On power and non-power asymptotic behavior of positive solutions to Emden-Fowler type higher-order equations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Irina Astashova

ABSTRACT

For the equation y(n)=yk,k>1,n=12,13,14, the existence of positive solutions with non-power asymptotic behavior is proved, namely y=(x∗−x)−αh(log(x∗−x)),α=nk−1,x PAGES

220

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1687-1847-2013-220

DOI

http://dx.doi.org/10.1186/1687-1847-2013-220

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042978357


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University of Economics Statistics and Informatics", 
          "id": "https://www.grid.ac/institutes/grid.446112.4", 
          "name": [
            "Department of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia", 
            "Department of Higher Mathematics, Moscow State University of Economics, Statistics and Informatics, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Astashova", 
        "givenName": "Irina", 
        "id": "sg:person.012450371632.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012450371632.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02412217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021785649", 
          "https://doi.org/10.1007/bf02412217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10958-005-0066-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025979640", 
          "https://doi.org/10.1007/s10958-005-0066-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1035600588", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1035600588", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1036055071", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-1808-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036055071", 
          "https://doi.org/10.1007/978-94-011-1808-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-1808-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036055071", 
          "https://doi.org/10.1007/978-94-011-1808-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "For the equation y(n)=yk,k>1,n=12,13,14, the existence of positive solutions with non-power asymptotic behavior is proved, namely y=(x\u2217\u2212x)\u2212\u03b1h(log(x\u2217\u2212x)),\u03b1=nk\u22121,x
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1687-1847-2013-220'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1687-1847-2013-220'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1687-1847-2013-220'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1687-1847-2013-220'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1687-1847-2013-220 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N7c81a361640545c592bd58ca5828c960
4 schema:citation sg:pub.10.1007/978-94-011-1808-8
5 sg:pub.10.1007/bf02412217
6 sg:pub.10.1007/s10958-005-0066-6
7 https://app.dimensions.ai/details/publication/pub.1035600588
8 https://app.dimensions.ai/details/publication/pub.1036055071
9 schema:datePublished 2013-12
10 schema:datePublishedReg 2013-12-01
11 schema:description For the equation y(n)=yk,k>1,n=12,13,14, the existence of positive solutions with non-power asymptotic behavior is proved, namely y=(x∗−x)−αh(log(x∗−x)),α=nk−1,x<x∗, where x∗ is an arbitrary point, h is a positive periodic non-constant function on R. To prove this result, the Hopf bifurcation theorem is used.
12 schema:genre non_research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N1a843594bcbb46aa85f57e4747a4863c
16 N5f9e0c81675545a4980cb1c3f8f7473d
17 sg:journal.1052613
18 schema:name On power and non-power asymptotic behavior of positive solutions to Emden-Fowler type higher-order equations
19 schema:pagination 220
20 schema:productId N3f343265adf74bdba9d9b0eefc18b20c
21 Nc08ff95d38fd443792fbac2e53318c2f
22 Ne95abf9a159145f29a7be11dc74f6114
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042978357
24 https://doi.org/10.1186/1687-1847-2013-220
25 schema:sdDatePublished 2019-04-11T10:32
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N5759263744a34feeba3f77048864a715
28 schema:url https://link.springer.com/10.1186%2F1687-1847-2013-220
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N1a843594bcbb46aa85f57e4747a4863c schema:issueNumber 1
33 rdf:type schema:PublicationIssue
34 N3f343265adf74bdba9d9b0eefc18b20c schema:name doi
35 schema:value 10.1186/1687-1847-2013-220
36 rdf:type schema:PropertyValue
37 N5759263744a34feeba3f77048864a715 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N5f9e0c81675545a4980cb1c3f8f7473d schema:volumeNumber 2013
40 rdf:type schema:PublicationVolume
41 N7c81a361640545c592bd58ca5828c960 rdf:first sg:person.012450371632.48
42 rdf:rest rdf:nil
43 Nc08ff95d38fd443792fbac2e53318c2f schema:name readcube_id
44 schema:value ccb892583a405ee37ec70971f3b41ea763df03923a9b0930eb3f4b3798ce12b1
45 rdf:type schema:PropertyValue
46 Ne95abf9a159145f29a7be11dc74f6114 schema:name dimensions_id
47 schema:value pub.1042978357
48 rdf:type schema:PropertyValue
49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
50 schema:name Mathematical Sciences
51 rdf:type schema:DefinedTerm
52 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
53 schema:name Pure Mathematics
54 rdf:type schema:DefinedTerm
55 sg:grant.5343054 http://pending.schema.org/fundedItem sg:pub.10.1186/1687-1847-2013-220
56 rdf:type schema:MonetaryGrant
57 sg:journal.1052613 schema:issn 1687-1839
58 1687-1847
59 schema:name Advances in Difference Equations
60 rdf:type schema:Periodical
61 sg:person.012450371632.48 schema:affiliation https://www.grid.ac/institutes/grid.446112.4
62 schema:familyName Astashova
63 schema:givenName Irina
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012450371632.48
65 rdf:type schema:Person
66 sg:pub.10.1007/978-94-011-1808-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036055071
67 https://doi.org/10.1007/978-94-011-1808-8
68 rdf:type schema:CreativeWork
69 sg:pub.10.1007/bf02412217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021785649
70 https://doi.org/10.1007/bf02412217
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/s10958-005-0066-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025979640
73 https://doi.org/10.1007/s10958-005-0066-6
74 rdf:type schema:CreativeWork
75 https://app.dimensions.ai/details/publication/pub.1035600588 schema:CreativeWork
76 https://app.dimensions.ai/details/publication/pub.1036055071 schema:CreativeWork
77 https://www.grid.ac/institutes/grid.446112.4 schema:alternateName Moscow State University of Economics Statistics and Informatics
78 schema:name Department of Higher Mathematics, Moscow State University of Economics, Statistics and Informatics, Moscow, Russia
79 Department of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...