J-self-adjoint subspace extensions and J-self-adjoint operator extensions of the corresponding minimal subspace are completely characterized in terms of boundary conditions.MSC:39A70, 47A06.

PAGES

3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1687-1847-2013-3

DOI

http://dx.doi.org/10.1186/1687-1847-2013-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024817971


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Shandong University at Weihai, 264209, Weihai, Shandong, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "Department of Mathematics, Shandong University at Weihai, 264209, Weihai, Shandong, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Huaqing", 
        "id": "sg:person.013267026235.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013267026235.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Statistics and Mathematics, Shandong Economic University, 250014, Jinan, Shandong, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.443413.5", 
          "name": [
            "School of Statistics and Mathematics, Shandong Economic University, 250014, Jinan, Shandong, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Guojing", 
        "id": "sg:person.07530225502.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07530225502.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4612-6027-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043944820", 
          "https://doi.org/10.1007/978-1-4612-6027-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0077960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045011929", 
          "https://doi.org/10.1007/bfb0077960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02564877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048216714", 
          "https://doi.org/10.1007/bf02564877"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-01-07", 
    "datePublishedReg": "2013-01-07", 
    "description": "This paper is concerned with second-order linear difference equations with complex coefficients which are formally J-symmetric. Both J-self-adjoint subspace extensions and J-self-adjoint operator extensions of the corresponding minimal subspace are completely characterized in terms of boundary conditions.MSC:39A70, 47A06.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1687-1847-2013-3", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4994629", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7008954", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5016192", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052613", 
        "issn": [
          "1687-1839", 
          "2731-4235"
        ], 
        "name": "Advances in Continuous and Discrete Models", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2013"
      }
    ], 
    "keywords": [
      "second-order linear difference equations", 
      "linear difference equations", 
      "difference equations", 
      "J-self-adjoint extensions", 
      "complex coefficients", 
      "corresponding minimal subspace", 
      "subspace extensions", 
      "operator extensions", 
      "minimal subspace", 
      "boundary conditions", 
      "equations", 
      "extension", 
      "subspace", 
      "coefficient", 
      "terms", 
      "conditions", 
      "paper"
    ], 
    "name": "J-self-adjoint extensions for second-order linear difference equations with complex coefficients", 
    "pagination": "3", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024817971"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1687-1847-2013-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1687-1847-2013-3", 
      "https://app.dimensions.ai/details/publication/pub.1024817971"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_591.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1687-1847-2013-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1687-1847-2013-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1687-1847-2013-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1687-1847-2013-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1687-1847-2013-3'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      21 PREDICATES      44 URIs      33 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1687-1847-2013-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N09c87303aeeb43a8b78ceb0e2a55f13d
4 schema:citation sg:pub.10.1007/978-1-4612-6027-1
5 sg:pub.10.1007/bf02564877
6 sg:pub.10.1007/bfb0077960
7 schema:datePublished 2013-01-07
8 schema:datePublishedReg 2013-01-07
9 schema:description This paper is concerned with second-order linear difference equations with complex coefficients which are formally J-symmetric. Both J-self-adjoint subspace extensions and J-self-adjoint operator extensions of the corresponding minimal subspace are completely characterized in terms of boundary conditions.MSC:39A70, 47A06.
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf Nc54d7763da2b4f81909d759189b9bcf6
13 Nfe14e0f18da4404092bb49dec84f3fa3
14 sg:journal.1052613
15 schema:keywords J-self-adjoint extensions
16 boundary conditions
17 coefficient
18 complex coefficients
19 conditions
20 corresponding minimal subspace
21 difference equations
22 equations
23 extension
24 linear difference equations
25 minimal subspace
26 operator extensions
27 paper
28 second-order linear difference equations
29 subspace
30 subspace extensions
31 terms
32 schema:name J-self-adjoint extensions for second-order linear difference equations with complex coefficients
33 schema:pagination 3
34 schema:productId N54c77f19c0d1473daa5ce4028820fbf7
35 Nc06eca3cfb8f4920a29ec6ba0bda4635
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024817971
37 https://doi.org/10.1186/1687-1847-2013-3
38 schema:sdDatePublished 2022-09-02T15:55
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nad94586b834841ccaf7a7106003bddd2
41 schema:url https://doi.org/10.1186/1687-1847-2013-3
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N09c87303aeeb43a8b78ceb0e2a55f13d rdf:first sg:person.013267026235.07
46 rdf:rest N45f29d47839a42fba292fc0e662a8912
47 N45f29d47839a42fba292fc0e662a8912 rdf:first sg:person.07530225502.43
48 rdf:rest rdf:nil
49 N54c77f19c0d1473daa5ce4028820fbf7 schema:name doi
50 schema:value 10.1186/1687-1847-2013-3
51 rdf:type schema:PropertyValue
52 Nad94586b834841ccaf7a7106003bddd2 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Nc06eca3cfb8f4920a29ec6ba0bda4635 schema:name dimensions_id
55 schema:value pub.1024817971
56 rdf:type schema:PropertyValue
57 Nc54d7763da2b4f81909d759189b9bcf6 schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 Nfe14e0f18da4404092bb49dec84f3fa3 schema:volumeNumber 2013
60 rdf:type schema:PublicationVolume
61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
62 schema:name Mathematical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
65 schema:name Pure Mathematics
66 rdf:type schema:DefinedTerm
67 sg:grant.4994629 http://pending.schema.org/fundedItem sg:pub.10.1186/1687-1847-2013-3
68 rdf:type schema:MonetaryGrant
69 sg:grant.5016192 http://pending.schema.org/fundedItem sg:pub.10.1186/1687-1847-2013-3
70 rdf:type schema:MonetaryGrant
71 sg:grant.7008954 http://pending.schema.org/fundedItem sg:pub.10.1186/1687-1847-2013-3
72 rdf:type schema:MonetaryGrant
73 sg:journal.1052613 schema:issn 1687-1839
74 2731-4235
75 schema:name Advances in Continuous and Discrete Models
76 schema:publisher Springer Nature
77 rdf:type schema:Periodical
78 sg:person.013267026235.07 schema:affiliation grid-institutes:grid.27255.37
79 schema:familyName Sun
80 schema:givenName Huaqing
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013267026235.07
82 rdf:type schema:Person
83 sg:person.07530225502.43 schema:affiliation grid-institutes:grid.443413.5
84 schema:familyName Ren
85 schema:givenName Guojing
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07530225502.43
87 rdf:type schema:Person
88 sg:pub.10.1007/978-1-4612-6027-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043944820
89 https://doi.org/10.1007/978-1-4612-6027-1
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf02564877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048216714
92 https://doi.org/10.1007/bf02564877
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bfb0077960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045011929
95 https://doi.org/10.1007/bfb0077960
96 rdf:type schema:CreativeWork
97 grid-institutes:grid.27255.37 schema:alternateName Department of Mathematics, Shandong University at Weihai, 264209, Weihai, Shandong, P.R. China
98 schema:name Department of Mathematics, Shandong University at Weihai, 264209, Weihai, Shandong, P.R. China
99 rdf:type schema:Organization
100 grid-institutes:grid.443413.5 schema:alternateName School of Statistics and Mathematics, Shandong Economic University, 250014, Jinan, Shandong, P.R. China
101 schema:name School of Statistics and Mathematics, Shandong Economic University, 250014, Jinan, Shandong, P.R. China
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...