High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-10-28

AUTHORS

Mao-xiang Jing, Chong Han, Min Li, Xiang-qian Shen

ABSTRACT

To obtain low sheet resistance, high optical transmittance, small open spaces in conductive networks, and enhanced adhesion of flexible transparent conductive films, a carbon nanotube (CNT)/silver nanowire (AgNW)-PET hybrid film was fabricated by mechanical pressing-transfer process at room temperature. The morphology and structure were characterized by scanning electron microscope (SEM) and atomic force microscope (AFM), the optical transmittance and sheet resistance were tested by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer and four-point probe technique, and the adhesion was also measured by 3M sticky tape. The results indicate that in this hybrid nanostructure, AgNWs form the main conductive networks and CNTs as assistant conductive networks are filled in the open spaces of AgNWs networks. The sheet resistance of the hybrid films can reach approximately 20.9 to 53.9 Ω/□ with the optical transmittance of approximately 84% to 91%. The second mechanical pressing step can greatly reduce the surface roughness of the hybrid film and enhance the adhesion force between CNTs, AgNWs, and PET substrate. This process is hopeful for large-scale production of high-end flexible transparent conductive films. More... »

PAGES

588

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1556-276x-9-588

DOI

http://dx.doi.org/10.1186/1556-276x-9-588

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043108121

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25386105


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Materials, Jiangsu University, Xuefu road 301, 212013, Zhenjiang, China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, Jiangsu University, Xuefu road 301, 212013, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jing", 
        "givenName": "Mao-xiang", 
        "id": "sg:person.01162236364.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162236364.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Materials, Jiangsu University, Xuefu road 301, 212013, Zhenjiang, China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, Jiangsu University, Xuefu road 301, 212013, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Chong", 
        "id": "sg:person.01152277310.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152277310.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Materials, Jiangsu University, Xuefu road 301, 212013, Zhenjiang, China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, Jiangsu University, Xuefu road 301, 212013, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Min", 
        "id": "sg:person.01231501556.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231501556.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Materials, Jiangsu University, Xuefu road 301, 212013, Zhenjiang, China", 
          "id": "http://www.grid.ac/institutes/grid.440785.a", 
          "name": [
            "Institute for Advanced Materials, Jiangsu University, Xuefu road 301, 212013, Zhenjiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Xiang-qian", 
        "id": "sg:person.0601655670.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601655670.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12274-010-0017-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015789235", 
          "https://doi.org/10.1007/s12274-010-0017-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-9-310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024300838", 
          "https://doi.org/10.1186/1556-276x-9-310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-011-0172-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040470967", 
          "https://doi.org/10.1007/s12274-011-0172-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-10-28", 
    "datePublishedReg": "2014-10-28", 
    "description": "To obtain low sheet resistance, high optical transmittance, small open spaces in conductive networks, and enhanced adhesion of flexible transparent conductive films, a carbon nanotube (CNT)/silver nanowire (AgNW)-PET hybrid film was fabricated by mechanical pressing-transfer process at room temperature. The morphology and structure were characterized by scanning electron microscope (SEM) and atomic force microscope (AFM), the optical transmittance and sheet resistance were tested by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer and four-point probe technique, and the adhesion was also measured by 3M sticky tape. The results indicate that in this hybrid nanostructure, AgNWs form the main conductive networks and CNTs as assistant conductive networks are filled in the open spaces of AgNWs networks. The sheet resistance of the hybrid films can reach approximately 20.9 to 53.9 \u03a9/\u25a1 with the optical transmittance of approximately 84% to 91%. The second mechanical pressing step can greatly reduce the surface roughness of the hybrid film and enhance the adhesion force between CNTs, AgNWs, and PET substrate. This process is hopeful for large-scale production of high-end flexible transparent conductive films.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1556-276x-9-588", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7174762", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037280", 
        "issn": [
          "1931-7573", 
          "1556-276X"
        ], 
        "name": "Nanoscale Research Letters", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "flexible transparent conductive films", 
      "transparent conductive films", 
      "atomic force microscope", 
      "conductive network", 
      "carbon nanotubes", 
      "conductive films", 
      "hybrid films", 
      "optical transmittance", 
      "sheet resistance", 
      "high optical transmittance", 
      "low sheet resistance", 
      "ultraviolet-visible spectroscopy", 
      "large-scale production", 
      "four-point probe technique", 
      "AgNW networks", 
      "hybrid nanostructures", 
      "force microscope", 
      "PET substrate", 
      "electron microscope", 
      "AgNWs", 
      "probe technique", 
      "high performance", 
      "transmittance", 
      "surface roughness", 
      "room temperature", 
      "adhesion force", 
      "films", 
      "network", 
      "microscope", 
      "sticky tape", 
      "enhanced adhesion", 
      "nanowires", 
      "nanostructures", 
      "nanotubes", 
      "spectroscopy", 
      "roughness", 
      "small open spaces", 
      "substrate", 
      "morphology", 
      "adhesion", 
      "resistance", 
      "technique", 
      "open space", 
      "performance", 
      "temperature", 
      "tape", 
      "process", 
      "force", 
      "space", 
      "structure", 
      "production", 
      "step", 
      "results"
    ], 
    "name": "High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique", 
    "pagination": "588", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043108121"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1556-276x-9-588"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25386105"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1556-276x-9-588", 
      "https://app.dimensions.ai/details/publication/pub.1043108121"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_624.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1556-276x-9-588"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-9-588'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-9-588'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-9-588'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-9-588'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      22 PREDICATES      84 URIs      71 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1556-276x-9-588 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 anzsrc-for:09
4 anzsrc-for:0912
5 schema:author Nba1c9803c6fb46a1b9a0a6223266a964
6 schema:citation sg:pub.10.1007/s12274-010-0017-5
7 sg:pub.10.1007/s12274-011-0172-3
8 sg:pub.10.1186/1556-276x-9-310
9 schema:datePublished 2014-10-28
10 schema:datePublishedReg 2014-10-28
11 schema:description To obtain low sheet resistance, high optical transmittance, small open spaces in conductive networks, and enhanced adhesion of flexible transparent conductive films, a carbon nanotube (CNT)/silver nanowire (AgNW)-PET hybrid film was fabricated by mechanical pressing-transfer process at room temperature. The morphology and structure were characterized by scanning electron microscope (SEM) and atomic force microscope (AFM), the optical transmittance and sheet resistance were tested by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer and four-point probe technique, and the adhesion was also measured by 3M sticky tape. The results indicate that in this hybrid nanostructure, AgNWs form the main conductive networks and CNTs as assistant conductive networks are filled in the open spaces of AgNWs networks. The sheet resistance of the hybrid films can reach approximately 20.9 to 53.9 Ω/□ with the optical transmittance of approximately 84% to 91%. The second mechanical pressing step can greatly reduce the surface roughness of the hybrid film and enhance the adhesion force between CNTs, AgNWs, and PET substrate. This process is hopeful for large-scale production of high-end flexible transparent conductive films.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N88eb3aa85c3944cdb1bfac24b1a0c48d
16 N963066caed354b749da9e2ec14f87c50
17 sg:journal.1037280
18 schema:keywords AgNW networks
19 AgNWs
20 PET substrate
21 adhesion
22 adhesion force
23 atomic force microscope
24 carbon nanotubes
25 conductive films
26 conductive network
27 electron microscope
28 enhanced adhesion
29 films
30 flexible transparent conductive films
31 force
32 force microscope
33 four-point probe technique
34 high optical transmittance
35 high performance
36 hybrid films
37 hybrid nanostructures
38 large-scale production
39 low sheet resistance
40 microscope
41 morphology
42 nanostructures
43 nanotubes
44 nanowires
45 network
46 open space
47 optical transmittance
48 performance
49 probe technique
50 process
51 production
52 resistance
53 results
54 room temperature
55 roughness
56 sheet resistance
57 small open spaces
58 space
59 spectroscopy
60 step
61 sticky tape
62 structure
63 substrate
64 surface roughness
65 tape
66 technique
67 temperature
68 transmittance
69 transparent conductive films
70 ultraviolet-visible spectroscopy
71 schema:name High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique
72 schema:pagination 588
73 schema:productId N227452c932fa450bbca287ad7b63bb9e
74 N46235abcb5f04a3e9b81107cfce31ae8
75 Nc9ab89dda6524980b51b992e7c6ae862
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043108121
77 https://doi.org/10.1186/1556-276x-9-588
78 schema:sdDatePublished 2022-05-20T07:29
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N20d26a8b2621441d8ab6f1b97daf95ab
81 schema:url https://doi.org/10.1186/1556-276x-9-588
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N1c546cda3eed4a5ca9f5ef828a117d7d rdf:first sg:person.01152277310.53
86 rdf:rest N55d74aecd0074a91833d8ad903e6e87b
87 N20d26a8b2621441d8ab6f1b97daf95ab schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N227452c932fa450bbca287ad7b63bb9e schema:name dimensions_id
90 schema:value pub.1043108121
91 rdf:type schema:PropertyValue
92 N46235abcb5f04a3e9b81107cfce31ae8 schema:name pubmed_id
93 schema:value 25386105
94 rdf:type schema:PropertyValue
95 N55d74aecd0074a91833d8ad903e6e87b rdf:first sg:person.01231501556.24
96 rdf:rest Ne0bdaa0791944305998f83ea6dfdfbf6
97 N88eb3aa85c3944cdb1bfac24b1a0c48d schema:issueNumber 1
98 rdf:type schema:PublicationIssue
99 N963066caed354b749da9e2ec14f87c50 schema:volumeNumber 9
100 rdf:type schema:PublicationVolume
101 Nba1c9803c6fb46a1b9a0a6223266a964 rdf:first sg:person.01162236364.13
102 rdf:rest N1c546cda3eed4a5ca9f5ef828a117d7d
103 Nc9ab89dda6524980b51b992e7c6ae862 schema:name doi
104 schema:value 10.1186/1556-276x-9-588
105 rdf:type schema:PropertyValue
106 Ne0bdaa0791944305998f83ea6dfdfbf6 rdf:first sg:person.0601655670.06
107 rdf:rest rdf:nil
108 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
109 schema:name Physical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
112 schema:name Other Physical Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
115 schema:name Engineering
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
118 schema:name Materials Engineering
119 rdf:type schema:DefinedTerm
120 sg:grant.7174762 http://pending.schema.org/fundedItem sg:pub.10.1186/1556-276x-9-588
121 rdf:type schema:MonetaryGrant
122 sg:journal.1037280 schema:issn 1556-276X
123 1931-7573
124 schema:name Nanoscale Research Letters
125 schema:publisher Springer Nature
126 rdf:type schema:Periodical
127 sg:person.01152277310.53 schema:affiliation grid-institutes:grid.440785.a
128 schema:familyName Han
129 schema:givenName Chong
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152277310.53
131 rdf:type schema:Person
132 sg:person.01162236364.13 schema:affiliation grid-institutes:grid.440785.a
133 schema:familyName Jing
134 schema:givenName Mao-xiang
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162236364.13
136 rdf:type schema:Person
137 sg:person.01231501556.24 schema:affiliation grid-institutes:grid.440785.a
138 schema:familyName Li
139 schema:givenName Min
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231501556.24
141 rdf:type schema:Person
142 sg:person.0601655670.06 schema:affiliation grid-institutes:grid.440785.a
143 schema:familyName Shen
144 schema:givenName Xiang-qian
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601655670.06
146 rdf:type schema:Person
147 sg:pub.10.1007/s12274-010-0017-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015789235
148 https://doi.org/10.1007/s12274-010-0017-5
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s12274-011-0172-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040470967
151 https://doi.org/10.1007/s12274-011-0172-3
152 rdf:type schema:CreativeWork
153 sg:pub.10.1186/1556-276x-9-310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024300838
154 https://doi.org/10.1186/1556-276x-9-310
155 rdf:type schema:CreativeWork
156 grid-institutes:grid.440785.a schema:alternateName Institute for Advanced Materials, Jiangsu University, Xuefu road 301, 212013, Zhenjiang, China
157 schema:name Institute for Advanced Materials, Jiangsu University, Xuefu road 301, 212013, Zhenjiang, China
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...