Ontology type: schema:ScholarlyArticle Open Access: True
2013-12
AUTHORS ABSTRACT
For the equation y(n)=yk,k>1,n=12,13,14, the existence of positive solutions with non-power asymptotic behavior is proved, namely y=(x∗−x)−αh(log(x∗−x)),α=nk−1,x 220
http://scigraph.springernature.com/pub.10.1186/1687-1847-2013-220
DOIhttp://dx.doi.org/10.1186/1687-1847-2013-220
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1042978357
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Moscow State University of Economics Statistics and Informatics",
"id": "https://www.grid.ac/institutes/grid.446112.4",
"name": [
"Department of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia",
"Department of Higher Mathematics, Moscow State University of Economics, Statistics and Informatics, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Astashova",
"givenName": "Irina",
"id": "sg:person.012450371632.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012450371632.48"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02412217",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021785649",
"https://doi.org/10.1007/bf02412217"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10958-005-0066-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025979640",
"https://doi.org/10.1007/s10958-005-0066-6"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1035600588",
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1035600588",
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1036055071",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-011-1808-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036055071",
"https://doi.org/10.1007/978-94-011-1808-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-011-1808-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036055071",
"https://doi.org/10.1007/978-94-011-1808-8"
],
"type": "CreativeWork"
}
],
"datePublished": "2013-12",
"datePublishedReg": "2013-12-01",
"description": "For the equation y(n)=yk,k>1,n=12,13,14, the existence of positive solutions with non-power asymptotic behavior is proved, namely y=(x\u2217\u2212x)\u2212\u03b1h(log(x\u2217\u2212x)),\u03b1=nk\u22121,x
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1687-1847-2013-220'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1687-1847-2013-220'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1687-1847-2013-220'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1687-1847-2013-220'
This table displays all metadata directly associated to this object as RDF triples.
80 TRIPLES
21 PREDICATES
32 URIs
19 LITERALS
7 BLANK NODES