Diffractive properties of imaginary-part photonic crystal slab View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Haoxiang Jiang, Jingfeng Liu, Gengyan Chen, Xue-Hua Wang

ABSTRACT

The diffraction spectra of Imaginary-Part Photonic Crystal (IPPC) slabs are analyzed by using Scattering-Matrix Method. By investigating the thickness dependence of the diffraction, we find the remarkable red shift of central wavelength of diffraction spectrum, which obviously distinguishes from the phenomenon of spectral hole. We observe that diffraction efficiency can be enhanced more than twentyfold by optimizing the geometry parameters. These imply that the diffraction spectra of the IPPC slab can be controlled at will and used to guide the design to achieve useful nanoscale devices. More... »

PAGES

335

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1556-276x-7-335

DOI

http://dx.doi.org/10.1186/1556-276x-7-335

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013350944

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22720871


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University", 
          "id": "https://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, 510275, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Haoxiang", 
        "id": "sg:person.01342752347.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342752347.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "South China Agricultural University", 
          "id": "https://www.grid.ac/institutes/grid.20561.30", 
          "name": [
            "College of Science, South China Agriculture University, 510642, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jingfeng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University", 
          "id": "https://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, 510275, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Gengyan", 
        "id": "sg:person.0700713066.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700713066.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sun Yat-sen University", 
          "id": "https://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, 510275, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xue-Hua", 
        "id": "sg:person.0726605403.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726605403.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adma.200903938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003248981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200903938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003248981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009771888", 
          "https://doi.org/10.1038/nature02772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009771888", 
          "https://doi.org/10.1038/nature02772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013300417", 
          "https://doi.org/10.1038/nphoton.2010.286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.007222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027130307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.043839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030416604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.043839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030416604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042120164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042120164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.3647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046355320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.3647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046355320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.82.063813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046541117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.82.063813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046541117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/386143a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048573638", 
          "https://doi.org/10.1038/386143a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/386143a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048573638", 
          "https://doi.org/10.1038/386143a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.004938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050869032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.004938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050869032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.183601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052326396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.183601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052326396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1406965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057703513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.2610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060593913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.2610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060593913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.235112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060603450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.235112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060603450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.035324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.035324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.19.001136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065159799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.36.000181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065229619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opex.13.003230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065243971"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": " The diffraction spectra of Imaginary-Part Photonic Crystal (IPPC) slabs are analyzed by using Scattering-Matrix Method. By investigating the thickness dependence of the diffraction, we find the remarkable red shift of central wavelength of diffraction spectrum, which obviously distinguishes from the phenomenon of spectral hole. We observe that diffraction efficiency can be enhanced more than twentyfold by optimizing the geometry parameters. These imply that the diffraction spectra of the IPPC slab can be controlled at will and used to guide the design to achieve useful nanoscale devices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1556-276x-7-335", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4955902", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037280", 
        "issn": [
          "1931-7573", 
          "1556-276X"
        ], 
        "name": "Nanoscale Research Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Diffractive properties of imaginary-part photonic crystal slab", 
    "pagination": "335", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3f99dbf1774ffff114af8e440d5b5ba43481c5bfd61393a2ba8fc715b56020a7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22720871"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101279750"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1556-276x-7-335"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013350944"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1556-276x-7-335", 
      "https://app.dimensions.ai/details/publication/pub.1013350944"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1556-276X-7-335"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-7-335'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-7-335'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-7-335'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-7-335'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      49 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1556-276x-7-335 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Nbe21b034e34d4ef8a443b92bc04171e1
4 schema:citation sg:pub.10.1038/386143a0
5 sg:pub.10.1038/nature02772
6 sg:pub.10.1038/nphoton.2010.286
7 https://doi.org/10.1002/adma.200903938
8 https://doi.org/10.1063/1.1406965
9 https://doi.org/10.1103/physreva.82.063813
10 https://doi.org/10.1103/physreva.84.043839
11 https://doi.org/10.1103/physrevb.60.2610
12 https://doi.org/10.1103/physrevb.65.235112
13 https://doi.org/10.1103/physrevb.77.035324
14 https://doi.org/10.1103/physrevlett.58.2059
15 https://doi.org/10.1103/physrevlett.58.2486
16 https://doi.org/10.1103/physrevlett.77.3787
17 https://doi.org/10.1103/physrevlett.81.3647
18 https://doi.org/10.1103/physrevlett.99.183601
19 https://doi.org/10.1364/josaa.19.001136
20 https://doi.org/10.1364/oe.17.004938
21 https://doi.org/10.1364/oe.19.007222
22 https://doi.org/10.1364/ol.36.000181
23 https://doi.org/10.1364/opex.13.003230
24 schema:datePublished 2012-12
25 schema:datePublishedReg 2012-12-01
26 schema:description The diffraction spectra of Imaginary-Part Photonic Crystal (IPPC) slabs are analyzed by using Scattering-Matrix Method. By investigating the thickness dependence of the diffraction, we find the remarkable red shift of central wavelength of diffraction spectrum, which obviously distinguishes from the phenomenon of spectral hole. We observe that diffraction efficiency can be enhanced more than twentyfold by optimizing the geometry parameters. These imply that the diffraction spectra of the IPPC slab can be controlled at will and used to guide the design to achieve useful nanoscale devices.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N3f180561d71049d0b21e26d96ef36155
31 Nbd637522dcfe4e00a8534942564a281a
32 sg:journal.1037280
33 schema:name Diffractive properties of imaginary-part photonic crystal slab
34 schema:pagination 335
35 schema:productId N17da32b6cc984039bf69cd92c0302457
36 N53373dca7e824e8693a155c78077e6ad
37 N80e17a2ee7144897b9755b6d3610fd57
38 N969c25b5001c47ccb0bf000040de9288
39 Na096a18982254298a9482f9742302cac
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013350944
41 https://doi.org/10.1186/1556-276x-7-335
42 schema:sdDatePublished 2019-04-11T02:00
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Ncfc50c262df84bd683712bc5876aeb95
45 schema:url http://link.springer.com/10.1186%2F1556-276X-7-335
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N0864e2ee6d3241b1a71f7201a5c0fc9f rdf:first N90c8fb21d0bd4332a0090ea7fe17e9cf
50 rdf:rest N3d30c13fa4ad4253b16495356728e8da
51 N17da32b6cc984039bf69cd92c0302457 schema:name dimensions_id
52 schema:value pub.1013350944
53 rdf:type schema:PropertyValue
54 N3d30c13fa4ad4253b16495356728e8da rdf:first sg:person.0700713066.73
55 rdf:rest N4c4b220adc5944ccb43f568ffe228296
56 N3f180561d71049d0b21e26d96ef36155 schema:volumeNumber 7
57 rdf:type schema:PublicationVolume
58 N4c4b220adc5944ccb43f568ffe228296 rdf:first sg:person.0726605403.23
59 rdf:rest rdf:nil
60 N53373dca7e824e8693a155c78077e6ad schema:name doi
61 schema:value 10.1186/1556-276x-7-335
62 rdf:type schema:PropertyValue
63 N80e17a2ee7144897b9755b6d3610fd57 schema:name nlm_unique_id
64 schema:value 101279750
65 rdf:type schema:PropertyValue
66 N90c8fb21d0bd4332a0090ea7fe17e9cf schema:affiliation https://www.grid.ac/institutes/grid.20561.30
67 schema:familyName Liu
68 schema:givenName Jingfeng
69 rdf:type schema:Person
70 N969c25b5001c47ccb0bf000040de9288 schema:name pubmed_id
71 schema:value 22720871
72 rdf:type schema:PropertyValue
73 Na096a18982254298a9482f9742302cac schema:name readcube_id
74 schema:value 3f99dbf1774ffff114af8e440d5b5ba43481c5bfd61393a2ba8fc715b56020a7
75 rdf:type schema:PropertyValue
76 Nbd637522dcfe4e00a8534942564a281a schema:issueNumber 1
77 rdf:type schema:PublicationIssue
78 Nbe21b034e34d4ef8a443b92bc04171e1 rdf:first sg:person.01342752347.11
79 rdf:rest N0864e2ee6d3241b1a71f7201a5c0fc9f
80 Ncfc50c262df84bd683712bc5876aeb95 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
83 schema:name Physical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
86 schema:name Optical Physics
87 rdf:type schema:DefinedTerm
88 sg:grant.4955902 http://pending.schema.org/fundedItem sg:pub.10.1186/1556-276x-7-335
89 rdf:type schema:MonetaryGrant
90 sg:journal.1037280 schema:issn 1556-276X
91 1931-7573
92 schema:name Nanoscale Research Letters
93 rdf:type schema:Periodical
94 sg:person.01342752347.11 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
95 schema:familyName Jiang
96 schema:givenName Haoxiang
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342752347.11
98 rdf:type schema:Person
99 sg:person.0700713066.73 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
100 schema:familyName Chen
101 schema:givenName Gengyan
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700713066.73
103 rdf:type schema:Person
104 sg:person.0726605403.23 schema:affiliation https://www.grid.ac/institutes/grid.12981.33
105 schema:familyName Wang
106 schema:givenName Xue-Hua
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726605403.23
108 rdf:type schema:Person
109 sg:pub.10.1038/386143a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048573638
110 https://doi.org/10.1038/386143a0
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/nature02772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009771888
113 https://doi.org/10.1038/nature02772
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/nphoton.2010.286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013300417
116 https://doi.org/10.1038/nphoton.2010.286
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/adma.200903938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003248981
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1063/1.1406965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057703513
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physreva.82.063813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046541117
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physreva.84.043839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030416604
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevb.60.2610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060593913
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevb.65.235112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060603450
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevb.77.035324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060623579
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevlett.58.2059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042120164
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevlett.58.2486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795108
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevlett.77.3787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814161
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevlett.81.3647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046355320
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.99.183601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052326396
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1364/josaa.19.001136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065159799
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1364/oe.17.004938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050869032
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1364/oe.19.007222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027130307
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1364/ol.36.000181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065229619
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1364/opex.13.003230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065243971
151 rdf:type schema:CreativeWork
152 https://www.grid.ac/institutes/grid.12981.33 schema:alternateName Sun Yat-sen University
153 schema:name State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, 510275, Guangzhou, China
154 rdf:type schema:Organization
155 https://www.grid.ac/institutes/grid.20561.30 schema:alternateName South China Agricultural University
156 schema:name College of Science, South China Agriculture University, 510642, Guangzhou, China
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...