PUE attack detection in CWSNs using anomaly detection techniques View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Javier Blesa, Elena Romero, Alba Rozas, Alvaro Araujo

ABSTRACT

Cognitive wireless sensor network (CWSN) is a new paradigm, integrating cognitive features in traditional wireless sensor networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in cognitive wireless sensor networks is an important problem since these kinds of networks manage critical applications and data. The specific constraints of WSN make the problem even more critical, and effective solutions have not yet been implemented. Primary user emulation (PUE) attack is the most studied specific attack deriving from new cognitive features. This work discusses a new approach, based on anomaly behavior detection and collaboration, to detect the primary user emulation attack in CWSN scenarios. Two non-parametric algorithms, suitable for low-resource networks like CWSNs, have been used in this work: the cumulative sum and data clustering algorithms. The comparison is based on some characteristics such as detection delay, learning time, scalability, resources, and scenario dependency. The algorithms have been tested using a cognitive simulator that provides important results in this area. Both algorithms have shown to be valid in order to detect PUE attacks, reaching a detection rate of 99% and less than 1% of false positives using collaboration. More... »

PAGES

215

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1687-1499-2013-215

DOI

http://dx.doi.org/10.1186/1687-1499-2013-215

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033419081


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Electronic Engineering, ETSI de Telecomunicaci\u00f3n (UPM), Av. Complutense 30, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blesa", 
        "givenName": "Javier", 
        "id": "sg:person.013377402130.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013377402130.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electronic Engineering, ETSI de Telecomunicaci\u00f3n (UPM), Av. Complutense 30, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Romero", 
        "givenName": "Elena", 
        "id": "sg:person.014247455257.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247455257.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electronic Engineering, ETSI de Telecomunicaci\u00f3n (UPM), Av. Complutense 30, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rozas", 
        "givenName": "Alba", 
        "id": "sg:person.07675651411.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07675651411.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Electronic Engineering, ETSI de Telecomunicaci\u00f3n (UPM), Av. Complutense 30, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Araujo", 
        "givenName": "Alvaro", 
        "id": "sg:person.010120552111.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010120552111.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/jsac.2008.080104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061317304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mnet.2011.5772056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061411707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mwc.2008.4599219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061432208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wicom.2009.5305529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093331228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnp.2010.5762779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094201702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/aina.2012.84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094262319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isecs.2010.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094646754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isecs.2010.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094646754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pccc.2010.5682317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094698499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ainaw.2007.148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094781063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wcnc.2011.5779201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095066103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icc.2009.5198911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095077377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pccc.2009.5403815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095209548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cmc.2010.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095338813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sdr.2006.4286333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095669570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4108/icst.simutools2010.8727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099262607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4108/icst.simutools2010.8727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099262607"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "Cognitive wireless sensor network (CWSN) is a new paradigm, integrating cognitive features in traditional wireless sensor networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in cognitive wireless sensor networks is an important problem since these kinds of networks manage critical applications and data. The specific constraints of WSN make the problem even more critical, and effective solutions have not yet been implemented. Primary user emulation (PUE) attack is the most studied specific attack deriving from new cognitive features. This work discusses a new approach, based on anomaly behavior detection and collaboration, to detect the primary user emulation attack in CWSN scenarios. Two non-parametric algorithms, suitable for low-resource networks like CWSNs, have been used in this work: the cumulative sum and data clustering algorithms. The comparison is based on some characteristics such as detection delay, learning time, scalability, resources, and scenario dependency. The algorithms have been tested using a cognitive simulator that provides important results in this area. Both algorithms have shown to be valid in order to detect PUE attacks, reaching a detection rate of 99% and less than 1% of false positives using collaboration.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1687-1499-2013-215", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1050477", 
        "issn": [
          "1687-1472", 
          "1687-1499"
        ], 
        "name": "EURASIP Journal on Wireless Communications and Networking", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2013"
      }
    ], 
    "name": "PUE attack detection in CWSNs using anomaly detection techniques", 
    "pagination": "215", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9f33709884a885248ba3377b3beb1d72594f95cce5576984da984a124625ae79"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1687-1499-2013-215"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033419081"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1687-1499-2013-215", 
      "https://app.dimensions.ai/details/publication/pub.1033419081"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1687-1499-2013-215"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1687-1499-2013-215'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1687-1499-2013-215'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1687-1499-2013-215'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1687-1499-2013-215'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1687-1499-2013-215 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N1cce66eb01ac40feb4f2ab2b26b0bc10
4 schema:citation https://doi.org/10.1109/aina.2012.84
5 https://doi.org/10.1109/ainaw.2007.148
6 https://doi.org/10.1109/cmc.2010.26
7 https://doi.org/10.1109/icc.2009.5198911
8 https://doi.org/10.1109/icnp.2010.5762779
9 https://doi.org/10.1109/isecs.2010.53
10 https://doi.org/10.1109/jsac.2008.080104
11 https://doi.org/10.1109/mnet.2011.5772056
12 https://doi.org/10.1109/mwc.2008.4599219
13 https://doi.org/10.1109/pccc.2009.5403815
14 https://doi.org/10.1109/pccc.2010.5682317
15 https://doi.org/10.1109/sdr.2006.4286333
16 https://doi.org/10.1109/wcnc.2011.5779201
17 https://doi.org/10.1109/wicom.2009.5305529
18 https://doi.org/10.4108/icst.simutools2010.8727
19 schema:datePublished 2013-12
20 schema:datePublishedReg 2013-12-01
21 schema:description Cognitive wireless sensor network (CWSN) is a new paradigm, integrating cognitive features in traditional wireless sensor networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in cognitive wireless sensor networks is an important problem since these kinds of networks manage critical applications and data. The specific constraints of WSN make the problem even more critical, and effective solutions have not yet been implemented. Primary user emulation (PUE) attack is the most studied specific attack deriving from new cognitive features. This work discusses a new approach, based on anomaly behavior detection and collaboration, to detect the primary user emulation attack in CWSN scenarios. Two non-parametric algorithms, suitable for low-resource networks like CWSNs, have been used in this work: the cumulative sum and data clustering algorithms. The comparison is based on some characteristics such as detection delay, learning time, scalability, resources, and scenario dependency. The algorithms have been tested using a cognitive simulator that provides important results in this area. Both algorithms have shown to be valid in order to detect PUE attacks, reaching a detection rate of 99% and less than 1% of false positives using collaboration.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N8a753e55fa514e7f9407a71ad75507ac
26 Nf2daf4349f3149b1be30970b50c1c14e
27 sg:journal.1050477
28 schema:name PUE attack detection in CWSNs using anomaly detection techniques
29 schema:pagination 215
30 schema:productId N61e2da26dbc643cc8d24de8ac083ca17
31 N88eb184fc25c4fb1b86a40e50ad00d15
32 Nff73110eb43143309b0d6fb0a6515173
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033419081
34 https://doi.org/10.1186/1687-1499-2013-215
35 schema:sdDatePublished 2019-04-10T13:17
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N432e4a1338644365a73ebadf9c3bf7bd
38 schema:url http://link.springer.com/10.1186%2F1687-1499-2013-215
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N1366fda2ce8549d6acd325d244f65913 schema:name Department of Electronic Engineering, ETSI de Telecomunicación (UPM), Av. Complutense 30, 28040, Madrid, Spain
43 rdf:type schema:Organization
44 N1cce66eb01ac40feb4f2ab2b26b0bc10 rdf:first sg:person.013377402130.57
45 rdf:rest N850bde9394164fe6ab7cf6e23cbd2b26
46 N432e4a1338644365a73ebadf9c3bf7bd schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N5bc73cb932bb4d9fadd1bf830ff0cbc9 schema:name Department of Electronic Engineering, ETSI de Telecomunicación (UPM), Av. Complutense 30, 28040, Madrid, Spain
49 rdf:type schema:Organization
50 N5c765eb765dc46b19ee29c87df060d47 schema:name Department of Electronic Engineering, ETSI de Telecomunicación (UPM), Av. Complutense 30, 28040, Madrid, Spain
51 rdf:type schema:Organization
52 N61e2da26dbc643cc8d24de8ac083ca17 schema:name dimensions_id
53 schema:value pub.1033419081
54 rdf:type schema:PropertyValue
55 N850bde9394164fe6ab7cf6e23cbd2b26 rdf:first sg:person.014247455257.71
56 rdf:rest Nca7af0daa5e54d48bb5aa66d524c2e1c
57 N88eb184fc25c4fb1b86a40e50ad00d15 schema:name doi
58 schema:value 10.1186/1687-1499-2013-215
59 rdf:type schema:PropertyValue
60 N8a753e55fa514e7f9407a71ad75507ac schema:volumeNumber 2013
61 rdf:type schema:PublicationVolume
62 Nca7af0daa5e54d48bb5aa66d524c2e1c rdf:first sg:person.07675651411.44
63 rdf:rest Neb30dc294c1441ac9594b11dcae34a93
64 Ndf84e5c9d5f741aba537cc004384fd2a schema:name Department of Electronic Engineering, ETSI de Telecomunicación (UPM), Av. Complutense 30, 28040, Madrid, Spain
65 rdf:type schema:Organization
66 Neb30dc294c1441ac9594b11dcae34a93 rdf:first sg:person.010120552111.77
67 rdf:rest rdf:nil
68 Nf2daf4349f3149b1be30970b50c1c14e schema:issueNumber 1
69 rdf:type schema:PublicationIssue
70 Nff73110eb43143309b0d6fb0a6515173 schema:name readcube_id
71 schema:value 9f33709884a885248ba3377b3beb1d72594f95cce5576984da984a124625ae79
72 rdf:type schema:PropertyValue
73 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
74 schema:name Information and Computing Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
77 schema:name Artificial Intelligence and Image Processing
78 rdf:type schema:DefinedTerm
79 sg:journal.1050477 schema:issn 1687-1472
80 1687-1499
81 schema:name EURASIP Journal on Wireless Communications and Networking
82 rdf:type schema:Periodical
83 sg:person.010120552111.77 schema:affiliation N5c765eb765dc46b19ee29c87df060d47
84 schema:familyName Araujo
85 schema:givenName Alvaro
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010120552111.77
87 rdf:type schema:Person
88 sg:person.013377402130.57 schema:affiliation Ndf84e5c9d5f741aba537cc004384fd2a
89 schema:familyName Blesa
90 schema:givenName Javier
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013377402130.57
92 rdf:type schema:Person
93 sg:person.014247455257.71 schema:affiliation N1366fda2ce8549d6acd325d244f65913
94 schema:familyName Romero
95 schema:givenName Elena
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247455257.71
97 rdf:type schema:Person
98 sg:person.07675651411.44 schema:affiliation N5bc73cb932bb4d9fadd1bf830ff0cbc9
99 schema:familyName Rozas
100 schema:givenName Alba
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07675651411.44
102 rdf:type schema:Person
103 https://doi.org/10.1109/aina.2012.84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094262319
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/ainaw.2007.148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094781063
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/cmc.2010.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095338813
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/icc.2009.5198911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095077377
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/icnp.2010.5762779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094201702
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/isecs.2010.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094646754
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/jsac.2008.080104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061317304
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/mnet.2011.5772056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061411707
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/mwc.2008.4599219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061432208
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/pccc.2009.5403815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095209548
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/pccc.2010.5682317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094698499
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/sdr.2006.4286333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095669570
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/wcnc.2011.5779201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095066103
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/wicom.2009.5305529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093331228
130 rdf:type schema:CreativeWork
131 https://doi.org/10.4108/icst.simutools2010.8727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099262607
132 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...