Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-06-10

AUTHORS

Maciej W Garbowski, John-Paul Carpenter, Gillian Smith, Michael Roughton, Mohammed H Alam, Taigang He, Dudley J Pennell, John B Porter

ABSTRACT

BackgroundThere is a need to standardise non-invasive measurements of liver iron concentrations (LIC) so clear inferences can be drawn about body iron levels that are associated with hepatic and extra-hepatic complications of iron overload. Since the first demonstration of an inverse relationship between biopsy LIC and liver magnetic resonance (MR) using a proof-of-concept T2* sequence, MR technology has advanced dramatically with a shorter minimum echo-time, closer inter-echo spacing and constant repetition time. These important advances allow more accurate calculation of liver T2* especially in patients with high LIC.MethodsHere, we used an optimised liver T2* sequence calibrated against 50 liver biopsy samples on 25 patients with transfusional haemosiderosis using ordinary least squares linear regression, and assessed the method reproducibility in 96 scans over an LIC range up to 42 mg/g dry weight (dw) using Bland-Altman plots. Using mixed model linear regression we compared the new T2*-LIC with R2-LIC (Ferriscan) on 92 scans in 54 patients with transfusional haemosiderosis and examined method agreement using Bland-Altman approach.ResultsStrong linear correlation between ln(T2*) and ln(LIC) led to the calibration equation LIC = 31.94(T2*)-1.014. This yielded LIC values approximately 2.2 times higher than the proof-of-concept T2* method. Comparing this new T2*-LIC with the R2-LIC (Ferriscan) technique in 92 scans, we observed a close relationship between the two methods for values up to 10 mg/g dw, however the method agreement was poor.ConclusionsNew calibration of T2* against liver biopsy estimates LIC in a reproducible way, correcting the proof-of-concept calibration by 2.2 times. Due to poor agreement, both methods should be used separately to diagnose or rule out liver iron overload in patients with increased ferritin. More... »

PAGES

40

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1532-429x-16-40

DOI

http://dx.doi.org/10.1186/1532-429x-16-40

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021796480

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24915987


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Benzoates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Deferasirox", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemosiderosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iron", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iron Chelating Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Least-Squares Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observer Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transfusion Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triazoles", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University College London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Haematology Department, University College London Hospitals, London, UK", 
            "University College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garbowski", 
        "givenName": "Maciej W", 
        "id": "sg:person.01326614511.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326614511.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "NIHR Cardiovascular BRU, Royal Brompton Hospital, London, UK", 
            "Imperial College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carpenter", 
        "givenName": "John-Paul", 
        "id": "sg:person.014261330412.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014261330412.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "NIHR Cardiovascular BRU, Royal Brompton Hospital, London, UK", 
            "Imperial College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Gillian", 
        "id": "sg:person.010214533504.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010214533504.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal College of Physicians, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.437479.a", 
          "name": [
            "Royal College of Physicians, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roughton", 
        "givenName": "Michael", 
        "id": "sg:person.0652027413.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652027413.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "NIHR Cardiovascular BRU, Royal Brompton Hospital, London, UK", 
            "Imperial College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alam", 
        "givenName": "Mohammed H", 
        "id": "sg:person.01176217627.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176217627.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiovascular Sciences Research Centre, St George\u2019s University of London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.264200.2", 
          "name": [
            "NIHR Cardiovascular BRU, Royal Brompton Hospital, London, UK", 
            "Cardiovascular Sciences Research Centre, St George\u2019s University of London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Taigang", 
        "id": "sg:person.0654357451.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654357451.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "NIHR Cardiovascular BRU, Royal Brompton Hospital, London, UK", 
            "Imperial College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pennell", 
        "givenName": "Dudley J", 
        "id": "sg:person.0637550422.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637550422.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Haematology Department, University College London Hospitals, London, UK", 
            "University College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Porter", 
        "givenName": "John B", 
        "id": "sg:person.01022540131.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022540131.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1532-429x-10-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031833758", 
          "https://doi.org/10.1186/1532-429x-10-11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00277-012-1588-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019920724", 
          "https://doi.org/10.1007/s00277-012-1588-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-010-1596-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015255205", 
          "https://doi.org/10.1007/s00247-010-1596-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-06-10", 
    "datePublishedReg": "2014-06-10", 
    "description": "BackgroundThere is a need to standardise non-invasive measurements of liver iron concentrations (LIC) so clear inferences can be drawn about body iron levels that are associated with hepatic and extra-hepatic complications of iron overload. Since the first demonstration of an inverse relationship between biopsy LIC and liver magnetic resonance (MR) using a proof-of-concept T2* sequence, MR technology has advanced dramatically with a shorter minimum echo-time, closer inter-echo spacing and constant repetition time. These important advances allow more accurate calculation of liver T2* especially in patients with high LIC.MethodsHere, we used an optimised liver T2* sequence calibrated against 50 liver biopsy samples on 25 patients with transfusional haemosiderosis using ordinary least squares linear regression, and assessed the method reproducibility in 96 scans over an LIC range up to 42\u00a0mg/g dry weight (dw) using Bland-Altman plots. Using mixed model linear regression we compared the new T2*-LIC with R2-LIC (Ferriscan) on 92 scans in 54 patients with transfusional haemosiderosis and examined method agreement using Bland-Altman approach.ResultsStrong linear correlation between ln(T2*) and ln(LIC) led to the calibration equation LIC = 31.94(T2*)-1.014. This yielded LIC values approximately 2.2 times higher than the proof-of-concept T2* method. Comparing this new T2*-LIC with the R2-LIC (Ferriscan) technique in 92 scans, we observed a close relationship between the two methods for values up to 10\u00a0mg/g dw, however the method agreement was poor.ConclusionsNew calibration of T2* against liver biopsy estimates LIC in a reproducible way, correcting the proof-of-concept calibration by 2.2 times. Due to poor agreement, both methods should be used separately to diagnose or rule out liver iron overload in patients with increased ferritin.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1532-429x-16-40", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5139010", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "liver iron concentration", 
      "transfusional haemosiderosis", 
      "iron overload", 
      "new T2", 
      "liver T2", 
      "extra-hepatic complications", 
      "higher liver iron concentrations", 
      "liver biopsy samples", 
      "liver iron overload", 
      "liver magnetic resonance", 
      "body iron levels", 
      "mixed model linear regression", 
      "magnetic resonance", 
      "Bland-Altman plots", 
      "method agreement", 
      "biopsy samples", 
      "patients", 
      "Bland-Altman approach", 
      "non-invasive measurement", 
      "iron levels", 
      "LIC values", 
      "haemosiderosis", 
      "model linear regression", 
      "scans", 
      "iron concentration", 
      "inverse relationship", 
      "T2", 
      "inter-echo spacing", 
      "poor agreement", 
      "overload", 
      "ResultsStrong", 
      "important advances", 
      "linear regression", 
      "complications", 
      "biopsy", 
      "regression", 
      "BackgroundThere", 
      "first demonstration", 
      "ferritin", 
      "FerriScan", 
      "MR technology", 
      "constant repetition time", 
      "concentration", 
      "repetition time", 
      "MethodsHere", 
      "close relationship", 
      "time", 
      "levels", 
      "clear inferences", 
      "weight", 
      "relationship", 
      "reproducible way", 
      "correlation", 
      "need", 
      "advances", 
      "method reproducibility", 
      "samples", 
      "values", 
      "reproducibility", 
      "method", 
      "demonstration", 
      "dry weight", 
      "comparison", 
      "resonance", 
      "sequence", 
      "DW", 
      "technique", 
      "measurements", 
      "proof", 
      "approach", 
      "range", 
      "agreement", 
      "ordinary least squares", 
      "way", 
      "plots", 
      "calibration", 
      "estimation", 
      "squares", 
      "technology", 
      "inference", 
      "least squares", 
      "more accurate calculations", 
      "accurate calculation", 
      "spacing", 
      "calculations"
    ], 
    "name": "Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan", 
    "pagination": "40", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021796480"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1532-429x-16-40"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24915987"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1532-429x-16-40", 
      "https://app.dimensions.ai/details/publication/pub.1021796480"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_646.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1532-429x-16-40"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-16-40'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-16-40'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-16-40'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-16-40'


 

This table displays all metadata directly associated to this object as RDF triples.

305 TRIPLES      21 PREDICATES      134 URIs      123 LITERALS      28 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1532-429x-16-40 schema:about N0be0ef021333465e99893ececeab4704
2 N3948da6348e4497b9f4b51d984e404bd
3 N494c2c7c708949d08123a43650bedb62
4 N50a2cc8f0d9b4f1cbb24ad2255858050
5 N5bb48355d1a54ce586cbd7888f9da401
6 N5f44ba90a8bc40a281c02a80e6db4f90
7 N66a5fb7bec3c43aaa5a6c9fec958ce73
8 N77eda3b63cdf4f9ca1809f60ac6788ea
9 N859ea2aa6fc8474a9247538333d35062
10 N85f4304e24f94768b02a793243991ef7
11 Na44ea983b68c4f73b96af98b0b8ba5aa
12 Na8d5a031695e4148b8853e78e9cb3fa3
13 Naa3772c64c89452a82370303feff80b8
14 Nb25085ce07bf40569aa9b811c95578a8
15 Nc0b78e225cf74d2394d7f22ca76e66c3
16 Nc8e4c426c93a4de7b030b0186ffd5143
17 Nd0e9d8209e4b44e8b35875689c1e3965
18 Nd517219a726a40a19f73ac10bfcea09a
19 Nd942d453cb9e47128c66aedd7a6fc81c
20 Ned9c7bcab731458c975f4e3266e9ff11
21 Nf2a03cb5ab98484dbcf674539600dd3a
22 anzsrc-for:11
23 anzsrc-for:1103
24 schema:author N8b186c3fc95742adb19f97ef9c530005
25 schema:citation sg:pub.10.1007/s00247-010-1596-8
26 sg:pub.10.1007/s00277-012-1588-x
27 sg:pub.10.1186/1532-429x-10-11
28 schema:datePublished 2014-06-10
29 schema:datePublishedReg 2014-06-10
30 schema:description BackgroundThere is a need to standardise non-invasive measurements of liver iron concentrations (LIC) so clear inferences can be drawn about body iron levels that are associated with hepatic and extra-hepatic complications of iron overload. Since the first demonstration of an inverse relationship between biopsy LIC and liver magnetic resonance (MR) using a proof-of-concept T2* sequence, MR technology has advanced dramatically with a shorter minimum echo-time, closer inter-echo spacing and constant repetition time. These important advances allow more accurate calculation of liver T2* especially in patients with high LIC.MethodsHere, we used an optimised liver T2* sequence calibrated against 50 liver biopsy samples on 25 patients with transfusional haemosiderosis using ordinary least squares linear regression, and assessed the method reproducibility in 96 scans over an LIC range up to 42 mg/g dry weight (dw) using Bland-Altman plots. Using mixed model linear regression we compared the new T2*-LIC with R2-LIC (Ferriscan) on 92 scans in 54 patients with transfusional haemosiderosis and examined method agreement using Bland-Altman approach.ResultsStrong linear correlation between ln(T2*) and ln(LIC) led to the calibration equation LIC = 31.94(T2*)-1.014. This yielded LIC values approximately 2.2 times higher than the proof-of-concept T2* method. Comparing this new T2*-LIC with the R2-LIC (Ferriscan) technique in 92 scans, we observed a close relationship between the two methods for values up to 10 mg/g dw, however the method agreement was poor.ConclusionsNew calibration of T2* against liver biopsy estimates LIC in a reproducible way, correcting the proof-of-concept calibration by 2.2 times. Due to poor agreement, both methods should be used separately to diagnose or rule out liver iron overload in patients with increased ferritin.
31 schema:genre article
32 schema:isAccessibleForFree true
33 schema:isPartOf N7477d356b9704581bcacb5e2ad99e13c
34 N7492c0451d7946e4b235f841235b877b
35 sg:journal.1030439
36 schema:keywords BackgroundThere
37 Bland-Altman approach
38 Bland-Altman plots
39 DW
40 FerriScan
41 LIC values
42 MR technology
43 MethodsHere
44 ResultsStrong
45 T2
46 accurate calculation
47 advances
48 agreement
49 approach
50 biopsy
51 biopsy samples
52 body iron levels
53 calculations
54 calibration
55 clear inferences
56 close relationship
57 comparison
58 complications
59 concentration
60 constant repetition time
61 correlation
62 demonstration
63 dry weight
64 estimation
65 extra-hepatic complications
66 ferritin
67 first demonstration
68 haemosiderosis
69 higher liver iron concentrations
70 important advances
71 inference
72 inter-echo spacing
73 inverse relationship
74 iron concentration
75 iron levels
76 iron overload
77 least squares
78 levels
79 linear regression
80 liver T2
81 liver biopsy samples
82 liver iron concentration
83 liver iron overload
84 liver magnetic resonance
85 magnetic resonance
86 measurements
87 method
88 method agreement
89 method reproducibility
90 mixed model linear regression
91 model linear regression
92 more accurate calculations
93 need
94 new T2
95 non-invasive measurement
96 ordinary least squares
97 overload
98 patients
99 plots
100 poor agreement
101 proof
102 range
103 regression
104 relationship
105 repetition time
106 reproducibility
107 reproducible way
108 resonance
109 samples
110 scans
111 sequence
112 spacing
113 squares
114 technique
115 technology
116 time
117 transfusional haemosiderosis
118 values
119 way
120 weight
121 schema:name Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan
122 schema:pagination 40
123 schema:productId Naa647929ee9a4c16ab4598be9320242e
124 Nc61f729a8b61479ebede5a5fb7e74317
125 Nfb068632a81a470a9d3102963ac45043
126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021796480
127 https://doi.org/10.1186/1532-429x-16-40
128 schema:sdDatePublished 2022-09-02T15:58
129 schema:sdLicense https://scigraph.springernature.com/explorer/license/
130 schema:sdPublisher N67ac1bc75aab46fe942a458e65ebda97
131 schema:url https://doi.org/10.1186/1532-429x-16-40
132 sgo:license sg:explorer/license/
133 sgo:sdDataset articles
134 rdf:type schema:ScholarlyArticle
135 N0be0ef021333465e99893ececeab4704 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Liver
137 rdf:type schema:DefinedTerm
138 N289204a180044540abe251d736e71e48 rdf:first sg:person.0652027413.18
139 rdf:rest Na7925ff1c9b54225ae1ce21b27b56d43
140 N3948da6348e4497b9f4b51d984e404bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Biopsy
142 rdf:type schema:DefinedTerm
143 N494c2c7c708949d08123a43650bedb62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Hemosiderosis
145 rdf:type schema:DefinedTerm
146 N50a2cc8f0d9b4f1cbb24ad2255858050 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Iron
148 rdf:type schema:DefinedTerm
149 N5bb48355d1a54ce586cbd7888f9da401 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Humans
151 rdf:type schema:DefinedTerm
152 N5f44ba90a8bc40a281c02a80e6db4f90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Biomarkers
154 rdf:type schema:DefinedTerm
155 N66a5fb7bec3c43aaa5a6c9fec958ce73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Magnetic Resonance Imaging
157 rdf:type schema:DefinedTerm
158 N67ac1bc75aab46fe942a458e65ebda97 schema:name Springer Nature - SN SciGraph project
159 rdf:type schema:Organization
160 N68d3c9e10657476f949984ec679304ac rdf:first sg:person.0637550422.73
161 rdf:rest N97d1908683e14bc0adc7a27f1f873a3e
162 N7477d356b9704581bcacb5e2ad99e13c schema:volumeNumber 16
163 rdf:type schema:PublicationVolume
164 N7492c0451d7946e4b235f841235b877b schema:issueNumber 1
165 rdf:type schema:PublicationIssue
166 N77eda3b63cdf4f9ca1809f60ac6788ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Observer Variation
168 rdf:type schema:DefinedTerm
169 N7bfb6a5831b5470688c93e0e49aa267a rdf:first sg:person.014261330412.91
170 rdf:rest Nba4d6931fe7c45bca2ae09937beb0211
171 N859ea2aa6fc8474a9247538333d35062 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Retrospective Studies
173 rdf:type schema:DefinedTerm
174 N85f4304e24f94768b02a793243991ef7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Least-Squares Analysis
176 rdf:type schema:DefinedTerm
177 N8b186c3fc95742adb19f97ef9c530005 rdf:first sg:person.01326614511.90
178 rdf:rest N7bfb6a5831b5470688c93e0e49aa267a
179 N97d1908683e14bc0adc7a27f1f873a3e rdf:first sg:person.01022540131.49
180 rdf:rest rdf:nil
181 Na44ea983b68c4f73b96af98b0b8ba5aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Image Interpretation, Computer-Assisted
183 rdf:type schema:DefinedTerm
184 Na7925ff1c9b54225ae1ce21b27b56d43 rdf:first sg:person.01176217627.04
185 rdf:rest Nbe25c0577e5e4a29929d24923312239d
186 Na8d5a031695e4148b8853e78e9cb3fa3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Benzoates
188 rdf:type schema:DefinedTerm
189 Naa3772c64c89452a82370303feff80b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Deferasirox
191 rdf:type schema:DefinedTerm
192 Naa647929ee9a4c16ab4598be9320242e schema:name dimensions_id
193 schema:value pub.1021796480
194 rdf:type schema:PropertyValue
195 Nb25085ce07bf40569aa9b811c95578a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Calibration
197 rdf:type schema:DefinedTerm
198 Nba4d6931fe7c45bca2ae09937beb0211 rdf:first sg:person.010214533504.58
199 rdf:rest N289204a180044540abe251d736e71e48
200 Nbe25c0577e5e4a29929d24923312239d rdf:first sg:person.0654357451.71
201 rdf:rest N68d3c9e10657476f949984ec679304ac
202 Nc0b78e225cf74d2394d7f22ca76e66c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Reproducibility of Results
204 rdf:type schema:DefinedTerm
205 Nc61f729a8b61479ebede5a5fb7e74317 schema:name doi
206 schema:value 10.1186/1532-429x-16-40
207 rdf:type schema:PropertyValue
208 Nc8e4c426c93a4de7b030b0186ffd5143 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
209 schema:name Linear Models
210 rdf:type schema:DefinedTerm
211 Nd0e9d8209e4b44e8b35875689c1e3965 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
212 schema:name Algorithms
213 rdf:type schema:DefinedTerm
214 Nd517219a726a40a19f73ac10bfcea09a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
215 schema:name Transfusion Reaction
216 rdf:type schema:DefinedTerm
217 Nd942d453cb9e47128c66aedd7a6fc81c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
218 schema:name Iron Chelating Agents
219 rdf:type schema:DefinedTerm
220 Ned9c7bcab731458c975f4e3266e9ff11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
221 schema:name Triazoles
222 rdf:type schema:DefinedTerm
223 Nf2a03cb5ab98484dbcf674539600dd3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
224 schema:name Predictive Value of Tests
225 rdf:type schema:DefinedTerm
226 Nfb068632a81a470a9d3102963ac45043 schema:name pubmed_id
227 schema:value 24915987
228 rdf:type schema:PropertyValue
229 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
230 schema:name Medical and Health Sciences
231 rdf:type schema:DefinedTerm
232 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
233 schema:name Clinical Sciences
234 rdf:type schema:DefinedTerm
235 sg:grant.5139010 http://pending.schema.org/fundedItem sg:pub.10.1186/1532-429x-16-40
236 rdf:type schema:MonetaryGrant
237 sg:journal.1030439 schema:issn 1548-7679
238 1879-2855
239 schema:name Journal of Cardiovascular Magnetic Resonance
240 schema:publisher Springer Nature
241 rdf:type schema:Periodical
242 sg:person.010214533504.58 schema:affiliation grid-institutes:grid.7445.2
243 schema:familyName Smith
244 schema:givenName Gillian
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010214533504.58
246 rdf:type schema:Person
247 sg:person.01022540131.49 schema:affiliation grid-institutes:grid.83440.3b
248 schema:familyName Porter
249 schema:givenName John B
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022540131.49
251 rdf:type schema:Person
252 sg:person.01176217627.04 schema:affiliation grid-institutes:grid.7445.2
253 schema:familyName Alam
254 schema:givenName Mohammed H
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176217627.04
256 rdf:type schema:Person
257 sg:person.01326614511.90 schema:affiliation grid-institutes:grid.83440.3b
258 schema:familyName Garbowski
259 schema:givenName Maciej W
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326614511.90
261 rdf:type schema:Person
262 sg:person.014261330412.91 schema:affiliation grid-institutes:grid.7445.2
263 schema:familyName Carpenter
264 schema:givenName John-Paul
265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014261330412.91
266 rdf:type schema:Person
267 sg:person.0637550422.73 schema:affiliation grid-institutes:grid.7445.2
268 schema:familyName Pennell
269 schema:givenName Dudley J
270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637550422.73
271 rdf:type schema:Person
272 sg:person.0652027413.18 schema:affiliation grid-institutes:grid.437479.a
273 schema:familyName Roughton
274 schema:givenName Michael
275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652027413.18
276 rdf:type schema:Person
277 sg:person.0654357451.71 schema:affiliation grid-institutes:grid.264200.2
278 schema:familyName He
279 schema:givenName Taigang
280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654357451.71
281 rdf:type schema:Person
282 sg:pub.10.1007/s00247-010-1596-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015255205
283 https://doi.org/10.1007/s00247-010-1596-8
284 rdf:type schema:CreativeWork
285 sg:pub.10.1007/s00277-012-1588-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019920724
286 https://doi.org/10.1007/s00277-012-1588-x
287 rdf:type schema:CreativeWork
288 sg:pub.10.1186/1532-429x-10-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031833758
289 https://doi.org/10.1186/1532-429x-10-11
290 rdf:type schema:CreativeWork
291 grid-institutes:grid.264200.2 schema:alternateName Cardiovascular Sciences Research Centre, St George’s University of London, London, UK
292 schema:name Cardiovascular Sciences Research Centre, St George’s University of London, London, UK
293 NIHR Cardiovascular BRU, Royal Brompton Hospital, London, UK
294 rdf:type schema:Organization
295 grid-institutes:grid.437479.a schema:alternateName Royal College of Physicians, London, UK
296 schema:name Royal College of Physicians, London, UK
297 rdf:type schema:Organization
298 grid-institutes:grid.7445.2 schema:alternateName Imperial College London, London, UK
299 schema:name Imperial College London, London, UK
300 NIHR Cardiovascular BRU, Royal Brompton Hospital, London, UK
301 rdf:type schema:Organization
302 grid-institutes:grid.83440.3b schema:alternateName University College London, London, UK
303 schema:name Haematology Department, University College London Hospitals, London, UK
304 University College London, London, UK
305 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...