Impact of device size and thickness of Al2O3 film on the Cu pillar and resistive switching characteristics for 3D cross-point ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12

AUTHORS

Rajeswar Panja, Sourav Roy, Debanjan Jana, Siddheswar Maikap

ABSTRACT

Impact of the device size and thickness of Al2O3 film on the Cu pillars and resistive switching memory characteristics of the Al/Cu/Al2O3/TiN structures have been investigated for the first time. The memory device size and thickness of Al2O3 of 18 nm are observed by transmission electron microscope image. The 20-nm-thick Al2O3 films have been used for the Cu pillar formation (i.e., stronger Cu filaments) in the Al/Cu/Al2O3/TiN structures, which can be used for three-dimensional (3D) cross-point architecture as reported previously Nanoscale Res. Lett.9:366, 2014. Fifty randomly picked devices with sizes ranging from 8 × 8 to 0.4 × 0.4 μm(2) have been measured. The 8-μm devices show 100% yield of Cu pillars, whereas only 74% successful is observed for the 0.4-μm devices, because smaller size devices have higher Joule heating effect and larger size devices show long read endurance of 10(5) cycles at a high read voltage of -1.5 V. On the other hand, the resistive switching memory characteristics of the 0.4-μm devices with a 2-nm-thick Al2O3 film show superior as compared to those of both the larger device sizes and thicker (10 nm) Al2O3 film, owing to higher Cu diffusion rate for the larger size and thicker Al2O3 film. In consequence, higher device-to-device uniformity of 88% and lower average RESET current of approximately 328 μA are observed for the 0.4-μm devices with a 2-nm-thick Al2O3 film. Data retention capability of our memory device of >48 h makes it a promising one for future nanoscale nonvolatile application. This conductive bridging resistive random access memory (CBRAM) device is forming free at a current compliance (CC) of 30 μA (even at a lowest CC of 0.1 μA) and operation voltage of ±3 V at a high resistance ratio of >10(4). More... »

PAGES

692

Journal

TITLE

Nanoscale Research Letters

ISSUE

1

VOLUME

9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1556-276x-9-692

DOI

http://dx.doi.org/10.1186/1556-276x-9-692

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051633259

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26088986


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chang Gung University", 
          "id": "https://www.grid.ac/institutes/grid.145695.a", 
          "name": [
            "Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., 333, Kwei-Shan, Tao-Yuan, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panja", 
        "givenName": "Rajeswar", 
        "id": "sg:person.01206171300.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206171300.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang Gung University", 
          "id": "https://www.grid.ac/institutes/grid.145695.a", 
          "name": [
            "Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., 333, Kwei-Shan, Tao-Yuan, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roy", 
        "givenName": "Sourav", 
        "id": "sg:person.01060336625.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060336625.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang Gung University", 
          "id": "https://www.grid.ac/institutes/grid.145695.a", 
          "name": [
            "Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., 333, Kwei-Shan, Tao-Yuan, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jana", 
        "givenName": "Debanjan", 
        "id": "sg:person.0711432622.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711432622.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chang Gung University", 
          "id": "https://www.grid.ac/institutes/grid.145695.a", 
          "name": [
            "Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., 333, Kwei-Shan, Tao-Yuan, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maikap", 
        "givenName": "Siddheswar", 
        "id": "sg:person.01331701737.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331701737.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0957-4484/22/48/485203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018631591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020250543", 
          "https://doi.org/10.1038/ncomms1737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/22/25/254003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021187987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-9-366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024927771", 
          "https://doi.org/10.1186/1556-276x-9-366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mee.2012.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027165627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201104104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028596301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10426919008953291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033175561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-8-379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037164427", 
          "https://doi.org/10.1186/1556-276x-8-379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-8-418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040357960", 
          "https://doi.org/10.1186/1556-276x-8-418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/2.067202jes", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041610803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041881218", 
          "https://doi.org/10.1038/nature03190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041881218", 
          "https://doi.org/10.1038/nature03190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045168777", 
          "https://doi.org/10.1038/nnano.2012.240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-7-614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045455851", 
          "https://doi.org/10.1186/1556-276x-7-614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2750450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051071608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn100483a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/epjap:2004206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056959256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1492024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057712246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2799091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057868029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.360292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057983142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3621835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057986485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3657938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057993382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4803062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058074958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jssc.2004.837244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061328992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/led.2011.2166051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061355614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/led.2011.2177803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061355748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ted.2008.2004246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061592907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnano.2013.2282837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061713087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iedm.2008.4796677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095432075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iedm.2005.1609463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095699561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/imw.2013.6582089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095764422"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "Impact of the device size and thickness of Al2O3 film on the Cu pillars and resistive switching memory characteristics of the Al/Cu/Al2O3/TiN structures have been investigated for the first time. The memory device size and thickness of Al2O3 of 18 nm are observed by transmission electron microscope image. The 20-nm-thick Al2O3 films have been used for the Cu pillar formation (i.e., stronger Cu filaments) in the Al/Cu/Al2O3/TiN structures, which can be used for three-dimensional (3D) cross-point architecture as reported previously Nanoscale Res. Lett.9:366, 2014. Fifty randomly picked devices with sizes ranging from 8\u2009\u00d7\u20098 to 0.4\u2009\u00d7\u20090.4 \u03bcm(2) have been measured. The 8-\u03bcm devices show 100% yield of Cu pillars, whereas only 74% successful is observed for the 0.4-\u03bcm devices, because smaller size devices have higher Joule heating effect and larger size devices show long read endurance of 10(5) cycles at a high read voltage of -1.5 V. On the other hand, the resistive switching memory characteristics of the 0.4-\u03bcm devices with a 2-nm-thick Al2O3 film show superior as compared to those of both the larger device sizes and thicker (10 nm) Al2O3 film, owing to higher Cu diffusion rate for the larger size and thicker Al2O3 film. In consequence, higher device-to-device uniformity of 88% and lower average RESET current of approximately 328 \u03bcA are observed for the 0.4-\u03bcm devices with a 2-nm-thick Al2O3 film. Data retention capability of our memory device of >48 h makes it a promising one for future nanoscale nonvolatile application. This conductive bridging resistive random access memory (CBRAM) device is forming free at a current compliance (CC) of 30 \u03bcA (even at a lowest CC of 0.1 \u03bcA) and operation voltage of \u00b13 V at a high resistance ratio of >10(4). ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1556-276x-9-692", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1037280", 
        "issn": [
          "1931-7573", 
          "1556-276X"
        ], 
        "name": "Nanoscale Research Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Impact of device size and thickness of Al2O3 film on the Cu pillar and resistive switching characteristics for 3D cross-point memory application", 
    "pagination": "692", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f5f4bad752f982bf682233baf0d980f873a07fadde7d136106f111b497750362"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26088986"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101279750"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1556-276x-9-692"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051633259"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1556-276x-9-692", 
      "https://app.dimensions.ai/details/publication/pub.1051633259"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1556-276X-9-692"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-9-692'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-9-692'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-9-692'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-9-692'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1556-276x-9-692 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc06fcc8698b641e5a800f6a41ca5561a
4 schema:citation sg:pub.10.1038/nature03190
5 sg:pub.10.1038/ncomms1737
6 sg:pub.10.1038/nnano.2012.240
7 sg:pub.10.1186/1556-276x-7-614
8 sg:pub.10.1186/1556-276x-8-379
9 sg:pub.10.1186/1556-276x-8-418
10 sg:pub.10.1186/1556-276x-9-366
11 https://doi.org/10.1002/adma.201104104
12 https://doi.org/10.1016/j.mee.2012.10.024
13 https://doi.org/10.1021/nn100483a
14 https://doi.org/10.1051/epjap:2004206
15 https://doi.org/10.1063/1.1492024
16 https://doi.org/10.1063/1.2799091
17 https://doi.org/10.1063/1.360292
18 https://doi.org/10.1063/1.3621835
19 https://doi.org/10.1063/1.3657938
20 https://doi.org/10.1063/1.4803062
21 https://doi.org/10.1080/10426919008953291
22 https://doi.org/10.1088/0957-4484/22/25/254003
23 https://doi.org/10.1088/0957-4484/22/48/485203
24 https://doi.org/10.1109/iedm.2005.1609463
25 https://doi.org/10.1109/iedm.2008.4796677
26 https://doi.org/10.1109/imw.2013.6582089
27 https://doi.org/10.1109/jssc.2004.837244
28 https://doi.org/10.1109/led.2011.2166051
29 https://doi.org/10.1109/led.2011.2177803
30 https://doi.org/10.1109/ted.2008.2004246
31 https://doi.org/10.1109/tnano.2013.2282837
32 https://doi.org/10.1149/1.2750450
33 https://doi.org/10.1149/2.067202jes
34 schema:datePublished 2014-12
35 schema:datePublishedReg 2014-12-01
36 schema:description Impact of the device size and thickness of Al2O3 film on the Cu pillars and resistive switching memory characteristics of the Al/Cu/Al2O3/TiN structures have been investigated for the first time. The memory device size and thickness of Al2O3 of 18 nm are observed by transmission electron microscope image. The 20-nm-thick Al2O3 films have been used for the Cu pillar formation (i.e., stronger Cu filaments) in the Al/Cu/Al2O3/TiN structures, which can be used for three-dimensional (3D) cross-point architecture as reported previously Nanoscale Res. Lett.9:366, 2014. Fifty randomly picked devices with sizes ranging from 8 × 8 to 0.4 × 0.4 μm(2) have been measured. The 8-μm devices show 100% yield of Cu pillars, whereas only 74% successful is observed for the 0.4-μm devices, because smaller size devices have higher Joule heating effect and larger size devices show long read endurance of 10(5) cycles at a high read voltage of -1.5 V. On the other hand, the resistive switching memory characteristics of the 0.4-μm devices with a 2-nm-thick Al2O3 film show superior as compared to those of both the larger device sizes and thicker (10 nm) Al2O3 film, owing to higher Cu diffusion rate for the larger size and thicker Al2O3 film. In consequence, higher device-to-device uniformity of 88% and lower average RESET current of approximately 328 μA are observed for the 0.4-μm devices with a 2-nm-thick Al2O3 film. Data retention capability of our memory device of >48 h makes it a promising one for future nanoscale nonvolatile application. This conductive bridging resistive random access memory (CBRAM) device is forming free at a current compliance (CC) of 30 μA (even at a lowest CC of 0.1 μA) and operation voltage of ±3 V at a high resistance ratio of >10(4).
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N481b64f25b7b4c26817724be2fff92ba
41 Nd4efe05bd3914a629b2c7735b35c327e
42 sg:journal.1037280
43 schema:name Impact of device size and thickness of Al2O3 film on the Cu pillar and resistive switching characteristics for 3D cross-point memory application
44 schema:pagination 692
45 schema:productId N493f962aca47479894204360d65ef4bc
46 N6ce7e97eaff24096b0d1523cd07e14a5
47 N6ce882a889b64e2999966b8725c2c727
48 Nd3be2b92934b454d861bf2651c700adf
49 Nf7554c8d5abe40318c345252e9fa481b
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051633259
51 https://doi.org/10.1186/1556-276x-9-692
52 schema:sdDatePublished 2019-04-11T00:17
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N4b30e565cd9a459bb36df3ab9951dacb
55 schema:url http://link.springer.com/10.1186%2F1556-276X-9-692
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0aa2490777344563be68ebabb8931a28 rdf:first sg:person.01060336625.80
60 rdf:rest Ne415087efa0146d09449ca8a9467567d
61 N481b64f25b7b4c26817724be2fff92ba schema:volumeNumber 9
62 rdf:type schema:PublicationVolume
63 N493f962aca47479894204360d65ef4bc schema:name dimensions_id
64 schema:value pub.1051633259
65 rdf:type schema:PropertyValue
66 N4b30e565cd9a459bb36df3ab9951dacb schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N6ce7e97eaff24096b0d1523cd07e14a5 schema:name readcube_id
69 schema:value f5f4bad752f982bf682233baf0d980f873a07fadde7d136106f111b497750362
70 rdf:type schema:PropertyValue
71 N6ce882a889b64e2999966b8725c2c727 schema:name doi
72 schema:value 10.1186/1556-276x-9-692
73 rdf:type schema:PropertyValue
74 N99737691819346ce952fc3805bfe9f76 rdf:first sg:person.01331701737.51
75 rdf:rest rdf:nil
76 Nc06fcc8698b641e5a800f6a41ca5561a rdf:first sg:person.01206171300.51
77 rdf:rest N0aa2490777344563be68ebabb8931a28
78 Nd3be2b92934b454d861bf2651c700adf schema:name nlm_unique_id
79 schema:value 101279750
80 rdf:type schema:PropertyValue
81 Nd4efe05bd3914a629b2c7735b35c327e schema:issueNumber 1
82 rdf:type schema:PublicationIssue
83 Ne415087efa0146d09449ca8a9467567d rdf:first sg:person.0711432622.89
84 rdf:rest N99737691819346ce952fc3805bfe9f76
85 Nf7554c8d5abe40318c345252e9fa481b schema:name pubmed_id
86 schema:value 26088986
87 rdf:type schema:PropertyValue
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
92 schema:name Materials Engineering
93 rdf:type schema:DefinedTerm
94 sg:journal.1037280 schema:issn 1556-276X
95 1931-7573
96 schema:name Nanoscale Research Letters
97 rdf:type schema:Periodical
98 sg:person.01060336625.80 schema:affiliation https://www.grid.ac/institutes/grid.145695.a
99 schema:familyName Roy
100 schema:givenName Sourav
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060336625.80
102 rdf:type schema:Person
103 sg:person.01206171300.51 schema:affiliation https://www.grid.ac/institutes/grid.145695.a
104 schema:familyName Panja
105 schema:givenName Rajeswar
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206171300.51
107 rdf:type schema:Person
108 sg:person.01331701737.51 schema:affiliation https://www.grid.ac/institutes/grid.145695.a
109 schema:familyName Maikap
110 schema:givenName Siddheswar
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331701737.51
112 rdf:type schema:Person
113 sg:person.0711432622.89 schema:affiliation https://www.grid.ac/institutes/grid.145695.a
114 schema:familyName Jana
115 schema:givenName Debanjan
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711432622.89
117 rdf:type schema:Person
118 sg:pub.10.1038/nature03190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041881218
119 https://doi.org/10.1038/nature03190
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/ncomms1737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020250543
122 https://doi.org/10.1038/ncomms1737
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nnano.2012.240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045168777
125 https://doi.org/10.1038/nnano.2012.240
126 rdf:type schema:CreativeWork
127 sg:pub.10.1186/1556-276x-7-614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045455851
128 https://doi.org/10.1186/1556-276x-7-614
129 rdf:type schema:CreativeWork
130 sg:pub.10.1186/1556-276x-8-379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037164427
131 https://doi.org/10.1186/1556-276x-8-379
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/1556-276x-8-418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040357960
134 https://doi.org/10.1186/1556-276x-8-418
135 rdf:type schema:CreativeWork
136 sg:pub.10.1186/1556-276x-9-366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024927771
137 https://doi.org/10.1186/1556-276x-9-366
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/adma.201104104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028596301
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.mee.2012.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027165627
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1021/nn100483a schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222520
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1051/epjap:2004206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056959256
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.1492024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057712246
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.2799091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057868029
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1063/1.360292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057983142
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1063/1.3621835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057986485
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.3657938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057993382
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1063/1.4803062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058074958
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1080/10426919008953291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033175561
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1088/0957-4484/22/25/254003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021187987
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1088/0957-4484/22/48/485203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018631591
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/iedm.2005.1609463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095699561
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/iedm.2008.4796677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095432075
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/imw.2013.6582089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095764422
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/jssc.2004.837244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061328992
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/led.2011.2166051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061355614
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/led.2011.2177803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061355748
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/ted.2008.2004246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061592907
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/tnano.2013.2282837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061713087
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1149/1.2750450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051071608
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1149/2.067202jes schema:sameAs https://app.dimensions.ai/details/publication/pub.1041610803
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.145695.a schema:alternateName Chang Gung University
186 schema:name Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., 333, Kwei-Shan, Tao-Yuan, Taiwan
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...