Reproducibility of cine displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance for measuring left ventricular strains, torsion, and synchrony ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Christopher M Haggerty, Sage P Kramer, Cassi M Binkley, David K Powell, Andrea C Mattingly, Richard Charnigo, Frederick H Epstein, Brandon K Fornwalt

ABSTRACT

BACKGROUND: Advanced measures of cardiac function are increasingly important to clinical assessment due to their superior diagnostic and predictive capabilities. Cine DENSE cardiovascular magnetic resonance (CMR) is ideal for quantifying advanced measures of cardiac function based on its high spatial resolution and streamlined post-processing. While many studies have utilized cine DENSE in both humans and small-animal models, the inter-test and inter-observer reproducibility for quantification of advanced cardiac function in mice has not been evaluated. This represents a critical knowledge gap for both understanding the capabilities of this technique and for the design of future experiments. We hypothesized that cine DENSE CMR would show excellent inter-test and inter-observer reproducibility for advanced measures of left ventricular (LV) function in mice. METHODS: Five normal mice (C57BL/6) and four mice with depressed cardiac function (diet-induced obesity) were imaged twice, two days apart, on a 7T ClinScan MR system. Images were acquired with 15-20 frames per cardiac cycle in three short-axis (basal, mid, apical) and two long-axis orientations (4-chamber and 2-chamber). LV strain, twist, torsion, and measures of synchrony were quantified. Images from both days were analyzed by one observer to quantify inter-test reproducibility, while inter-observer reproducibility was assessed by a second observer's analysis of day-1 images. The coefficient of variation (CoV) was used to quantify reproducibility. RESULTS: LV strains and torsion were highly reproducible on both inter-observer and inter-test bases with CoVs ≤ 15%, and inter-observer reproducibility was generally better than inter-test reproducibility. However, end-systolic twist angles showed much higher variance, likely due to the sensitivity of slice location within the sharp longitudinal gradient in twist angle. Measures of synchrony including the circumferential (CURE) and radial (RURE) uniformity of strain indices, showed excellent reproducibility with CoVs of 1% and 3%, respectively. Finally, peak measures (e.g., strains) were generally more reproducible than the corresponding rates of change (e.g., strain rate). CONCLUSIONS: Cine DENSE CMR is a highly reproducible technique for quantification of advanced measures of left ventricular cardiac function in mice including strains, torsion and measures of synchrony. However, myocardial twist angles are not reproducible and future studies should instead report torsion. More... »

PAGES

71

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1532-429x-15-71

DOI

http://dx.doi.org/10.1186/1532-429x-15-71

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026803487

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23981339


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomechanical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease Models, Animal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging, Cine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice, Inbred C57BL", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Contraction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Observer Variation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stress, Mechanical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Torsion, Mechanical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ventricular Dysfunction, Left", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ventricular Function, Left", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Kentucky", 
          "id": "https://www.grid.ac/institutes/grid.266539.d", 
          "name": [
            "Departments of Pediatrics, Physiology and Medicine, University of Kentucky, Lexington, KY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haggerty", 
        "givenName": "Christopher M", 
        "id": "sg:person.0675424646.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675424646.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kentucky", 
          "id": "https://www.grid.ac/institutes/grid.266539.d", 
          "name": [
            "Departments of Pediatrics, Physiology and Medicine, University of Kentucky, Lexington, KY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kramer", 
        "givenName": "Sage P", 
        "id": "sg:person.01051126674.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051126674.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kentucky", 
          "id": "https://www.grid.ac/institutes/grid.266539.d", 
          "name": [
            "Departments of Pediatrics, Physiology and Medicine, University of Kentucky, Lexington, KY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Binkley", 
        "givenName": "Cassi M", 
        "id": "sg:person.01117242074.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117242074.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kentucky", 
          "id": "https://www.grid.ac/institutes/grid.266539.d", 
          "name": [
            "Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Powell", 
        "givenName": "David K", 
        "id": "sg:person.01307130560.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307130560.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kentucky", 
          "id": "https://www.grid.ac/institutes/grid.266539.d", 
          "name": [
            "Departments of Pediatrics, Physiology and Medicine, University of Kentucky, Lexington, KY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mattingly", 
        "givenName": "Andrea C", 
        "id": "sg:person.01233470474.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233470474.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kentucky", 
          "id": "https://www.grid.ac/institutes/grid.266539.d", 
          "name": [
            "Department of Biostatistics, University of Kentucky, Lexington, KY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Charnigo", 
        "givenName": "Richard", 
        "id": "sg:person.014046404577.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014046404577.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Virginia", 
          "id": "https://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Departments of Biomedical Engineering and Radiology, University of Virginia, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Epstein", 
        "givenName": "Frederick H", 
        "id": "sg:person.0751341013.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751341013.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kentucky", 
          "id": "https://www.grid.ac/institutes/grid.266539.d", 
          "name": [
            "Departments of Pediatrics, Physiology and Medicine, University of Kentucky, Lexington, KY, USA", 
            "Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fornwalt", 
        "givenName": "Brandon K", 
        "id": "sg:person.01011604351.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011604351.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1532-429x-15-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002947681", 
          "https://doi.org/10.1186/1532-429x-15-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2009.04.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003894883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.109.862334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004134118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.109.862334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004134118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.109.862334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004134118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.110.958751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010158348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.110.958751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010158348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.110.958751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010158348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.104.508457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012365175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmre.1998.1676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012493788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.111.970434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012860226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circimaging.111.970434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012860226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2008.06.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015147415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015942062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-14-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016449725", 
          "https://doi.org/10.1186/1532-429x-14-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004424-199412000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019051079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004424-199412000-00005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019051079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/clc.20933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021981382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-10-26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025281340", 
          "https://doi.org/10.1186/1532-429x-10-26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2303021213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026763314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029792567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029792567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc0102.101396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032547648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-15-37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034969806", 
          "https://doi.org/10.1186/1532-429x-15-37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-15-109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036227366", 
          "https://doi.org/10.1186/1532-429x-15-109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpheart.00429.2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038178412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc0402.102975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039853393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.yjmcc.2010.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042564192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-15-s1-p155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045226400", 
          "https://doi.org/10.1186/1532-429x-15-s1-p155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpheart.00705.2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045686640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cjs.10104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046698423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-13-83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048776159", 
          "https://doi.org/10.1186/1532-429x-13-83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-13-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052035109", 
          "https://doi.org/10.1186/1532-429x-13-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/euje.2000.0031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057075448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2006.884215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/10976640009148678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070985730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpheart.2000.278.4.h1117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074617300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.171.3.2717762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079270177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.169.1.3420283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079735381"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "BACKGROUND: Advanced measures of cardiac function are increasingly important to clinical assessment due to their superior diagnostic and predictive capabilities. Cine DENSE cardiovascular magnetic resonance (CMR) is ideal for quantifying advanced measures of cardiac function based on its high spatial resolution and streamlined post-processing. While many studies have utilized cine DENSE in both humans and small-animal models, the inter-test and inter-observer reproducibility for quantification of advanced cardiac function in mice has not been evaluated. This represents a critical knowledge gap for both understanding the capabilities of this technique and for the design of future experiments. We hypothesized that cine DENSE CMR would show excellent inter-test and inter-observer reproducibility for advanced measures of left ventricular (LV) function in mice.\nMETHODS: Five normal mice (C57BL/6) and four mice with depressed cardiac function (diet-induced obesity) were imaged twice, two days apart, on a 7T ClinScan MR system. Images were acquired with 15-20 frames per cardiac cycle in three short-axis (basal, mid, apical) and two long-axis orientations (4-chamber and 2-chamber). LV strain, twist, torsion, and measures of synchrony were quantified. Images from both days were analyzed by one observer to quantify inter-test reproducibility, while inter-observer reproducibility was assessed by a second observer's analysis of day-1 images. The coefficient of variation (CoV) was used to quantify reproducibility.\nRESULTS: LV strains and torsion were highly reproducible on both inter-observer and inter-test bases with CoVs \u2264 15%, and inter-observer reproducibility was generally better than inter-test reproducibility. However, end-systolic twist angles showed much higher variance, likely due to the sensitivity of slice location within the sharp longitudinal gradient in twist angle. Measures of synchrony including the circumferential (CURE) and radial (RURE) uniformity of strain indices, showed excellent reproducibility with CoVs of 1% and 3%, respectively. Finally, peak measures (e.g., strains) were generally more reproducible than the corresponding rates of change (e.g., strain rate).\nCONCLUSIONS: Cine DENSE CMR is a highly reproducible technique for quantification of advanced measures of left ventricular cardiac function in mice including strains, torsion and measures of synchrony. However, myocardial twist angles are not reproducible and future studies should instead report torsion.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1532-429x-15-71", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2437926", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2684975", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2705214", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2355517", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2705178", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2686655", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2423307", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2423277", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "Reproducibility of cine displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance for measuring left ventricular strains, torsion, and synchrony in mice", 
    "pagination": "71", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7fb00ff3cc5b90414e32a9be1caeb96913ecd769b129acc30f33a3d9a6697113"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23981339"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1532-429x-15-71"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026803487"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1532-429x-15-71", 
      "https://app.dimensions.ai/details/publication/pub.1026803487"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1532-429X-15-71"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-15-71'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-15-71'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-15-71'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-15-71'


 

This table displays all metadata directly associated to this object as RDF triples.

303 TRIPLES      21 PREDICATES      76 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1532-429x-15-71 schema:about N215680de9ea74f2d81b9e55dcf270356
2 N270054267f6c41ada096e4698da4b5c2
3 N37889bb6ad7e49408b170f9d6fd013d2
4 N3a348c04e649477aaa83bee31ee88ebb
5 N403e36cc512e4f06bf2353dd219e2560
6 N445ce6a84c0b4c12999dbb3d7ff9d696
7 N55ae38b9859f4aa187f328d5853bef9c
8 N5739af28975949a7890938053404dda1
9 N59bf758210614447be1406c206c08c64
10 N66b99c86780f4314a05b703e6228cc02
11 N78a611bf2a8b42d6b2960c415098e887
12 Nb6d95b85db0b44c5ad0b6a32de58b6bf
13 Nbb9c5bc45f7945b79d7e7dcb413835db
14 Nc7dbb1ee68084f87a95ca6166e16070c
15 Ne76fb52c63604db9b6aa0bae365a9873
16 anzsrc-for:11
17 anzsrc-for:1102
18 schema:author Nf08c2ee3d49a4f22829d296a2d4ce7e4
19 schema:citation sg:pub.10.1186/1532-429x-10-26
20 sg:pub.10.1186/1532-429x-13-1
21 sg:pub.10.1186/1532-429x-13-83
22 sg:pub.10.1186/1532-429x-14-4
23 sg:pub.10.1186/1532-429x-15-109
24 sg:pub.10.1186/1532-429x-15-37
25 sg:pub.10.1186/1532-429x-15-8
26 sg:pub.10.1186/1532-429x-15-s1-p155
27 https://doi.org/10.1002/cjs.10104
28 https://doi.org/10.1002/clc.20933
29 https://doi.org/10.1002/jmri.20703
30 https://doi.org/10.1002/mrm.22503
31 https://doi.org/10.1006/jmre.1998.1676
32 https://doi.org/10.1016/j.jacc.2009.04.061
33 https://doi.org/10.1016/j.media.2008.06.016
34 https://doi.org/10.1016/j.yjmcc.2010.12.007
35 https://doi.org/10.1053/euje.2000.0031
36 https://doi.org/10.1097/00004424-199412000-00005
37 https://doi.org/10.1109/tmi.2006.884215
38 https://doi.org/10.1148/radiol.2303021213
39 https://doi.org/10.1148/radiology.169.1.3420283
40 https://doi.org/10.1148/radiology.171.3.2717762
41 https://doi.org/10.1152/ajpheart.00429.2011
42 https://doi.org/10.1152/ajpheart.00705.2011
43 https://doi.org/10.1152/ajpheart.2000.278.4.h1117
44 https://doi.org/10.1161/circimaging.109.862334
45 https://doi.org/10.1161/circimaging.110.958751
46 https://doi.org/10.1161/circimaging.111.970434
47 https://doi.org/10.1161/circulationaha.104.508457
48 https://doi.org/10.1161/hc0102.101396
49 https://doi.org/10.1161/hc0402.102975
50 https://doi.org/10.3109/10976640009148678
51 schema:datePublished 2013-12
52 schema:datePublishedReg 2013-12-01
53 schema:description BACKGROUND: Advanced measures of cardiac function are increasingly important to clinical assessment due to their superior diagnostic and predictive capabilities. Cine DENSE cardiovascular magnetic resonance (CMR) is ideal for quantifying advanced measures of cardiac function based on its high spatial resolution and streamlined post-processing. While many studies have utilized cine DENSE in both humans and small-animal models, the inter-test and inter-observer reproducibility for quantification of advanced cardiac function in mice has not been evaluated. This represents a critical knowledge gap for both understanding the capabilities of this technique and for the design of future experiments. We hypothesized that cine DENSE CMR would show excellent inter-test and inter-observer reproducibility for advanced measures of left ventricular (LV) function in mice. METHODS: Five normal mice (C57BL/6) and four mice with depressed cardiac function (diet-induced obesity) were imaged twice, two days apart, on a 7T ClinScan MR system. Images were acquired with 15-20 frames per cardiac cycle in three short-axis (basal, mid, apical) and two long-axis orientations (4-chamber and 2-chamber). LV strain, twist, torsion, and measures of synchrony were quantified. Images from both days were analyzed by one observer to quantify inter-test reproducibility, while inter-observer reproducibility was assessed by a second observer's analysis of day-1 images. The coefficient of variation (CoV) was used to quantify reproducibility. RESULTS: LV strains and torsion were highly reproducible on both inter-observer and inter-test bases with CoVs ≤ 15%, and inter-observer reproducibility was generally better than inter-test reproducibility. However, end-systolic twist angles showed much higher variance, likely due to the sensitivity of slice location within the sharp longitudinal gradient in twist angle. Measures of synchrony including the circumferential (CURE) and radial (RURE) uniformity of strain indices, showed excellent reproducibility with CoVs of 1% and 3%, respectively. Finally, peak measures (e.g., strains) were generally more reproducible than the corresponding rates of change (e.g., strain rate). CONCLUSIONS: Cine DENSE CMR is a highly reproducible technique for quantification of advanced measures of left ventricular cardiac function in mice including strains, torsion and measures of synchrony. However, myocardial twist angles are not reproducible and future studies should instead report torsion.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree true
57 schema:isPartOf N61c0e1223c644221b8186c60857ff333
58 Nf2353d2fc5ce4703bde062aa0414e061
59 sg:journal.1030439
60 schema:name Reproducibility of cine displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance for measuring left ventricular strains, torsion, and synchrony in mice
61 schema:pagination 71
62 schema:productId N1d84baf2c01340a084abb1f5ac6acbb4
63 N407b84cb3ca54044aea5a74f96bda863
64 N5a3707e7f4bf4ff681aa0716049c8d48
65 N7d24504aec2646c4b55976a93daf6360
66 N8df45b397bc5402fb4bedcd080e4b836
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026803487
68 https://doi.org/10.1186/1532-429x-15-71
69 schema:sdDatePublished 2019-04-10T15:01
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N2f91681da3e84c53980393db7099f45a
72 schema:url http://link.springer.com/10.1186%2F1532-429X-15-71
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N1d84baf2c01340a084abb1f5ac6acbb4 schema:name doi
77 schema:value 10.1186/1532-429x-15-71
78 rdf:type schema:PropertyValue
79 N2016ec40d2a245cf8a41175adf43096e rdf:first sg:person.01051126674.84
80 rdf:rest Nf3bb01fb883142cb805333ab55ae67cb
81 N215680de9ea74f2d81b9e55dcf270356 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Ventricular Function, Left
83 rdf:type schema:DefinedTerm
84 N2272620c84fd4b7bbd610bd719906e18 rdf:first sg:person.01233470474.39
85 rdf:rest N79c7e11133624164958868e420770fae
86 N270054267f6c41ada096e4698da4b5c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Predictive Value of Tests
88 rdf:type schema:DefinedTerm
89 N2f91681da3e84c53980393db7099f45a schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N37889bb6ad7e49408b170f9d6fd013d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Myocardial Contraction
93 rdf:type schema:DefinedTerm
94 N3a348c04e649477aaa83bee31ee88ebb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Biomechanical Phenomena
96 rdf:type schema:DefinedTerm
97 N403e36cc512e4f06bf2353dd219e2560 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Ventricular Dysfunction, Left
99 rdf:type schema:DefinedTerm
100 N407b84cb3ca54044aea5a74f96bda863 schema:name pubmed_id
101 schema:value 23981339
102 rdf:type schema:PropertyValue
103 N445ce6a84c0b4c12999dbb3d7ff9d696 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Magnetic Resonance Imaging, Cine
105 rdf:type schema:DefinedTerm
106 N55ae38b9859f4aa187f328d5853bef9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Torsion, Mechanical
108 rdf:type schema:DefinedTerm
109 N5739af28975949a7890938053404dda1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Observer Variation
111 rdf:type schema:DefinedTerm
112 N59bf758210614447be1406c206c08c64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Disease Models, Animal
114 rdf:type schema:DefinedTerm
115 N5a3707e7f4bf4ff681aa0716049c8d48 schema:name readcube_id
116 schema:value 7fb00ff3cc5b90414e32a9be1caeb96913ecd769b129acc30f33a3d9a6697113
117 rdf:type schema:PropertyValue
118 N61c0e1223c644221b8186c60857ff333 schema:volumeNumber 15
119 rdf:type schema:PublicationVolume
120 N66b99c86780f4314a05b703e6228cc02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Animals
122 rdf:type schema:DefinedTerm
123 N78a611bf2a8b42d6b2960c415098e887 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Obesity
125 rdf:type schema:DefinedTerm
126 N79c7e11133624164958868e420770fae rdf:first sg:person.014046404577.77
127 rdf:rest Nbb1ba8d47f284e2890d8178b3f965fd6
128 N7d24504aec2646c4b55976a93daf6360 schema:name dimensions_id
129 schema:value pub.1026803487
130 rdf:type schema:PropertyValue
131 N8df45b397bc5402fb4bedcd080e4b836 schema:name nlm_unique_id
132 schema:value 9815616
133 rdf:type schema:PropertyValue
134 N9f2e5c80bd914644ba1928f080b1427e rdf:first sg:person.01011604351.47
135 rdf:rest rdf:nil
136 Nb6d95b85db0b44c5ad0b6a32de58b6bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Stress, Mechanical
138 rdf:type schema:DefinedTerm
139 Nbb1ba8d47f284e2890d8178b3f965fd6 rdf:first sg:person.0751341013.41
140 rdf:rest N9f2e5c80bd914644ba1928f080b1427e
141 Nbb9c5bc45f7945b79d7e7dcb413835db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Mice, Inbred C57BL
143 rdf:type schema:DefinedTerm
144 Nc7dbb1ee68084f87a95ca6166e16070c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Mice
146 rdf:type schema:DefinedTerm
147 Ne0abb76677604f4d8a4b92f975e7ca43 rdf:first sg:person.01307130560.37
148 rdf:rest N2272620c84fd4b7bbd610bd719906e18
149 Ne76fb52c63604db9b6aa0bae365a9873 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Reproducibility of Results
151 rdf:type schema:DefinedTerm
152 Nf08c2ee3d49a4f22829d296a2d4ce7e4 rdf:first sg:person.0675424646.33
153 rdf:rest N2016ec40d2a245cf8a41175adf43096e
154 Nf2353d2fc5ce4703bde062aa0414e061 schema:issueNumber 1
155 rdf:type schema:PublicationIssue
156 Nf3bb01fb883142cb805333ab55ae67cb rdf:first sg:person.01117242074.86
157 rdf:rest Ne0abb76677604f4d8a4b92f975e7ca43
158 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
159 schema:name Medical and Health Sciences
160 rdf:type schema:DefinedTerm
161 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
162 schema:name Cardiorespiratory Medicine and Haematology
163 rdf:type schema:DefinedTerm
164 sg:grant.2355517 http://pending.schema.org/fundedItem sg:pub.10.1186/1532-429x-15-71
165 rdf:type schema:MonetaryGrant
166 sg:grant.2423277 http://pending.schema.org/fundedItem sg:pub.10.1186/1532-429x-15-71
167 rdf:type schema:MonetaryGrant
168 sg:grant.2423307 http://pending.schema.org/fundedItem sg:pub.10.1186/1532-429x-15-71
169 rdf:type schema:MonetaryGrant
170 sg:grant.2437926 http://pending.schema.org/fundedItem sg:pub.10.1186/1532-429x-15-71
171 rdf:type schema:MonetaryGrant
172 sg:grant.2684975 http://pending.schema.org/fundedItem sg:pub.10.1186/1532-429x-15-71
173 rdf:type schema:MonetaryGrant
174 sg:grant.2686655 http://pending.schema.org/fundedItem sg:pub.10.1186/1532-429x-15-71
175 rdf:type schema:MonetaryGrant
176 sg:grant.2705178 http://pending.schema.org/fundedItem sg:pub.10.1186/1532-429x-15-71
177 rdf:type schema:MonetaryGrant
178 sg:grant.2705214 http://pending.schema.org/fundedItem sg:pub.10.1186/1532-429x-15-71
179 rdf:type schema:MonetaryGrant
180 sg:journal.1030439 schema:issn 1548-7679
181 1879-2855
182 schema:name Journal of Cardiovascular Magnetic Resonance
183 rdf:type schema:Periodical
184 sg:person.01011604351.47 schema:affiliation https://www.grid.ac/institutes/grid.266539.d
185 schema:familyName Fornwalt
186 schema:givenName Brandon K
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011604351.47
188 rdf:type schema:Person
189 sg:person.01051126674.84 schema:affiliation https://www.grid.ac/institutes/grid.266539.d
190 schema:familyName Kramer
191 schema:givenName Sage P
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051126674.84
193 rdf:type schema:Person
194 sg:person.01117242074.86 schema:affiliation https://www.grid.ac/institutes/grid.266539.d
195 schema:familyName Binkley
196 schema:givenName Cassi M
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01117242074.86
198 rdf:type schema:Person
199 sg:person.01233470474.39 schema:affiliation https://www.grid.ac/institutes/grid.266539.d
200 schema:familyName Mattingly
201 schema:givenName Andrea C
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233470474.39
203 rdf:type schema:Person
204 sg:person.01307130560.37 schema:affiliation https://www.grid.ac/institutes/grid.266539.d
205 schema:familyName Powell
206 schema:givenName David K
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307130560.37
208 rdf:type schema:Person
209 sg:person.014046404577.77 schema:affiliation https://www.grid.ac/institutes/grid.266539.d
210 schema:familyName Charnigo
211 schema:givenName Richard
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014046404577.77
213 rdf:type schema:Person
214 sg:person.0675424646.33 schema:affiliation https://www.grid.ac/institutes/grid.266539.d
215 schema:familyName Haggerty
216 schema:givenName Christopher M
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675424646.33
218 rdf:type schema:Person
219 sg:person.0751341013.41 schema:affiliation https://www.grid.ac/institutes/grid.27755.32
220 schema:familyName Epstein
221 schema:givenName Frederick H
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751341013.41
223 rdf:type schema:Person
224 sg:pub.10.1186/1532-429x-10-26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025281340
225 https://doi.org/10.1186/1532-429x-10-26
226 rdf:type schema:CreativeWork
227 sg:pub.10.1186/1532-429x-13-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052035109
228 https://doi.org/10.1186/1532-429x-13-1
229 rdf:type schema:CreativeWork
230 sg:pub.10.1186/1532-429x-13-83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048776159
231 https://doi.org/10.1186/1532-429x-13-83
232 rdf:type schema:CreativeWork
233 sg:pub.10.1186/1532-429x-14-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016449725
234 https://doi.org/10.1186/1532-429x-14-4
235 rdf:type schema:CreativeWork
236 sg:pub.10.1186/1532-429x-15-109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036227366
237 https://doi.org/10.1186/1532-429x-15-109
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/1532-429x-15-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034969806
240 https://doi.org/10.1186/1532-429x-15-37
241 rdf:type schema:CreativeWork
242 sg:pub.10.1186/1532-429x-15-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002947681
243 https://doi.org/10.1186/1532-429x-15-8
244 rdf:type schema:CreativeWork
245 sg:pub.10.1186/1532-429x-15-s1-p155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045226400
246 https://doi.org/10.1186/1532-429x-15-s1-p155
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1002/cjs.10104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046698423
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1002/clc.20933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021981382
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1002/jmri.20703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015942062
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1002/mrm.22503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029792567
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1006/jmre.1998.1676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012493788
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/j.jacc.2009.04.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003894883
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/j.media.2008.06.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015147415
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/j.yjmcc.2010.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042564192
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1053/euje.2000.0031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057075448
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1097/00004424-199412000-00005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019051079
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1109/tmi.2006.884215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694941
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1148/radiol.2303021213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026763314
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1148/radiology.169.1.3420283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079735381
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1148/radiology.171.3.2717762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079270177
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1152/ajpheart.00429.2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038178412
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1152/ajpheart.00705.2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045686640
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1152/ajpheart.2000.278.4.h1117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074617300
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1161/circimaging.109.862334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004134118
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1161/circimaging.110.958751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010158348
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1161/circimaging.111.970434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012860226
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1161/circulationaha.104.508457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012365175
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1161/hc0102.101396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032547648
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1161/hc0402.102975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039853393
293 rdf:type schema:CreativeWork
294 https://doi.org/10.3109/10976640009148678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070985730
295 rdf:type schema:CreativeWork
296 https://www.grid.ac/institutes/grid.266539.d schema:alternateName University of Kentucky
297 schema:name Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
298 Department of Biostatistics, University of Kentucky, Lexington, KY, USA
299 Departments of Pediatrics, Physiology and Medicine, University of Kentucky, Lexington, KY, USA
300 rdf:type schema:Organization
301 https://www.grid.ac/institutes/grid.27755.32 schema:alternateName University of Virginia
302 schema:name Departments of Biomedical Engineering and Radiology, University of Virginia, Charlottesville, VA, USA
303 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...