Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-06-10

AUTHORS

Maciej W Garbowski, John-Paul Carpenter, Gillian Smith, Michael Roughton, Mohammed H Alam, Taigang He, Dudley J Pennell, John B Porter

ABSTRACT

BackgroundThere is a need to standardise non-invasive measurements of liver iron concentrations (LIC) so clear inferences can be drawn about body iron levels that are associated with hepatic and extra-hepatic complications of iron overload. Since the first demonstration of an inverse relationship between biopsy LIC and liver magnetic resonance (MR) using a proof-of-concept T2* sequence, MR technology has advanced dramatically with a shorter minimum echo-time, closer inter-echo spacing and constant repetition time. These important advances allow more accurate calculation of liver T2* especially in patients with high LIC.MethodsHere, we used an optimised liver T2* sequence calibrated against 50 liver biopsy samples on 25 patients with transfusional haemosiderosis using ordinary least squares linear regression, and assessed the method reproducibility in 96 scans over an LIC range up to 42 mg/g dry weight (dw) using Bland-Altman plots. Using mixed model linear regression we compared the new T2*-LIC with R2-LIC (Ferriscan) on 92 scans in 54 patients with transfusional haemosiderosis and examined method agreement using Bland-Altman approach.ResultsStrong linear correlation between ln(T2*) and ln(LIC) led to the calibration equation LIC = 31.94(T2*)-1.014. This yielded LIC values approximately 2.2 times higher than the proof-of-concept T2* method. Comparing this new T2*-LIC with the R2-LIC (Ferriscan) technique in 92 scans, we observed a close relationship between the two methods for values up to 10 mg/g dw, however the method agreement was poor.ConclusionsNew calibration of T2* against liver biopsy estimates LIC in a reproducible way, correcting the proof-of-concept calibration by 2.2 times. Due to poor agreement, both methods should be used separately to diagnose or rule out liver iron overload in patients with increased ferritin. More... »

PAGES

40

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1532-429x-16-40

DOI

http://dx.doi.org/10.1186/1532-429x-16-40

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021796480

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24915987


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Benzoates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calibration", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Deferasirox", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemosiderosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iron", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iron Chelating Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Least-Squares Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observer Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transfusion Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Triazoles", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University College London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Haematology Department, University College London Hospitals, London, UK", 
            "University College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garbowski", 
        "givenName": "Maciej W", 
        "id": "sg:person.01326614511.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326614511.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "NIHR Cardiovascular BRU, Royal Brompton Hospital, London, UK", 
            "Imperial College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carpenter", 
        "givenName": "John-Paul", 
        "id": "sg:person.014261330412.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014261330412.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "NIHR Cardiovascular BRU, Royal Brompton Hospital, London, UK", 
            "Imperial College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Gillian", 
        "id": "sg:person.010214533504.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010214533504.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal College of Physicians, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.437479.a", 
          "name": [
            "Royal College of Physicians, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roughton", 
        "givenName": "Michael", 
        "id": "sg:person.0652027413.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652027413.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "NIHR Cardiovascular BRU, Royal Brompton Hospital, London, UK", 
            "Imperial College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alam", 
        "givenName": "Mohammed H", 
        "id": "sg:person.01176217627.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176217627.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiovascular Sciences Research Centre, St George\u2019s University of London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.264200.2", 
          "name": [
            "NIHR Cardiovascular BRU, Royal Brompton Hospital, London, UK", 
            "Cardiovascular Sciences Research Centre, St George\u2019s University of London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Taigang", 
        "id": "sg:person.0654357451.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654357451.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "NIHR Cardiovascular BRU, Royal Brompton Hospital, London, UK", 
            "Imperial College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pennell", 
        "givenName": "Dudley J", 
        "id": "sg:person.0637550422.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637550422.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Haematology Department, University College London Hospitals, London, UK", 
            "University College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Porter", 
        "givenName": "John B", 
        "id": "sg:person.01022540131.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022540131.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1532-429x-10-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031833758", 
          "https://doi.org/10.1186/1532-429x-10-11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00277-012-1588-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019920724", 
          "https://doi.org/10.1007/s00277-012-1588-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00247-010-1596-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015255205", 
          "https://doi.org/10.1007/s00247-010-1596-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-06-10", 
    "datePublishedReg": "2014-06-10", 
    "description": "BackgroundThere is a need to standardise non-invasive measurements of liver iron concentrations (LIC) so clear inferences can be drawn about body iron levels that are associated with hepatic and extra-hepatic complications of iron overload. Since the first demonstration of an inverse relationship between biopsy LIC and liver magnetic resonance (MR) using a proof-of-concept T2* sequence, MR technology has advanced dramatically with a shorter minimum echo-time, closer inter-echo spacing and constant repetition time. These important advances allow more accurate calculation of liver T2* especially in patients with high LIC.MethodsHere, we used an optimised liver T2* sequence calibrated against 50 liver biopsy samples on 25 patients with transfusional haemosiderosis using ordinary least squares linear regression, and assessed the method reproducibility in 96 scans over an LIC range up to 42\u00a0mg/g dry weight (dw) using Bland-Altman plots. Using mixed model linear regression we compared the new T2*-LIC with R2-LIC (Ferriscan) on 92 scans in 54 patients with transfusional haemosiderosis and examined method agreement using Bland-Altman approach.ResultsStrong linear correlation between ln(T2*) and ln(LIC) led to the calibration equation LIC = 31.94(T2*)-1.014. This yielded LIC values approximately 2.2 times higher than the proof-of-concept T2* method. Comparing this new T2*-LIC with the R2-LIC (Ferriscan) technique in 92 scans, we observed a close relationship between the two methods for values up to 10\u00a0mg/g dw, however the method agreement was poor.ConclusionsNew calibration of T2* against liver biopsy estimates LIC in a reproducible way, correcting the proof-of-concept calibration by 2.2 times. Due to poor agreement, both methods should be used separately to diagnose or rule out liver iron overload in patients with increased ferritin.", 
    "genre": "article", 
    "id": "sg:pub.10.1186/1532-429x-16-40", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5139010", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "liver iron concentration", 
      "transfusional haemosiderosis", 
      "iron overload", 
      "new T2", 
      "liver T2", 
      "extra-hepatic complications", 
      "higher liver iron concentrations", 
      "liver biopsy samples", 
      "liver iron overload", 
      "liver magnetic resonance", 
      "body iron levels", 
      "mixed model linear regression", 
      "magnetic resonance", 
      "Bland-Altman plots", 
      "method agreement", 
      "biopsy samples", 
      "patients", 
      "Bland-Altman approach", 
      "non-invasive measurement", 
      "iron levels", 
      "LIC values", 
      "haemosiderosis", 
      "model linear regression", 
      "scans", 
      "iron concentration", 
      "inverse relationship", 
      "T2", 
      "inter-echo spacing", 
      "poor agreement", 
      "overload", 
      "ResultsStrong", 
      "important advances", 
      "linear regression", 
      "complications", 
      "biopsy", 
      "regression", 
      "BackgroundThere", 
      "first demonstration", 
      "ferritin", 
      "FerriScan", 
      "MR technology", 
      "constant repetition time", 
      "concentration", 
      "repetition time", 
      "MethodsHere", 
      "close relationship", 
      "time", 
      "levels", 
      "clear inferences", 
      "weight", 
      "relationship", 
      "reproducible way", 
      "correlation", 
      "need", 
      "advances", 
      "method reproducibility", 
      "samples", 
      "values", 
      "reproducibility", 
      "method", 
      "demonstration", 
      "dry weight", 
      "comparison", 
      "resonance", 
      "sequence", 
      "DW", 
      "technique", 
      "measurements", 
      "proof", 
      "approach", 
      "range", 
      "agreement", 
      "ordinary least squares", 
      "way", 
      "plots", 
      "calibration", 
      "estimation", 
      "squares", 
      "technology", 
      "inference", 
      "least squares", 
      "more accurate calculations", 
      "accurate calculation", 
      "spacing", 
      "calculations"
    ], 
    "name": "Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan", 
    "pagination": "40", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021796480"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1532-429x-16-40"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24915987"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1532-429x-16-40", 
      "https://app.dimensions.ai/details/publication/pub.1021796480"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_646.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1186/1532-429x-16-40"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-16-40'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-16-40'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-16-40'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-16-40'


 

This table displays all metadata directly associated to this object as RDF triples.

305 TRIPLES      21 PREDICATES      134 URIs      123 LITERALS      28 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1532-429x-16-40 schema:about N034c8029150f45b69287307a79227180
2 N185731e75d1543e0a7cac42fe58a3a4f
3 N1aaedd4162a049ba8d2ee9916069c5e1
4 N25fc1d698a5e49e2a653ad1001de562b
5 N2dbb186525b8418890adf730d7df3d58
6 N3a4bb79978e64733b688e0513d1e75a2
7 N41bce81f68844008a6fa19907a7ba4a2
8 N4b0fec224e314ff694e6ed12603a642a
9 N4df6b96c715f4055a0bde2c13a3cf005
10 N50e12e55d81d49e085fb325523812ab1
11 N6c71ac34fd214782a418c16443b1a21a
12 N7cb6a595caaf40a486fcc73f9a7fb3cc
13 N7f3d0940caca45d9b0e76b9579e0963c
14 N864d480742954edf902265a4f2d9d849
15 Naa57a6cc031849109837c04d70d1dc75
16 Nacb5646e11f14db5b208ae2da2a8b379
17 Nae680b2c69ac49feb82d94c6d231528a
18 Nd87a4e9039a246ca941dadfe2e29f16d
19 Ne02176c576174c828385f80fa7a945bf
20 Ne5ba6955159848b9972ac5c2de943432
21 Nfc61465e95af447cb273471c239ddbf9
22 anzsrc-for:11
23 anzsrc-for:1103
24 schema:author N1520ad0b87af4be29d71ab4952e8a74b
25 schema:citation sg:pub.10.1007/s00247-010-1596-8
26 sg:pub.10.1007/s00277-012-1588-x
27 sg:pub.10.1186/1532-429x-10-11
28 schema:datePublished 2014-06-10
29 schema:datePublishedReg 2014-06-10
30 schema:description BackgroundThere is a need to standardise non-invasive measurements of liver iron concentrations (LIC) so clear inferences can be drawn about body iron levels that are associated with hepatic and extra-hepatic complications of iron overload. Since the first demonstration of an inverse relationship between biopsy LIC and liver magnetic resonance (MR) using a proof-of-concept T2* sequence, MR technology has advanced dramatically with a shorter minimum echo-time, closer inter-echo spacing and constant repetition time. These important advances allow more accurate calculation of liver T2* especially in patients with high LIC.MethodsHere, we used an optimised liver T2* sequence calibrated against 50 liver biopsy samples on 25 patients with transfusional haemosiderosis using ordinary least squares linear regression, and assessed the method reproducibility in 96 scans over an LIC range up to 42 mg/g dry weight (dw) using Bland-Altman plots. Using mixed model linear regression we compared the new T2*-LIC with R2-LIC (Ferriscan) on 92 scans in 54 patients with transfusional haemosiderosis and examined method agreement using Bland-Altman approach.ResultsStrong linear correlation between ln(T2*) and ln(LIC) led to the calibration equation LIC = 31.94(T2*)-1.014. This yielded LIC values approximately 2.2 times higher than the proof-of-concept T2* method. Comparing this new T2*-LIC with the R2-LIC (Ferriscan) technique in 92 scans, we observed a close relationship between the two methods for values up to 10 mg/g dw, however the method agreement was poor.ConclusionsNew calibration of T2* against liver biopsy estimates LIC in a reproducible way, correcting the proof-of-concept calibration by 2.2 times. Due to poor agreement, both methods should be used separately to diagnose or rule out liver iron overload in patients with increased ferritin.
31 schema:genre article
32 schema:isAccessibleForFree true
33 schema:isPartOf N62dc946ab474469a86b2dd11a84a7d60
34 N92ba4136e6c6457ab296134040382c48
35 sg:journal.1030439
36 schema:keywords BackgroundThere
37 Bland-Altman approach
38 Bland-Altman plots
39 DW
40 FerriScan
41 LIC values
42 MR technology
43 MethodsHere
44 ResultsStrong
45 T2
46 accurate calculation
47 advances
48 agreement
49 approach
50 biopsy
51 biopsy samples
52 body iron levels
53 calculations
54 calibration
55 clear inferences
56 close relationship
57 comparison
58 complications
59 concentration
60 constant repetition time
61 correlation
62 demonstration
63 dry weight
64 estimation
65 extra-hepatic complications
66 ferritin
67 first demonstration
68 haemosiderosis
69 higher liver iron concentrations
70 important advances
71 inference
72 inter-echo spacing
73 inverse relationship
74 iron concentration
75 iron levels
76 iron overload
77 least squares
78 levels
79 linear regression
80 liver T2
81 liver biopsy samples
82 liver iron concentration
83 liver iron overload
84 liver magnetic resonance
85 magnetic resonance
86 measurements
87 method
88 method agreement
89 method reproducibility
90 mixed model linear regression
91 model linear regression
92 more accurate calculations
93 need
94 new T2
95 non-invasive measurement
96 ordinary least squares
97 overload
98 patients
99 plots
100 poor agreement
101 proof
102 range
103 regression
104 relationship
105 repetition time
106 reproducibility
107 reproducible way
108 resonance
109 samples
110 scans
111 sequence
112 spacing
113 squares
114 technique
115 technology
116 time
117 transfusional haemosiderosis
118 values
119 way
120 weight
121 schema:name Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan
122 schema:pagination 40
123 schema:productId N1cb33ef583ff429ba40e9abe3bbb3555
124 Nda5f1e446db84ded9e6dca9d8fd08655
125 Ne888a7243355406ea00a8f0d6715ad84
126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021796480
127 https://doi.org/10.1186/1532-429x-16-40
128 schema:sdDatePublished 2022-09-02T15:58
129 schema:sdLicense https://scigraph.springernature.com/explorer/license/
130 schema:sdPublisher N742f891bcc1747dfa980bcbddfacbfa8
131 schema:url https://doi.org/10.1186/1532-429x-16-40
132 sgo:license sg:explorer/license/
133 sgo:sdDataset articles
134 rdf:type schema:ScholarlyArticle
135 N034c8029150f45b69287307a79227180 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Reproducibility of Results
137 rdf:type schema:DefinedTerm
138 N06a6c34d16de4ada9984f6d736058885 rdf:first sg:person.01022540131.49
139 rdf:rest rdf:nil
140 N1520ad0b87af4be29d71ab4952e8a74b rdf:first sg:person.01326614511.90
141 rdf:rest N27790f70c42c42ef9616aac8032f5b18
142 N185731e75d1543e0a7cac42fe58a3a4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Iron
144 rdf:type schema:DefinedTerm
145 N1aaedd4162a049ba8d2ee9916069c5e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Iron Chelating Agents
147 rdf:type schema:DefinedTerm
148 N1cb33ef583ff429ba40e9abe3bbb3555 schema:name doi
149 schema:value 10.1186/1532-429x-16-40
150 rdf:type schema:PropertyValue
151 N25fc1d698a5e49e2a653ad1001de562b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Biopsy
153 rdf:type schema:DefinedTerm
154 N27790f70c42c42ef9616aac8032f5b18 rdf:first sg:person.014261330412.91
155 rdf:rest Ncf1251563bc44d6097b7f20dda575c1a
156 N2dbb186525b8418890adf730d7df3d58 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Transfusion Reaction
158 rdf:type schema:DefinedTerm
159 N3a4bb79978e64733b688e0513d1e75a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Humans
161 rdf:type schema:DefinedTerm
162 N41bce81f68844008a6fa19907a7ba4a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Liver
164 rdf:type schema:DefinedTerm
165 N4b0fec224e314ff694e6ed12603a642a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Magnetic Resonance Imaging
167 rdf:type schema:DefinedTerm
168 N4df6b96c715f4055a0bde2c13a3cf005 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Hemosiderosis
170 rdf:type schema:DefinedTerm
171 N50e12e55d81d49e085fb325523812ab1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Deferasirox
173 rdf:type schema:DefinedTerm
174 N5dbdd270443b426c9dd988e6faeeb30e rdf:first sg:person.0654357451.71
175 rdf:rest Nec147ee781e64996abdf942ed4360c5c
176 N62dc946ab474469a86b2dd11a84a7d60 schema:volumeNumber 16
177 rdf:type schema:PublicationVolume
178 N6c71ac34fd214782a418c16443b1a21a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Image Interpretation, Computer-Assisted
180 rdf:type schema:DefinedTerm
181 N742f891bcc1747dfa980bcbddfacbfa8 schema:name Springer Nature - SN SciGraph project
182 rdf:type schema:Organization
183 N7cb6a595caaf40a486fcc73f9a7fb3cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Retrospective Studies
185 rdf:type schema:DefinedTerm
186 N7f3d0940caca45d9b0e76b9579e0963c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Benzoates
188 rdf:type schema:DefinedTerm
189 N81747fdf038744fa96fc49d20b405f4c rdf:first sg:person.01176217627.04
190 rdf:rest N5dbdd270443b426c9dd988e6faeeb30e
191 N864d480742954edf902265a4f2d9d849 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Least-Squares Analysis
193 rdf:type schema:DefinedTerm
194 N92ba4136e6c6457ab296134040382c48 schema:issueNumber 1
195 rdf:type schema:PublicationIssue
196 N9e0721bb7db043b0a5fb00c145aebe4b rdf:first sg:person.0652027413.18
197 rdf:rest N81747fdf038744fa96fc49d20b405f4c
198 Naa57a6cc031849109837c04d70d1dc75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Triazoles
200 rdf:type schema:DefinedTerm
201 Nacb5646e11f14db5b208ae2da2a8b379 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Biomarkers
203 rdf:type schema:DefinedTerm
204 Nae680b2c69ac49feb82d94c6d231528a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Observer Variation
206 rdf:type schema:DefinedTerm
207 Ncf1251563bc44d6097b7f20dda575c1a rdf:first sg:person.010214533504.58
208 rdf:rest N9e0721bb7db043b0a5fb00c145aebe4b
209 Nd87a4e9039a246ca941dadfe2e29f16d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Linear Models
211 rdf:type schema:DefinedTerm
212 Nda5f1e446db84ded9e6dca9d8fd08655 schema:name dimensions_id
213 schema:value pub.1021796480
214 rdf:type schema:PropertyValue
215 Ne02176c576174c828385f80fa7a945bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
216 schema:name Calibration
217 rdf:type schema:DefinedTerm
218 Ne5ba6955159848b9972ac5c2de943432 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
219 schema:name Algorithms
220 rdf:type schema:DefinedTerm
221 Ne888a7243355406ea00a8f0d6715ad84 schema:name pubmed_id
222 schema:value 24915987
223 rdf:type schema:PropertyValue
224 Nec147ee781e64996abdf942ed4360c5c rdf:first sg:person.0637550422.73
225 rdf:rest N06a6c34d16de4ada9984f6d736058885
226 Nfc61465e95af447cb273471c239ddbf9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
227 schema:name Predictive Value of Tests
228 rdf:type schema:DefinedTerm
229 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
230 schema:name Medical and Health Sciences
231 rdf:type schema:DefinedTerm
232 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
233 schema:name Clinical Sciences
234 rdf:type schema:DefinedTerm
235 sg:grant.5139010 http://pending.schema.org/fundedItem sg:pub.10.1186/1532-429x-16-40
236 rdf:type schema:MonetaryGrant
237 sg:journal.1030439 schema:issn 1548-7679
238 1879-2855
239 schema:name Journal of Cardiovascular Magnetic Resonance
240 schema:publisher Springer Nature
241 rdf:type schema:Periodical
242 sg:person.010214533504.58 schema:affiliation grid-institutes:grid.7445.2
243 schema:familyName Smith
244 schema:givenName Gillian
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010214533504.58
246 rdf:type schema:Person
247 sg:person.01022540131.49 schema:affiliation grid-institutes:grid.83440.3b
248 schema:familyName Porter
249 schema:givenName John B
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022540131.49
251 rdf:type schema:Person
252 sg:person.01176217627.04 schema:affiliation grid-institutes:grid.7445.2
253 schema:familyName Alam
254 schema:givenName Mohammed H
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176217627.04
256 rdf:type schema:Person
257 sg:person.01326614511.90 schema:affiliation grid-institutes:grid.83440.3b
258 schema:familyName Garbowski
259 schema:givenName Maciej W
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326614511.90
261 rdf:type schema:Person
262 sg:person.014261330412.91 schema:affiliation grid-institutes:grid.7445.2
263 schema:familyName Carpenter
264 schema:givenName John-Paul
265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014261330412.91
266 rdf:type schema:Person
267 sg:person.0637550422.73 schema:affiliation grid-institutes:grid.7445.2
268 schema:familyName Pennell
269 schema:givenName Dudley J
270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637550422.73
271 rdf:type schema:Person
272 sg:person.0652027413.18 schema:affiliation grid-institutes:grid.437479.a
273 schema:familyName Roughton
274 schema:givenName Michael
275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652027413.18
276 rdf:type schema:Person
277 sg:person.0654357451.71 schema:affiliation grid-institutes:grid.264200.2
278 schema:familyName He
279 schema:givenName Taigang
280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654357451.71
281 rdf:type schema:Person
282 sg:pub.10.1007/s00247-010-1596-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015255205
283 https://doi.org/10.1007/s00247-010-1596-8
284 rdf:type schema:CreativeWork
285 sg:pub.10.1007/s00277-012-1588-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019920724
286 https://doi.org/10.1007/s00277-012-1588-x
287 rdf:type schema:CreativeWork
288 sg:pub.10.1186/1532-429x-10-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031833758
289 https://doi.org/10.1186/1532-429x-10-11
290 rdf:type schema:CreativeWork
291 grid-institutes:grid.264200.2 schema:alternateName Cardiovascular Sciences Research Centre, St George’s University of London, London, UK
292 schema:name Cardiovascular Sciences Research Centre, St George’s University of London, London, UK
293 NIHR Cardiovascular BRU, Royal Brompton Hospital, London, UK
294 rdf:type schema:Organization
295 grid-institutes:grid.437479.a schema:alternateName Royal College of Physicians, London, UK
296 schema:name Royal College of Physicians, London, UK
297 rdf:type schema:Organization
298 grid-institutes:grid.7445.2 schema:alternateName Imperial College London, London, UK
299 schema:name Imperial College London, London, UK
300 NIHR Cardiovascular BRU, Royal Brompton Hospital, London, UK
301 rdf:type schema:Organization
302 grid-institutes:grid.83440.3b schema:alternateName University College London, London, UK
303 schema:name Haematology Department, University College London Hospitals, London, UK
304 University College London, London, UK
305 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...