Approximating fixed points of multivalued ρ-nonexpansive mappings in modular function spaces View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-02-11

AUTHORS

Safeer Hussain Khan, Mujahid Abbas

ABSTRACT

The existence of fixed points of single-valued mappings in modular function spaces has been studied by many authors. The approximation of fixed points in such spaces via convergence of an iterative process for single-valued mappings has also been attempted very recently by Dehaish and Kozlowski (Fixed Point Theory Appl. 2012:118, 2012). In this paper, we initiate the study of approximating fixed points by the convergence of a Mann iterative process applied on multivalued ρ-nonexpansive mappings in modular function spaces. Our results also generalize the corresponding results of (Dehaish and Kozlowski in Fixed Point Theory Appl. 2012:118, 2012) to the case of multivalued mappings.MSC:47H09, 47H10, 54C60. More... »

PAGES

34

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1687-1812-2014-34

DOI

http://dx.doi.org/10.1186/1687-1812-2014-34

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026883244


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Statistics and Physics, Qatar University, 2713, Doha, Qatar", 
          "id": "http://www.grid.ac/institutes/grid.412603.2", 
          "name": [
            "Department of Mathematics, Statistics and Physics, Qatar University, 2713, Doha, Qatar"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khan", 
        "givenName": "Safeer Hussain", 
        "id": "sg:person.010266761613.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010266761613.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Applied Mathematics, University of Pretoria, Lynnwood road, 0002, Pretoria, South Africa", 
          "id": "http://www.grid.ac/institutes/grid.49697.35", 
          "name": [
            "Department of Mathematics and Applied Mathematics, University of Pretoria, Lynnwood road, 0002, Pretoria, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abbas", 
        "givenName": "Mujahid", 
        "id": "sg:person.014160432337.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014160432337.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1155/2009/786357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039218394", 
          "https://doi.org/10.1155/2009/786357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-9195-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010132555", 
          "https://doi.org/10.1007/978-94-015-9195-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1687-1812-2012-118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053468569", 
          "https://doi.org/10.1186/1687-1812-2012-118"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02-11", 
    "datePublishedReg": "2014-02-11", 
    "description": "The existence of fixed points of single-valued mappings in modular function spaces has been studied by many authors. The approximation of fixed points in such spaces via convergence of an iterative process for single-valued mappings has also been attempted very recently by Dehaish and Kozlowski (Fixed Point Theory Appl. 2012:118, 2012). In this paper, we initiate the study of approximating fixed points by the convergence of a Mann iterative process applied on multivalued \u03c1-nonexpansive mappings in modular function spaces. Our results also generalize the corresponding results of (Dehaish and Kozlowski in Fixed Point Theory Appl. 2012:118, 2012) to the case of multivalued mappings.MSC:47H09, 47H10, 54C60.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1687-1812-2014-34", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136165", 
        "issn": [
          "1687-1812", 
          "1687-1820"
        ], 
        "name": "Fixed Point Theory and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2014"
      }
    ], 
    "keywords": [
      "modular function spaces", 
      "function spaces", 
      "nonexpansive mappings", 
      "Mann iterative process", 
      "iterative process", 
      "such spaces", 
      "corresponding results", 
      "convergence", 
      "space", 
      "approximation", 
      "point", 
      "mapping", 
      "existence", 
      "results", 
      "process", 
      "cases", 
      "Kozlowski", 
      "authors", 
      "study", 
      "paper", 
      "Dehaish", 
      "multivalued \u03c1"
    ], 
    "name": "Approximating fixed points of multivalued \u03c1-nonexpansive mappings in modular function spaces", 
    "pagination": "34", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026883244"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1687-1812-2014-34"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1687-1812-2014-34", 
      "https://app.dimensions.ai/details/publication/pub.1026883244"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_637.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1687-1812-2014-34"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1687-1812-2014-34'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1687-1812-2014-34'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1687-1812-2014-34'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1687-1812-2014-34'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      22 PREDICATES      50 URIs      39 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1687-1812-2014-34 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N79046331c27a4cb58e62eebcf7eff01f
4 schema:citation sg:pub.10.1007/978-94-015-9195-9
5 sg:pub.10.1155/2009/786357
6 sg:pub.10.1186/1687-1812-2012-118
7 schema:datePublished 2014-02-11
8 schema:datePublishedReg 2014-02-11
9 schema:description The existence of fixed points of single-valued mappings in modular function spaces has been studied by many authors. The approximation of fixed points in such spaces via convergence of an iterative process for single-valued mappings has also been attempted very recently by Dehaish and Kozlowski (Fixed Point Theory Appl. 2012:118, 2012). In this paper, we initiate the study of approximating fixed points by the convergence of a Mann iterative process applied on multivalued ρ-nonexpansive mappings in modular function spaces. Our results also generalize the corresponding results of (Dehaish and Kozlowski in Fixed Point Theory Appl. 2012:118, 2012) to the case of multivalued mappings.MSC:47H09, 47H10, 54C60.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N2e580a13adc5444992e9efdfc2ae86d9
14 N372d269584c8429a89e41c4a9c9a0562
15 sg:journal.1136165
16 schema:keywords Dehaish
17 Kozlowski
18 Mann iterative process
19 approximation
20 authors
21 cases
22 convergence
23 corresponding results
24 existence
25 function spaces
26 iterative process
27 mapping
28 modular function spaces
29 multivalued ρ
30 nonexpansive mappings
31 paper
32 point
33 process
34 results
35 space
36 study
37 such spaces
38 schema:name Approximating fixed points of multivalued ρ-nonexpansive mappings in modular function spaces
39 schema:pagination 34
40 schema:productId N0d8a784239c04a11aecadb69c704c421
41 N495c73151c014a2898f9831b86e4316f
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026883244
43 https://doi.org/10.1186/1687-1812-2014-34
44 schema:sdDatePublished 2021-12-01T19:31
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N950bdca59cf842f192f507048c659d2c
47 schema:url https://doi.org/10.1186/1687-1812-2014-34
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N0d8a784239c04a11aecadb69c704c421 schema:name dimensions_id
52 schema:value pub.1026883244
53 rdf:type schema:PropertyValue
54 N2e580a13adc5444992e9efdfc2ae86d9 schema:volumeNumber 2014
55 rdf:type schema:PublicationVolume
56 N372d269584c8429a89e41c4a9c9a0562 schema:issueNumber 1
57 rdf:type schema:PublicationIssue
58 N495c73151c014a2898f9831b86e4316f schema:name doi
59 schema:value 10.1186/1687-1812-2014-34
60 rdf:type schema:PropertyValue
61 N79046331c27a4cb58e62eebcf7eff01f rdf:first sg:person.010266761613.61
62 rdf:rest Nfb989a8bc7a74cce88fc890b8a6b9d79
63 N950bdca59cf842f192f507048c659d2c schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Nfb989a8bc7a74cce88fc890b8a6b9d79 rdf:first sg:person.014160432337.79
66 rdf:rest rdf:nil
67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
68 schema:name Mathematical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
71 schema:name Pure Mathematics
72 rdf:type schema:DefinedTerm
73 sg:journal.1136165 schema:issn 1687-1812
74 1687-1820
75 schema:name Fixed Point Theory and Applications
76 schema:publisher Springer Nature
77 rdf:type schema:Periodical
78 sg:person.010266761613.61 schema:affiliation grid-institutes:grid.412603.2
79 schema:familyName Khan
80 schema:givenName Safeer Hussain
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010266761613.61
82 rdf:type schema:Person
83 sg:person.014160432337.79 schema:affiliation grid-institutes:grid.49697.35
84 schema:familyName Abbas
85 schema:givenName Mujahid
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014160432337.79
87 rdf:type schema:Person
88 sg:pub.10.1007/978-94-015-9195-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010132555
89 https://doi.org/10.1007/978-94-015-9195-9
90 rdf:type schema:CreativeWork
91 sg:pub.10.1155/2009/786357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039218394
92 https://doi.org/10.1155/2009/786357
93 rdf:type schema:CreativeWork
94 sg:pub.10.1186/1687-1812-2012-118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053468569
95 https://doi.org/10.1186/1687-1812-2012-118
96 rdf:type schema:CreativeWork
97 grid-institutes:grid.412603.2 schema:alternateName Department of Mathematics, Statistics and Physics, Qatar University, 2713, Doha, Qatar
98 schema:name Department of Mathematics, Statistics and Physics, Qatar University, 2713, Doha, Qatar
99 rdf:type schema:Organization
100 grid-institutes:grid.49697.35 schema:alternateName Department of Mathematics and Applied Mathematics, University of Pretoria, Lynnwood road, 0002, Pretoria, South Africa
101 schema:name Department of Mathematics and Applied Mathematics, University of Pretoria, Lynnwood road, 0002, Pretoria, South Africa
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...