Layer-dependent nanoscale electrical properties of graphene studied by conductive scanning probe microscopy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-12

AUTHORS

Shihua Zhao, Yi Lv, Xinju Yang

ABSTRACT

The nanoscale electrical properties of single-layer graphene (SLG), bilayer graphene (BLG) and multilayer graphene (MLG) are studied by scanning capacitance microscopy (SCM) and electrostatic force microscopy (EFM). The quantum capacitance of graphene deduced from SCM results is found to increase with the layer number (n) at the sample bias of 0 V but decreases with n at -3 V. Furthermore, the quantum capacitance increases very rapidly with the gate voltage for SLG, but this increase is much slowed down when n becomes greater. On the other hand, the magnitude of the EFM phase shift with respect to the SiO2 substrate increases with n at the sample bias of +2 V but decreases with n at -2 V. The difference in both quantum capacitance and EFM phase shift is significant between SLG and BLG but becomes much weaker between MLGs with a different n. The layer-dependent quantum capacitance behaviors of graphene could be attributed to their layer-dependent electronic structure as well as the layer-varied dependence on gate voltage, while the layer-dependent EFM phase shift is caused by not only the layer-dependent surface potential but also the layer-dependent capacitance derivation. More... »

PAGES

498

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1556-276x-6-498

DOI

http://dx.doi.org/10.1186/1556-276x-6-498

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029167335

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21851595


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "State Key Laboratory of Surface Physics, Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Shihua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "State Key Laboratory of Surface Physics, Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lv", 
        "givenName": "Yi", 
        "id": "sg:person.01002016360.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002016360.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "State Key Laboratory of Surface Physics, Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Xinju", 
        "id": "sg:person.0602025146.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602025146.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/b716536f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004766845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011423110", 
          "https://doi.org/10.1038/nnano.2010.89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.89", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011423110", 
          "https://doi.org/10.1038/nnano.2010.89"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1144359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014941386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1150878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017724475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/20/44/445704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020661672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/20/44/445704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020661672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021599981", 
          "https://doi.org/10.1038/nmat2968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2768624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021602424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3391670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021926583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl061420a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022969717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl061420a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022969717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/71/7/076501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028585770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2898501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032451140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035864675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035864675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn200026e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036307174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl901572a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044112160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl901572a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044112160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048452401", 
          "https://doi.org/10.1038/nphys245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048452401", 
          "https://doi.org/10.1038/nphys245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.200982968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049273231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.200982968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049273231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2776887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049832147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052791836", 
          "https://doi.org/10.1038/nmat1849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl8009044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl8009044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl801823n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl801823n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9038778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl9038778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2336104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057850060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3106057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057912457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3269597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057928347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3378684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057944123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.206802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.206802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.3081890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062173862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.3081890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062173862"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": " The nanoscale electrical properties of single-layer graphene (SLG), bilayer graphene (BLG) and multilayer graphene (MLG) are studied by scanning capacitance microscopy (SCM) and electrostatic force microscopy (EFM). The quantum capacitance of graphene deduced from SCM results is found to increase with the layer number (n) at the sample bias of 0 V but decreases with n at -3 V. Furthermore, the quantum capacitance increases very rapidly with the gate voltage for SLG, but this increase is much slowed down when n becomes greater. On the other hand, the magnitude of the EFM phase shift with respect to the SiO2 substrate increases with n at the sample bias of +2 V but decreases with n at -2 V. The difference in both quantum capacitance and EFM phase shift is significant between SLG and BLG but becomes much weaker between MLGs with a different n. The layer-dependent quantum capacitance behaviors of graphene could be attributed to their layer-dependent electronic structure as well as the layer-varied dependence on gate voltage, while the layer-dependent EFM phase shift is caused by not only the layer-dependent surface potential but also the layer-dependent capacitance derivation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1556-276x-6-498", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4966945", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1037280", 
        "issn": [
          "1931-7573", 
          "1556-276X"
        ], 
        "name": "Nanoscale Research Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Layer-dependent nanoscale electrical properties of graphene studied by conductive scanning probe microscopy", 
    "pagination": "498", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8af2ed77aa1e990b07dfa1cd32dacfb3d57f669f499a98cecdb952ea51860b42"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21851595"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101279750"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1556-276x-6-498"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029167335"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1556-276x-6-498", 
      "https://app.dimensions.ai/details/publication/pub.1029167335"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1556-276X-6-498"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-6-498'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-6-498'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-6-498'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1556-276x-6-498'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1556-276x-6-498 schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author N0d0f5726f3a44d80bff3858e70d836ca
4 schema:citation sg:pub.10.1038/nature04235
5 sg:pub.10.1038/nmat1849
6 sg:pub.10.1038/nmat2968
7 sg:pub.10.1038/nnano.2010.89
8 sg:pub.10.1038/nphys245
9 https://doi.org/10.1002/pssb.200982968
10 https://doi.org/10.1021/nl061420a
11 https://doi.org/10.1021/nl8009044
12 https://doi.org/10.1021/nl801823n
13 https://doi.org/10.1021/nl901572a
14 https://doi.org/10.1021/nl9038778
15 https://doi.org/10.1021/nn200026e
16 https://doi.org/10.1039/b716536f
17 https://doi.org/10.1063/1.2336104
18 https://doi.org/10.1063/1.2768624
19 https://doi.org/10.1063/1.2776887
20 https://doi.org/10.1063/1.2898501
21 https://doi.org/10.1063/1.3106057
22 https://doi.org/10.1063/1.3269597
23 https://doi.org/10.1063/1.3378684
24 https://doi.org/10.1063/1.3391670
25 https://doi.org/10.1088/0034-4885/71/7/076501
26 https://doi.org/10.1088/0957-4484/20/44/445704
27 https://doi.org/10.1103/physrevlett.105.136801
28 https://doi.org/10.1103/physrevlett.98.206802
29 https://doi.org/10.1116/1.3081890
30 https://doi.org/10.1126/science.1102896
31 https://doi.org/10.1126/science.1144359
32 https://doi.org/10.1126/science.1150878
33 schema:datePublished 2011-12
34 schema:datePublishedReg 2011-12-01
35 schema:description The nanoscale electrical properties of single-layer graphene (SLG), bilayer graphene (BLG) and multilayer graphene (MLG) are studied by scanning capacitance microscopy (SCM) and electrostatic force microscopy (EFM). The quantum capacitance of graphene deduced from SCM results is found to increase with the layer number (n) at the sample bias of 0 V but decreases with n at -3 V. Furthermore, the quantum capacitance increases very rapidly with the gate voltage for SLG, but this increase is much slowed down when n becomes greater. On the other hand, the magnitude of the EFM phase shift with respect to the SiO2 substrate increases with n at the sample bias of +2 V but decreases with n at -2 V. The difference in both quantum capacitance and EFM phase shift is significant between SLG and BLG but becomes much weaker between MLGs with a different n. The layer-dependent quantum capacitance behaviors of graphene could be attributed to their layer-dependent electronic structure as well as the layer-varied dependence on gate voltage, while the layer-dependent EFM phase shift is caused by not only the layer-dependent surface potential but also the layer-dependent capacitance derivation.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N6ec71159b90147a3a369a36853b82dc8
40 Ne8c4308161c148b198832d3d755706f5
41 sg:journal.1037280
42 schema:name Layer-dependent nanoscale electrical properties of graphene studied by conductive scanning probe microscopy
43 schema:pagination 498
44 schema:productId N01d987c9e268476fb78c631bd291b0fa
45 N067143719fb5473594df29fefed2fc75
46 N729ff8402ece48ee97f2e2bbd0ec62e1
47 N81b917f33ade4606991e9689da3fa4f5
48 Nf0ac2328a1ed453cbede945f74fcbb6a
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029167335
50 https://doi.org/10.1186/1556-276x-6-498
51 schema:sdDatePublished 2019-04-10T21:37
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nb6fb27bd72a841bc89c4c361060fc10c
54 schema:url http://link.springer.com/10.1186%2F1556-276X-6-498
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N01d987c9e268476fb78c631bd291b0fa schema:name pubmed_id
59 schema:value 21851595
60 rdf:type schema:PropertyValue
61 N067143719fb5473594df29fefed2fc75 schema:name dimensions_id
62 schema:value pub.1029167335
63 rdf:type schema:PropertyValue
64 N0d0f5726f3a44d80bff3858e70d836ca rdf:first N61de5f0e62014746b084c33d7f7b1c50
65 rdf:rest Neb311e1a12534d73a18257ebb5a3b01e
66 N61de5f0e62014746b084c33d7f7b1c50 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
67 schema:familyName Zhao
68 schema:givenName Shihua
69 rdf:type schema:Person
70 N6ec71159b90147a3a369a36853b82dc8 schema:volumeNumber 6
71 rdf:type schema:PublicationVolume
72 N729ff8402ece48ee97f2e2bbd0ec62e1 schema:name nlm_unique_id
73 schema:value 101279750
74 rdf:type schema:PropertyValue
75 N81b917f33ade4606991e9689da3fa4f5 schema:name doi
76 schema:value 10.1186/1556-276x-6-498
77 rdf:type schema:PropertyValue
78 Nb6fb27bd72a841bc89c4c361060fc10c schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Ne8c4308161c148b198832d3d755706f5 schema:issueNumber 1
81 rdf:type schema:PublicationIssue
82 Ne94cfc02c3dc4c358004962a8ef315c8 rdf:first sg:person.0602025146.46
83 rdf:rest rdf:nil
84 Neb311e1a12534d73a18257ebb5a3b01e rdf:first sg:person.01002016360.50
85 rdf:rest Ne94cfc02c3dc4c358004962a8ef315c8
86 Nf0ac2328a1ed453cbede945f74fcbb6a schema:name readcube_id
87 schema:value 8af2ed77aa1e990b07dfa1cd32dacfb3d57f669f499a98cecdb952ea51860b42
88 rdf:type schema:PropertyValue
89 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
90 schema:name Technology
91 rdf:type schema:DefinedTerm
92 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
93 schema:name Nanotechnology
94 rdf:type schema:DefinedTerm
95 sg:grant.4966945 http://pending.schema.org/fundedItem sg:pub.10.1186/1556-276x-6-498
96 rdf:type schema:MonetaryGrant
97 sg:journal.1037280 schema:issn 1556-276X
98 1931-7573
99 schema:name Nanoscale Research Letters
100 rdf:type schema:Periodical
101 sg:person.01002016360.50 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
102 schema:familyName Lv
103 schema:givenName Yi
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002016360.50
105 rdf:type schema:Person
106 sg:person.0602025146.46 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
107 schema:familyName Yang
108 schema:givenName Xinju
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602025146.46
110 rdf:type schema:Person
111 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
112 https://doi.org/10.1038/nature04235
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
115 https://doi.org/10.1038/nmat1849
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nmat2968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021599981
118 https://doi.org/10.1038/nmat2968
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/nnano.2010.89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011423110
121 https://doi.org/10.1038/nnano.2010.89
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/nphys245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048452401
124 https://doi.org/10.1038/nphys245
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/pssb.200982968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049273231
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1021/nl061420a schema:sameAs https://app.dimensions.ai/details/publication/pub.1022969717
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1021/nl8009044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221220
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1021/nl801823n schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221414
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1021/nl901572a schema:sameAs https://app.dimensions.ai/details/publication/pub.1044112160
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1021/nl9038778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222325
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1021/nn200026e schema:sameAs https://app.dimensions.ai/details/publication/pub.1036307174
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1039/b716536f schema:sameAs https://app.dimensions.ai/details/publication/pub.1004766845
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.2336104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057850060
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1063/1.2768624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021602424
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.2776887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049832147
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1063/1.2898501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032451140
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1063/1.3106057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057912457
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1063/1.3269597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057928347
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.3378684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057944123
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.3391670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021926583
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1088/0034-4885/71/7/076501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028585770
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1088/0957-4484/20/44/445704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020661672
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.105.136801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035864675
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevlett.98.206802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834060
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1116/1.3081890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062173862
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1126/science.1144359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014941386
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1126/science.1150878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017724475
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.8547.e schema:alternateName Fudan University
175 schema:name State Key Laboratory of Surface Physics, Fudan University, 200433, Shanghai, China
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...