Nanoscale evidence of erbium clustering in Er-doped silicon-rich silica View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-01-21

AUTHORS

Etienne Talbot, Rodrigue Lardé, Philippe Pareige, Larysa Khomenkova, Khalil Hijazi, Fabrice Gourbilleau

ABSTRACT

Photoluminescence spectroscopy and atom probe tomography were used to explore the optical activity and microstructure of Er3+-doped Si-rich SiO2 thin films fabricated by radio-frequency magnetron sputtering. The effect of post-fabrication annealing treatment on the properties of the films was investigated. The evolution of the nanoscale structure upon an annealing treatment was found to control the interrelation between the radiative recombination of the carriers via Si clusters and via 4f shell transitions in Er3+ ions. The most efficient 1.53-μ m Er3+ photoluminescence was observed from the films submitted to low-temperature treatment ranging from 600°C to 900°C. An annealing treatment at 1,100°C, used often to form Si nanocrystallites, favors an intense emission in visible spectral range with the maximum peak at about 740 nm. Along with this, a drastic decrease of 1.53-μ m Er3+ photoluminescence emission was detected. The atom probe results demonstrated that the clustering of Er3+ ions upon such high-temperature annealing treatment was the main reason. The diffusion parameters of Si and Er3+ ions as well as a chemical composition of different clusters were also obtained. The films annealed at 1,100°C contain pure spherical Si nanocrystallites, ErSi3O6 clusters, and free Er3+ ions embedded in SiO2 host. The mean size and the density of Si nanocrystallites were found to be 1.3± 0.3 nm and (3.1± 0.2)×1018 Si nanocrystallites·cm−3, respectively. The density of ErSi3O6 clusters was estimated to be (2.0± 0.2)×1018 clusters·cm−3, keeping about 30% of the total Er3+ amount. These Er-rich clusters had a mean radius of about 1.5 nm and demonstrated preferable formation in the vicinity of Si nanocrystallites. More... »

PAGES

39

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1556-276x-8-39

DOI

http://dx.doi.org/10.1186/1556-276x-8-39

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019458833

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23336324


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Groupe de Physique des Mat\u00e9riaux (GPM), Universit\u00e9 et INSA de Rouen, UMR CNRS 6634, Normandie Universit\u00e9, Av. de l\u2019Universit\u00e9, BP 12, 76801, Saint Etienne du Rouvray, France", 
          "id": "http://www.grid.ac/institutes/grid.460771.3", 
          "name": [
            "Groupe de Physique des Mat\u00e9riaux (GPM), Universit\u00e9 et INSA de Rouen, UMR CNRS 6634, Normandie Universit\u00e9, Av. de l\u2019Universit\u00e9, BP 12, 76801, Saint Etienne du Rouvray, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Talbot", 
        "givenName": "Etienne", 
        "id": "sg:person.01152357234.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152357234.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Groupe de Physique des Mat\u00e9riaux (GPM), Universit\u00e9 et INSA de Rouen, UMR CNRS 6634, Normandie Universit\u00e9, Av. de l\u2019Universit\u00e9, BP 12, 76801, Saint Etienne du Rouvray, France", 
          "id": "http://www.grid.ac/institutes/grid.460771.3", 
          "name": [
            "Groupe de Physique des Mat\u00e9riaux (GPM), Universit\u00e9 et INSA de Rouen, UMR CNRS 6634, Normandie Universit\u00e9, Av. de l\u2019Universit\u00e9, BP 12, 76801, Saint Etienne du Rouvray, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lard\u00e9", 
        "givenName": "Rodrigue", 
        "id": "sg:person.013043367547.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013043367547.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Groupe de Physique des Mat\u00e9riaux (GPM), Universit\u00e9 et INSA de Rouen, UMR CNRS 6634, Normandie Universit\u00e9, Av. de l\u2019Universit\u00e9, BP 12, 76801, Saint Etienne du Rouvray, France", 
          "id": "http://www.grid.ac/institutes/grid.460771.3", 
          "name": [
            "Groupe de Physique des Mat\u00e9riaux (GPM), Universit\u00e9 et INSA de Rouen, UMR CNRS 6634, Normandie Universit\u00e9, Av. de l\u2019Universit\u00e9, BP 12, 76801, Saint Etienne du Rouvray, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pareige", 
        "givenName": "Philippe", 
        "id": "sg:person.01035117121.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035117121.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre de Recherche sur les Ions, les Mat\u00e9riaux et la Photonique (CIMAP), CEA/CNRS/ENSICAEN/UCBN, 6 Bd. Mar\u00e9chal Juin, 14050, Caen Cedex 4, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Centre de Recherche sur les Ions, les Mat\u00e9riaux et la Photonique (CIMAP), CEA/CNRS/ENSICAEN/UCBN, 6 Bd. Mar\u00e9chal Juin, 14050, Caen Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khomenkova", 
        "givenName": "Larysa", 
        "id": "sg:person.0777143227.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777143227.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre de Recherche sur les Ions, les Mat\u00e9riaux et la Photonique (CIMAP), CEA/CNRS/ENSICAEN/UCBN, 6 Bd. Mar\u00e9chal Juin, 14050, Caen Cedex 4, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Centre de Recherche sur les Ions, les Mat\u00e9riaux et la Photonique (CIMAP), CEA/CNRS/ENSICAEN/UCBN, 6 Bd. Mar\u00e9chal Juin, 14050, Caen Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hijazi", 
        "givenName": "Khalil", 
        "id": "sg:person.015220506225.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015220506225.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre de Recherche sur les Ions, les Mat\u00e9riaux et la Photonique (CIMAP), CEA/CNRS/ENSICAEN/UCBN, 6 Bd. Mar\u00e9chal Juin, 14050, Caen Cedex 4, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Centre de Recherche sur les Ions, les Mat\u00e9riaux et la Photonique (CIMAP), CEA/CNRS/ENSICAEN/UCBN, 6 Bd. Mar\u00e9chal Juin, 14050, Caen Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gourbilleau", 
        "givenName": "Fabrice", 
        "id": "sg:person.01275733427.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275733427.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjb/e2004-00325-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034390862", 
          "https://doi.org/10.1140/epjb/e2004-00325-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-6-164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012970197", 
          "https://doi.org/10.1186/1556-276x-6-164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/363432a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040909757", 
          "https://doi.org/10.1038/363432a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/proc-669-j3.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067951319", 
          "https://doi.org/10.1557/proc-669-j3.7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-01-21", 
    "datePublishedReg": "2013-01-21", 
    "description": "Photoluminescence spectroscopy and atom probe tomography were used to explore the optical activity and microstructure of Er3+-doped Si-rich SiO2 thin films fabricated by radio-frequency magnetron sputtering. The effect of post-fabrication annealing treatment on the properties of the films was investigated. The evolution of the nanoscale structure upon an annealing treatment was found to control the interrelation between the radiative recombination of the carriers via Si clusters and via 4f shell transitions in Er3+ ions. The most efficient 1.53-\u03bc m Er3+ photoluminescence was observed from the films submitted to low-temperature treatment ranging from 600\u00b0C to 900\u00b0C. An annealing treatment at 1,100\u00b0C, used often to form Si nanocrystallites, favors an intense emission in visible spectral range with the maximum peak at about 740 nm. Along with this, a drastic decrease of 1.53-\u03bc m Er3+ photoluminescence emission was detected. The atom probe results demonstrated that the clustering of Er3+ ions upon such high-temperature annealing treatment was the main reason. The diffusion parameters of Si and Er3+ ions as well as a chemical composition of different clusters were also obtained. The films annealed at 1,100\u00b0C contain pure spherical Si nanocrystallites, ErSi3O6 clusters, and free Er3+ ions embedded in SiO2 host. The mean size and the density of Si nanocrystallites were found to be 1.3\u00b1 0.3 nm and (3.1\u00b1 0.2)\u00d71018 Si nanocrystallites\u00b7cm\u22123, respectively. The density of ErSi3O6 clusters was estimated to be (2.0\u00b1 0.2)\u00d71018 clusters\u00b7cm\u22123, keeping about 30% of the total Er3+ amount. These Er-rich clusters had a mean radius of about 1.5 nm and demonstrated preferable formation in the vicinity of Si nanocrystallites.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1556-276x-8-39", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1037280", 
        "issn": [
          "1931-7573", 
          "1556-276X"
        ], 
        "name": "Nanoscale Research Letters", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "Si nanocrystallites", 
      "annealing treatment", 
      "radio frequency magnetron sputtering", 
      "silicon-rich silica", 
      "high temperature annealing treatment", 
      "visible spectral range", 
      "SiO2 thin films", 
      "atom probe tomography", 
      "atom probe results", 
      "nanoscale structures", 
      "photoluminescence spectroscopy", 
      "optical activity", 
      "shell transitions", 
      "spectral range", 
      "free Er3", 
      "radiative recombination", 
      "SiO2 host", 
      "photoluminescence emission", 
      "magnetron sputtering", 
      "nanoscale evidence", 
      "Si clusters", 
      "probe tomography", 
      "intense emission", 
      "thin films", 
      "Er3", 
      "probe results", 
      "nanocrystallites", 
      "films", 
      "mean size", 
      "ions", 
      "Si", 
      "mean radius", 
      "emission", 
      "diffusion parameters", 
      "preferable formation", 
      "sputtering", 
      "photoluminescence", 
      "maximum peak", 
      "density", 
      "clusters", 
      "spectroscopy", 
      "silica", 
      "chemical composition", 
      "microstructure", 
      "low temperature treatment", 
      "radius", 
      "carriers", 
      "transition", 
      "recombination", 
      "drastic decrease", 
      "main reason", 
      "peak", 
      "vicinity", 
      "size", 
      "properties", 
      "ER", 
      "structure", 
      "evolution", 
      "parameters", 
      "range", 
      "different clusters", 
      "formation", 
      "tomography", 
      "composition", 
      "amount", 
      "clustering", 
      "results", 
      "host", 
      "effect", 
      "activity", 
      "decrease", 
      "reasons", 
      "treatment", 
      "interrelations", 
      "evidence"
    ], 
    "name": "Nanoscale evidence of erbium clustering in Er-doped silicon-rich silica", 
    "pagination": "39", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019458833"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1556-276x-8-39"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23336324"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1556-276x-8-39", 
      "https://app.dimensions.ai/details/publication/pub.1019458833"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_616.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1556-276x-8-39"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-8-39'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-8-39'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-8-39'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-8-39'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      21 PREDICATES      104 URIs      92 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1556-276x-8-39 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ncfd94938616245dbbe4857f7bec8b6f9
4 schema:citation sg:pub.10.1038/363432a0
5 sg:pub.10.1140/epjb/e2004-00325-4
6 sg:pub.10.1186/1556-276x-6-164
7 sg:pub.10.1557/proc-669-j3.7
8 schema:datePublished 2013-01-21
9 schema:datePublishedReg 2013-01-21
10 schema:description Photoluminescence spectroscopy and atom probe tomography were used to explore the optical activity and microstructure of Er3+-doped Si-rich SiO2 thin films fabricated by radio-frequency magnetron sputtering. The effect of post-fabrication annealing treatment on the properties of the films was investigated. The evolution of the nanoscale structure upon an annealing treatment was found to control the interrelation between the radiative recombination of the carriers via Si clusters and via 4f shell transitions in Er3+ ions. The most efficient 1.53-μ m Er3+ photoluminescence was observed from the films submitted to low-temperature treatment ranging from 600°C to 900°C. An annealing treatment at 1,100°C, used often to form Si nanocrystallites, favors an intense emission in visible spectral range with the maximum peak at about 740 nm. Along with this, a drastic decrease of 1.53-μ m Er3+ photoluminescence emission was detected. The atom probe results demonstrated that the clustering of Er3+ ions upon such high-temperature annealing treatment was the main reason. The diffusion parameters of Si and Er3+ ions as well as a chemical composition of different clusters were also obtained. The films annealed at 1,100°C contain pure spherical Si nanocrystallites, ErSi3O6 clusters, and free Er3+ ions embedded in SiO2 host. The mean size and the density of Si nanocrystallites were found to be 1.3± 0.3 nm and (3.1± 0.2)×1018 Si nanocrystallites·cm−3, respectively. The density of ErSi3O6 clusters was estimated to be (2.0± 0.2)×1018 clusters·cm−3, keeping about 30% of the total Er3+ amount. These Er-rich clusters had a mean radius of about 1.5 nm and demonstrated preferable formation in the vicinity of Si nanocrystallites.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf Nbcf4ecddb1144b28a6fe70e8561ab83d
14 Nd63581a7f618489ea6d6ec19e981fee2
15 sg:journal.1037280
16 schema:keywords ER
17 Er3
18 Si
19 Si clusters
20 Si nanocrystallites
21 SiO2 host
22 SiO2 thin films
23 activity
24 amount
25 annealing treatment
26 atom probe results
27 atom probe tomography
28 carriers
29 chemical composition
30 clustering
31 clusters
32 composition
33 decrease
34 density
35 different clusters
36 diffusion parameters
37 drastic decrease
38 effect
39 emission
40 evidence
41 evolution
42 films
43 formation
44 free Er3
45 high temperature annealing treatment
46 host
47 intense emission
48 interrelations
49 ions
50 low temperature treatment
51 magnetron sputtering
52 main reason
53 maximum peak
54 mean radius
55 mean size
56 microstructure
57 nanocrystallites
58 nanoscale evidence
59 nanoscale structures
60 optical activity
61 parameters
62 peak
63 photoluminescence
64 photoluminescence emission
65 photoluminescence spectroscopy
66 preferable formation
67 probe results
68 probe tomography
69 properties
70 radiative recombination
71 radio frequency magnetron sputtering
72 radius
73 range
74 reasons
75 recombination
76 results
77 shell transitions
78 silica
79 silicon-rich silica
80 size
81 spectral range
82 spectroscopy
83 sputtering
84 structure
85 thin films
86 tomography
87 transition
88 treatment
89 vicinity
90 visible spectral range
91 schema:name Nanoscale evidence of erbium clustering in Er-doped silicon-rich silica
92 schema:pagination 39
93 schema:productId N6d81ac3606f645c49695316d8b557ae6
94 Nbdfc82428e7b4940b5a125d15d68e92c
95 Ndfdbcc86751747eca82a3ef9ed3f25de
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019458833
97 https://doi.org/10.1186/1556-276x-8-39
98 schema:sdDatePublished 2022-10-01T06:39
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N53e3e707981c4909865ec6b938539a49
101 schema:url https://doi.org/10.1186/1556-276x-8-39
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N53e3e707981c4909865ec6b938539a49 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N6d81ac3606f645c49695316d8b557ae6 schema:name doi
108 schema:value 10.1186/1556-276x-8-39
109 rdf:type schema:PropertyValue
110 N7d357885755d44ed92cf2026e9ceb8be rdf:first sg:person.013043367547.56
111 rdf:rest Nf4ac5656ba5043a48aa022f695eda314
112 N8f29064b8bab4fe1aa28831102ebf034 rdf:first sg:person.015220506225.74
113 rdf:rest Ndc3c7b693bdd4c64b9ce38626cfd5fcb
114 Nae11f2f35a484000b3f016df8863885d rdf:first sg:person.0777143227.34
115 rdf:rest N8f29064b8bab4fe1aa28831102ebf034
116 Nbcf4ecddb1144b28a6fe70e8561ab83d schema:volumeNumber 8
117 rdf:type schema:PublicationVolume
118 Nbdfc82428e7b4940b5a125d15d68e92c schema:name dimensions_id
119 schema:value pub.1019458833
120 rdf:type schema:PropertyValue
121 Ncfd94938616245dbbe4857f7bec8b6f9 rdf:first sg:person.01152357234.92
122 rdf:rest N7d357885755d44ed92cf2026e9ceb8be
123 Nd63581a7f618489ea6d6ec19e981fee2 schema:issueNumber 1
124 rdf:type schema:PublicationIssue
125 Ndc3c7b693bdd4c64b9ce38626cfd5fcb rdf:first sg:person.01275733427.02
126 rdf:rest rdf:nil
127 Ndfdbcc86751747eca82a3ef9ed3f25de schema:name pubmed_id
128 schema:value 23336324
129 rdf:type schema:PropertyValue
130 Nf4ac5656ba5043a48aa022f695eda314 rdf:first sg:person.01035117121.02
131 rdf:rest Nae11f2f35a484000b3f016df8863885d
132 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
133 schema:name Engineering
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
136 schema:name Materials Engineering
137 rdf:type schema:DefinedTerm
138 sg:journal.1037280 schema:issn 1556-276X
139 1931-7573
140 schema:name Nanoscale Research Letters
141 schema:publisher Springer Nature
142 rdf:type schema:Periodical
143 sg:person.01035117121.02 schema:affiliation grid-institutes:grid.460771.3
144 schema:familyName Pareige
145 schema:givenName Philippe
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035117121.02
147 rdf:type schema:Person
148 sg:person.01152357234.92 schema:affiliation grid-institutes:grid.460771.3
149 schema:familyName Talbot
150 schema:givenName Etienne
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152357234.92
152 rdf:type schema:Person
153 sg:person.01275733427.02 schema:affiliation grid-institutes:None
154 schema:familyName Gourbilleau
155 schema:givenName Fabrice
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275733427.02
157 rdf:type schema:Person
158 sg:person.013043367547.56 schema:affiliation grid-institutes:grid.460771.3
159 schema:familyName Lardé
160 schema:givenName Rodrigue
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013043367547.56
162 rdf:type schema:Person
163 sg:person.015220506225.74 schema:affiliation grid-institutes:None
164 schema:familyName Hijazi
165 schema:givenName Khalil
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015220506225.74
167 rdf:type schema:Person
168 sg:person.0777143227.34 schema:affiliation grid-institutes:None
169 schema:familyName Khomenkova
170 schema:givenName Larysa
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777143227.34
172 rdf:type schema:Person
173 sg:pub.10.1038/363432a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040909757
174 https://doi.org/10.1038/363432a0
175 rdf:type schema:CreativeWork
176 sg:pub.10.1140/epjb/e2004-00325-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034390862
177 https://doi.org/10.1140/epjb/e2004-00325-4
178 rdf:type schema:CreativeWork
179 sg:pub.10.1186/1556-276x-6-164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012970197
180 https://doi.org/10.1186/1556-276x-6-164
181 rdf:type schema:CreativeWork
182 sg:pub.10.1557/proc-669-j3.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067951319
183 https://doi.org/10.1557/proc-669-j3.7
184 rdf:type schema:CreativeWork
185 grid-institutes:None schema:alternateName Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), CEA/CNRS/ENSICAEN/UCBN, 6 Bd. Maréchal Juin, 14050, Caen Cedex 4, France
186 schema:name Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), CEA/CNRS/ENSICAEN/UCBN, 6 Bd. Maréchal Juin, 14050, Caen Cedex 4, France
187 rdf:type schema:Organization
188 grid-institutes:grid.460771.3 schema:alternateName Groupe de Physique des Matériaux (GPM), Université et INSA de Rouen, UMR CNRS 6634, Normandie Université, Av. de l’Université, BP 12, 76801, Saint Etienne du Rouvray, France
189 schema:name Groupe de Physique des Matériaux (GPM), Université et INSA de Rouen, UMR CNRS 6634, Normandie Université, Av. de l’Université, BP 12, 76801, Saint Etienne du Rouvray, France
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...