SHILO, a novel dual imaging approach for simultaneous HI-/LOw temporal (Low-/Hi-spatial) resolution imaging for vascular dynamic contrast enhanced cardiovascular magnetic ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Claudia Calcagno, Philip M Robson, Sarayu Ramachandran, Venkatesh Mani, Melanie Kotys-Traughber, Matthew Cham, Stefan E Fischer, Zahi A Fayad

ABSTRACT

BACKGROUND: Dynamic contrast enhanced (DCE) cardiovascular magnetic resonance (CMR) is increasingly used to quantify microvessels and permeability in atherosclerosis. Accurate quantification depends on reliable sampling of both vessel wall (VW) uptake and contrast agent dynamic in the blood plasma (the so called arterial input function, AIF). This poses specific challenges in terms of spatial/temporal resolution and matched dynamic MR signal range, which are suboptimal in current vascular DCE-CMR protocols. In this study we describe a novel dual-imaging approach, which allows acquiring simultaneously AIF and VW images using different spatial/temporal resolution and optimizes imaging parameters for the two compartments. We refer to this new acquisition as SHILO, Simultaneous HI-/LOw-temporal (low-/hi-spatial) resolution DCE-imaging. METHODS: In SHILO, the acquisition of low spatial resolution single-shot AIF images is interleaved with segments of higher spatial resolution images of the VW. This allows sampling the AIF and VW with different spatial/temporal resolution and acquisition parameters, at independent spatial locations. We show the adequacy of this temporal sampling scheme by using numerical simulations. Following, we validate the MR signal of SHILO against a standard 2D spoiled gradient recalled echo (SPGR) acquisition with in vitro and in vivo experiments. Finally, we show feasibility of using SHILO imaging in subjects with carotid atherosclerosis. RESULTS: Our simulations confirmed the superiority of the SHILO temporal sampling scheme over conventional strategies that sample AIF and tissue curves at the same time resolution. Both the median relative errors and standard deviation of absolute parameter values were lower for the SHILO than for conventional sampling schemes. We showed equivalency of the SHILO signal and conventional 2D SPGR imaging, using both in vitro phantom experiments (R2 =0.99) and in vivo acquisitions (R2 =0.95). Finally, we showed feasibility of using the newly developed SHILO sequence to acquire DCE-CMR data in subjects with carotid atherosclerosis to calculate plaque perfusion indices. CONCLUSIONS: We successfully demonstrate the feasibility of using the newly developed SHILO dual-imaging technique for simultaneous AIF and VW imaging in DCE-CMR of atherosclerosis. Our initial results are promising and warrant further investigation of this technique in wider studies measuring kinetic parameters of plaque neovascularization with validation against gold standard techniques. More... »

PAGES

42

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1532-429x-15-42

DOI

http://dx.doi.org/10.1186/1532-429x-15-42

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030184971

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23706156


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Artery Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feasibility Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gadolinium DTPA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Least-Squares Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neovascularization, Pathologic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phantoms, Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Icahn School of Medicine at Mount Sinai", 
          "id": "https://www.grid.ac/institutes/grid.59734.3c", 
          "name": [
            "Translational and Molecular Imaging Institute, Imaging Science Laboratories, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, 10029, New York, NY, USA", 
            "Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 10029, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Calcagno", 
        "givenName": "Claudia", 
        "id": "sg:person.01314277735.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314277735.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Icahn School of Medicine at Mount Sinai", 
          "id": "https://www.grid.ac/institutes/grid.59734.3c", 
          "name": [
            "Translational and Molecular Imaging Institute, Imaging Science Laboratories, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, 10029, New York, NY, USA", 
            "Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 10029, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robson", 
        "givenName": "Philip M", 
        "id": "sg:person.0701551334.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701551334.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Icahn School of Medicine at Mount Sinai", 
          "id": "https://www.grid.ac/institutes/grid.59734.3c", 
          "name": [
            "Translational and Molecular Imaging Institute, Imaging Science Laboratories, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, 10029, New York, NY, USA", 
            "Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 10029, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramachandran", 
        "givenName": "Sarayu", 
        "id": "sg:person.0716270534.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716270534.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Icahn School of Medicine at Mount Sinai", 
          "id": "https://www.grid.ac/institutes/grid.59734.3c", 
          "name": [
            "Translational and Molecular Imaging Institute, Imaging Science Laboratories, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, 10029, New York, NY, USA", 
            "Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 10029, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mani", 
        "givenName": "Venkatesh", 
        "id": "sg:person.0754201356.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754201356.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MR Clinical Science, Philips Healthcare, 595 Miner Road, 44143, Cleveland, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kotys-Traughber", 
        "givenName": "Melanie", 
        "id": "sg:person.01032517134.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032517134.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Icahn School of Medicine at Mount Sinai", 
          "id": "https://www.grid.ac/institutes/grid.59734.3c", 
          "name": [
            "Translational and Molecular Imaging Institute, Imaging Science Laboratories, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, 10029, New York, NY, USA", 
            "Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 10029, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cham", 
        "givenName": "Matthew", 
        "id": "sg:person.01221364557.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221364557.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MR Clinical Science, Philips Healthcare, 595 Miner Road, 44143, Cleveland, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fischer", 
        "givenName": "Stefan E", 
        "id": "sg:person.0624540243.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624540243.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Icahn School of Medicine at Mount Sinai", 
          "id": "https://www.grid.ac/institutes/grid.59734.3c", 
          "name": [
            "Translational and Molecular Imaging Institute, Imaging Science Laboratories, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, 10029, New York, NY, USA", 
            "Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 10029, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fayad", 
        "givenName": "Zahi A", 
        "id": "sg:person.0772637666.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772637666.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mrm.1910290618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000692882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001094634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2010.05.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001543021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2323030573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002503402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003779683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003988532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004152618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.23297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004424496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910360304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005483561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006066626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006066626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006465386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006644713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006644713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0730-725x(98)00130-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006869030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008227478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.03.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012594902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.03.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012594902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014182206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014182206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910330307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016422433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018122654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2009.04.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019462619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.03.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019655743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.03.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019655743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.10304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021013075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.108.166173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022624689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.108.166173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022624689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-12-45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024145794", 
          "https://doi.org/10.1186/1532-429x-12-45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024396711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(11)61383-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026907085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027606458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027606458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2005.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027807640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2005.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027807640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910400410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028770840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2011.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030098562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2586(199909)10:3<223::aid-jmri2>3.0.co;2-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030826627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.10176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031587017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000048145.52309.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031999640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032907341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2011.11.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033182671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2005.10.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033735973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035232541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/mp100309y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035406572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/mp100309y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035406572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.1880030419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035418833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036928446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037218876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.23252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037293411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000143233.87854.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038504068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040194159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040194159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ahj.2011.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041458682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2010.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041599374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042398774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2040-2384-1-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043951161", 
          "https://doi.org/10.1186/2040-2384-1-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1532-429x-13-28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048274154", 
          "https://doi.org/10.1186/1532-429x-13-28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2586(199909)10:3<254::aid-jmri5>3.0.co;2-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048363285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048841059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.22225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048841059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050273167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2412051336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052798067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1227/00006123-200608000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064435740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1227/01.neu.0000239895.00373.e4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064435974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4329/wjr.v1.i1.72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072524511"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "BACKGROUND: Dynamic contrast enhanced (DCE) cardiovascular magnetic resonance (CMR) is increasingly used to quantify microvessels and permeability in atherosclerosis. Accurate quantification depends on reliable sampling of both vessel wall (VW) uptake and contrast agent dynamic in the blood plasma (the so called arterial input function, AIF). This poses specific challenges in terms of spatial/temporal resolution and matched dynamic MR signal range, which are suboptimal in current vascular DCE-CMR protocols. In this study we describe a novel dual-imaging approach, which allows acquiring simultaneously AIF and VW images using different spatial/temporal resolution and optimizes imaging parameters for the two compartments. We refer to this new acquisition as SHILO, Simultaneous HI-/LOw-temporal (low-/hi-spatial) resolution DCE-imaging.\nMETHODS: In SHILO, the acquisition of low spatial resolution single-shot AIF images is interleaved with segments of higher spatial resolution images of the VW. This allows sampling the AIF and VW with different spatial/temporal resolution and acquisition parameters, at independent spatial locations. We show the adequacy of this temporal sampling scheme by using numerical simulations. Following, we validate the MR signal of SHILO against a standard 2D spoiled gradient recalled echo (SPGR) acquisition with in vitro and in vivo experiments. Finally, we show feasibility of using SHILO imaging in subjects with carotid atherosclerosis.\nRESULTS: Our simulations confirmed the superiority of the SHILO temporal sampling scheme over conventional strategies that sample AIF and tissue curves at the same time resolution. Both the median relative errors and standard deviation of absolute parameter values were lower for the SHILO than for conventional sampling schemes. We showed equivalency of the SHILO signal and conventional 2D SPGR imaging, using both in vitro phantom experiments (R2 =0.99) and in vivo acquisitions (R2 =0.95). Finally, we showed feasibility of using the newly developed SHILO sequence to acquire DCE-CMR data in subjects with carotid atherosclerosis to calculate plaque perfusion indices.\nCONCLUSIONS: We successfully demonstrate the feasibility of using the newly developed SHILO dual-imaging technique for simultaneous AIF and VW imaging in DCE-CMR of atherosclerosis. Our initial results are promising and warrant further investigation of this technique in wider studies measuring kinetic parameters of plaque neovascularization with validation against gold standard techniques.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1532-429x-15-42", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2538827", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2345462", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2705200", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2501927", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "name": "SHILO, a novel dual imaging approach for simultaneous HI-/LOw temporal (Low-/Hi-spatial) resolution imaging for vascular dynamic contrast enhanced cardiovascular magnetic resonance: numerical simulations and feasibility in the carotid arteries", 
    "pagination": "42", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8fcc1b172b26f94de922a7d5bb27358b2a1ef236320a6f664a40c1265b86b1f1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23706156"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1532-429x-15-42"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030184971"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1532-429x-15-42", 
      "https://app.dimensions.ai/details/publication/pub.1030184971"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1532-429X-15-42"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-15-42'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-15-42'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-15-42'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-15-42'


 

This table displays all metadata directly associated to this object as RDF triples.

339 TRIPLES      21 PREDICATES      94 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1532-429x-15-42 schema:about N1533a2f98e3549dab2b50183dc68bac9
2 N3329bb83a62f4b4c8bd3c52c1c363a70
3 N368948022c0a418e96bb6b942da0acd8
4 N5b5316dbb60b4f6197d408a2fb81175c
5 N70cc06c633c744f3a801a22607a76602
6 N9026bceaa35c46068584b0d3336c69b6
7 Ndbb92cf1e50345038efcb2a4d120186b
8 Ne4675f9c4a364438a052b19276640296
9 Ne87e9069304b44db9acd96f12ab3e664
10 Nf156cb091765465ea0c838464511c703
11 anzsrc-for:11
12 anzsrc-for:1102
13 schema:author Na0600f59b8e446d097f7718dd50a8960
14 schema:citation sg:pub.10.1186/1532-429x-12-45
15 sg:pub.10.1186/1532-429x-13-28
16 sg:pub.10.1186/2040-2384-1-6
17 https://doi.org/10.1002/(sici)1522-2586(199909)10:3<223::aid-jmri2>3.0.co;2-s
18 https://doi.org/10.1002/(sici)1522-2586(199909)10:3<254::aid-jmri5>3.0.co;2-9
19 https://doi.org/10.1002/jmri.10176
20 https://doi.org/10.1002/jmri.10304
21 https://doi.org/10.1002/jmri.1880030419
22 https://doi.org/10.1002/jmri.20054
23 https://doi.org/10.1002/jmri.20294
24 https://doi.org/10.1002/jmri.20471
25 https://doi.org/10.1002/jmri.20502
26 https://doi.org/10.1002/jmri.20747
27 https://doi.org/10.1002/jmri.21383
28 https://doi.org/10.1002/jmri.21683
29 https://doi.org/10.1002/jmri.22225
30 https://doi.org/10.1002/jmri.22231
31 https://doi.org/10.1002/jmri.22565
32 https://doi.org/10.1002/jmri.22647
33 https://doi.org/10.1002/mrm.10161
34 https://doi.org/10.1002/mrm.1220
35 https://doi.org/10.1002/mrm.1910290618
36 https://doi.org/10.1002/mrm.1910330307
37 https://doi.org/10.1002/mrm.1910360304
38 https://doi.org/10.1002/mrm.1910400410
39 https://doi.org/10.1002/mrm.20022
40 https://doi.org/10.1002/mrm.20160
41 https://doi.org/10.1002/mrm.21066
42 https://doi.org/10.1002/mrm.21532
43 https://doi.org/10.1002/mrm.21611
44 https://doi.org/10.1002/mrm.22369
45 https://doi.org/10.1002/mrm.23252
46 https://doi.org/10.1002/mrm.23297
47 https://doi.org/10.1002/mrm.24415
48 https://doi.org/10.1016/j.ahj.2011.05.006
49 https://doi.org/10.1016/j.atherosclerosis.2009.04.023
50 https://doi.org/10.1016/j.ejrad.2010.05.033
51 https://doi.org/10.1016/j.jacc.2005.03.074
52 https://doi.org/10.1016/j.jacc.2005.03.075
53 https://doi.org/10.1016/j.jacc.2005.10.065
54 https://doi.org/10.1016/j.jcmg.2011.04.020
55 https://doi.org/10.1016/j.jcmg.2011.11.025
56 https://doi.org/10.1016/j.mri.2005.02.013
57 https://doi.org/10.1016/j.mri.2010.08.009
58 https://doi.org/10.1016/s0140-6736(11)61383-4
59 https://doi.org/10.1016/s0730-725x(98)00130-1
60 https://doi.org/10.1021/mp100309y
61 https://doi.org/10.1148/radiol.2323030573
62 https://doi.org/10.1148/radiol.2412051336
63 https://doi.org/10.1161/01.cir.0000048145.52309.31
64 https://doi.org/10.1161/01.cir.0000143233.87854.23
65 https://doi.org/10.1161/atvbaha.108.166173
66 https://doi.org/10.1227/00006123-200608000-00001
67 https://doi.org/10.1227/01.neu.0000239895.00373.e4
68 https://doi.org/10.4329/wjr.v1.i1.72
69 schema:datePublished 2013-12
70 schema:datePublishedReg 2013-12-01
71 schema:description BACKGROUND: Dynamic contrast enhanced (DCE) cardiovascular magnetic resonance (CMR) is increasingly used to quantify microvessels and permeability in atherosclerosis. Accurate quantification depends on reliable sampling of both vessel wall (VW) uptake and contrast agent dynamic in the blood plasma (the so called arterial input function, AIF). This poses specific challenges in terms of spatial/temporal resolution and matched dynamic MR signal range, which are suboptimal in current vascular DCE-CMR protocols. In this study we describe a novel dual-imaging approach, which allows acquiring simultaneously AIF and VW images using different spatial/temporal resolution and optimizes imaging parameters for the two compartments. We refer to this new acquisition as SHILO, Simultaneous HI-/LOw-temporal (low-/hi-spatial) resolution DCE-imaging. METHODS: In SHILO, the acquisition of low spatial resolution single-shot AIF images is interleaved with segments of higher spatial resolution images of the VW. This allows sampling the AIF and VW with different spatial/temporal resolution and acquisition parameters, at independent spatial locations. We show the adequacy of this temporal sampling scheme by using numerical simulations. Following, we validate the MR signal of SHILO against a standard 2D spoiled gradient recalled echo (SPGR) acquisition with in vitro and in vivo experiments. Finally, we show feasibility of using SHILO imaging in subjects with carotid atherosclerosis. RESULTS: Our simulations confirmed the superiority of the SHILO temporal sampling scheme over conventional strategies that sample AIF and tissue curves at the same time resolution. Both the median relative errors and standard deviation of absolute parameter values were lower for the SHILO than for conventional sampling schemes. We showed equivalency of the SHILO signal and conventional 2D SPGR imaging, using both in vitro phantom experiments (R2 =0.99) and in vivo acquisitions (R2 =0.95). Finally, we showed feasibility of using the newly developed SHILO sequence to acquire DCE-CMR data in subjects with carotid atherosclerosis to calculate plaque perfusion indices. CONCLUSIONS: We successfully demonstrate the feasibility of using the newly developed SHILO dual-imaging technique for simultaneous AIF and VW imaging in DCE-CMR of atherosclerosis. Our initial results are promising and warrant further investigation of this technique in wider studies measuring kinetic parameters of plaque neovascularization with validation against gold standard techniques.
72 schema:genre research_article
73 schema:inLanguage en
74 schema:isAccessibleForFree true
75 schema:isPartOf N043f1cf5e847453e836743f838340c33
76 N4e71d60d20ae427f90e27a79da228043
77 sg:journal.1030439
78 schema:name SHILO, a novel dual imaging approach for simultaneous HI-/LOw temporal (Low-/Hi-spatial) resolution imaging for vascular dynamic contrast enhanced cardiovascular magnetic resonance: numerical simulations and feasibility in the carotid arteries
79 schema:pagination 42
80 schema:productId N0094f7a9db7d49a0b82c4fbba9c4028f
81 N82830dc8a1cc405b8fcba9794a882e0a
82 N8352fd5f5b0d4f7095e7cf2a9d9f2eb9
83 Na6263975e6cc4bbab2878ba6fbd993f2
84 Ne05d4fdb8cf04c3c93d332c64e25c23c
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030184971
86 https://doi.org/10.1186/1532-429x-15-42
87 schema:sdDatePublished 2019-04-11T00:16
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Nb12d1f76f08749289d1d945563e9ef7e
90 schema:url http://link.springer.com/10.1186%2F1532-429X-15-42
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N0094f7a9db7d49a0b82c4fbba9c4028f schema:name pubmed_id
95 schema:value 23706156
96 rdf:type schema:PropertyValue
97 N043f1cf5e847453e836743f838340c33 schema:volumeNumber 15
98 rdf:type schema:PublicationVolume
99 N07496ff8b1344cc2b26200b9d1821154 rdf:first sg:person.0716270534.22
100 rdf:rest Nac48664683484eb09ef2e4c183292fb7
101 N1533a2f98e3549dab2b50183dc68bac9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Least-Squares Analysis
103 rdf:type schema:DefinedTerm
104 N17f764953790488bbc0ef2e2da926c0e rdf:first sg:person.0772637666.38
105 rdf:rest rdf:nil
106 N26325d2c35d44e119ec7655e2cf826be rdf:first sg:person.01032517134.22
107 rdf:rest Nac902e920d1946b388b3c87397d65005
108 N3329bb83a62f4b4c8bd3c52c1c363a70 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Time Factors
110 rdf:type schema:DefinedTerm
111 N368948022c0a418e96bb6b942da0acd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Phantoms, Imaging
113 rdf:type schema:DefinedTerm
114 N4e71d60d20ae427f90e27a79da228043 schema:issueNumber 1
115 rdf:type schema:PublicationIssue
116 N579f3bb9a4e74cc09bf811c326cc828b schema:name MR Clinical Science, Philips Healthcare, 595 Miner Road, 44143, Cleveland, OH, USA
117 rdf:type schema:Organization
118 N5b5316dbb60b4f6197d408a2fb81175c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Gadolinium DTPA
120 rdf:type schema:DefinedTerm
121 N70cc06c633c744f3a801a22607a76602 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Humans
123 rdf:type schema:DefinedTerm
124 N82830dc8a1cc405b8fcba9794a882e0a schema:name doi
125 schema:value 10.1186/1532-429x-15-42
126 rdf:type schema:PropertyValue
127 N8352fd5f5b0d4f7095e7cf2a9d9f2eb9 schema:name readcube_id
128 schema:value 8fcc1b172b26f94de922a7d5bb27358b2a1ef236320a6f664a40c1265b86b1f1
129 rdf:type schema:PropertyValue
130 N9026bceaa35c46068584b0d3336c69b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Contrast Media
132 rdf:type schema:DefinedTerm
133 Na0600f59b8e446d097f7718dd50a8960 rdf:first sg:person.01314277735.22
134 rdf:rest Nfcc6bc10f0e64b80b91f2127c5280f71
135 Na6263975e6cc4bbab2878ba6fbd993f2 schema:name nlm_unique_id
136 schema:value 9815616
137 rdf:type schema:PropertyValue
138 Nac48664683484eb09ef2e4c183292fb7 rdf:first sg:person.0754201356.49
139 rdf:rest N26325d2c35d44e119ec7655e2cf826be
140 Nac902e920d1946b388b3c87397d65005 rdf:first sg:person.01221364557.10
141 rdf:rest Nc1edede9d36d4d48a2ae2fa85a29781f
142 Nb12d1f76f08749289d1d945563e9ef7e schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 Nc1edede9d36d4d48a2ae2fa85a29781f rdf:first sg:person.0624540243.32
145 rdf:rest N17f764953790488bbc0ef2e2da926c0e
146 Nc8711ab06bbc41459f9a3289678ddb20 schema:name MR Clinical Science, Philips Healthcare, 595 Miner Road, 44143, Cleveland, OH, USA
147 rdf:type schema:Organization
148 Ndbb92cf1e50345038efcb2a4d120186b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Carotid Artery Diseases
150 rdf:type schema:DefinedTerm
151 Ne05d4fdb8cf04c3c93d332c64e25c23c schema:name dimensions_id
152 schema:value pub.1030184971
153 rdf:type schema:PropertyValue
154 Ne4675f9c4a364438a052b19276640296 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Neovascularization, Pathologic
156 rdf:type schema:DefinedTerm
157 Ne87e9069304b44db9acd96f12ab3e664 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Feasibility Studies
159 rdf:type schema:DefinedTerm
160 Nf156cb091765465ea0c838464511c703 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Magnetic Resonance Angiography
162 rdf:type schema:DefinedTerm
163 Nfcc6bc10f0e64b80b91f2127c5280f71 rdf:first sg:person.0701551334.41
164 rdf:rest N07496ff8b1344cc2b26200b9d1821154
165 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
166 schema:name Medical and Health Sciences
167 rdf:type schema:DefinedTerm
168 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
169 schema:name Cardiorespiratory Medicine and Haematology
170 rdf:type schema:DefinedTerm
171 sg:grant.2345462 http://pending.schema.org/fundedItem sg:pub.10.1186/1532-429x-15-42
172 rdf:type schema:MonetaryGrant
173 sg:grant.2501927 http://pending.schema.org/fundedItem sg:pub.10.1186/1532-429x-15-42
174 rdf:type schema:MonetaryGrant
175 sg:grant.2538827 http://pending.schema.org/fundedItem sg:pub.10.1186/1532-429x-15-42
176 rdf:type schema:MonetaryGrant
177 sg:grant.2705200 http://pending.schema.org/fundedItem sg:pub.10.1186/1532-429x-15-42
178 rdf:type schema:MonetaryGrant
179 sg:journal.1030439 schema:issn 1548-7679
180 1879-2855
181 schema:name Journal of Cardiovascular Magnetic Resonance
182 rdf:type schema:Periodical
183 sg:person.01032517134.22 schema:affiliation N579f3bb9a4e74cc09bf811c326cc828b
184 schema:familyName Kotys-Traughber
185 schema:givenName Melanie
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032517134.22
187 rdf:type schema:Person
188 sg:person.01221364557.10 schema:affiliation https://www.grid.ac/institutes/grid.59734.3c
189 schema:familyName Cham
190 schema:givenName Matthew
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221364557.10
192 rdf:type schema:Person
193 sg:person.01314277735.22 schema:affiliation https://www.grid.ac/institutes/grid.59734.3c
194 schema:familyName Calcagno
195 schema:givenName Claudia
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314277735.22
197 rdf:type schema:Person
198 sg:person.0624540243.32 schema:affiliation Nc8711ab06bbc41459f9a3289678ddb20
199 schema:familyName Fischer
200 schema:givenName Stefan E
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624540243.32
202 rdf:type schema:Person
203 sg:person.0701551334.41 schema:affiliation https://www.grid.ac/institutes/grid.59734.3c
204 schema:familyName Robson
205 schema:givenName Philip M
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701551334.41
207 rdf:type schema:Person
208 sg:person.0716270534.22 schema:affiliation https://www.grid.ac/institutes/grid.59734.3c
209 schema:familyName Ramachandran
210 schema:givenName Sarayu
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716270534.22
212 rdf:type schema:Person
213 sg:person.0754201356.49 schema:affiliation https://www.grid.ac/institutes/grid.59734.3c
214 schema:familyName Mani
215 schema:givenName Venkatesh
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754201356.49
217 rdf:type schema:Person
218 sg:person.0772637666.38 schema:affiliation https://www.grid.ac/institutes/grid.59734.3c
219 schema:familyName Fayad
220 schema:givenName Zahi A
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772637666.38
222 rdf:type schema:Person
223 sg:pub.10.1186/1532-429x-12-45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024145794
224 https://doi.org/10.1186/1532-429x-12-45
225 rdf:type schema:CreativeWork
226 sg:pub.10.1186/1532-429x-13-28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048274154
227 https://doi.org/10.1186/1532-429x-13-28
228 rdf:type schema:CreativeWork
229 sg:pub.10.1186/2040-2384-1-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043951161
230 https://doi.org/10.1186/2040-2384-1-6
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1002/(sici)1522-2586(199909)10:3<223::aid-jmri2>3.0.co;2-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1030826627
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1002/(sici)1522-2586(199909)10:3<254::aid-jmri5>3.0.co;2-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048363285
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1002/jmri.10176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031587017
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1002/jmri.10304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021013075
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1002/jmri.1880030419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035418833
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1002/jmri.20054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001094634
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1002/jmri.20294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050273167
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1002/jmri.20471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006066626
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1002/jmri.20502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027606458
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1002/jmri.20747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032907341
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1002/jmri.21383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037218876
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1002/jmri.21683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014182206
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1002/jmri.22225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048841059
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1002/jmri.22231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006644713
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1002/jmri.22565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003988532
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1002/jmri.22647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004152618
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1002/mrm.10161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035232541
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1002/mrm.1220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018122654
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1002/mrm.1910290618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000692882
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1002/mrm.1910330307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016422433
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1002/mrm.1910360304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005483561
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1002/mrm.1910400410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028770840
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1002/mrm.20022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003779683
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1002/mrm.20160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008227478
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1002/mrm.21066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042398774
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1002/mrm.21532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036928446
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1002/mrm.21611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024396711
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1002/mrm.22369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040194159
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1002/mrm.23252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037293411
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1002/mrm.23297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004424496
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1002/mrm.24415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006465386
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1016/j.ahj.2011.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041458682
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1016/j.atherosclerosis.2009.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019462619
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1016/j.ejrad.2010.05.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001543021
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1016/j.jacc.2005.03.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019655743
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1016/j.jacc.2005.03.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012594902
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1016/j.jacc.2005.10.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033735973
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1016/j.jcmg.2011.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030098562
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1016/j.jcmg.2011.11.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033182671
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1016/j.mri.2005.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027807640
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1016/j.mri.2010.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041599374
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1016/s0140-6736(11)61383-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026907085
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1016/s0730-725x(98)00130-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006869030
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1021/mp100309y schema:sameAs https://app.dimensions.ai/details/publication/pub.1035406572
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1148/radiol.2323030573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002503402
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1148/radiol.2412051336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052798067
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1161/01.cir.0000048145.52309.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031999640
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1161/01.cir.0000143233.87854.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038504068
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1161/atvbaha.108.166173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022624689
329 rdf:type schema:CreativeWork
330 https://doi.org/10.1227/00006123-200608000-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064435740
331 rdf:type schema:CreativeWork
332 https://doi.org/10.1227/01.neu.0000239895.00373.e4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064435974
333 rdf:type schema:CreativeWork
334 https://doi.org/10.4329/wjr.v1.i1.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072524511
335 rdf:type schema:CreativeWork
336 https://www.grid.ac/institutes/grid.59734.3c schema:alternateName Icahn School of Medicine at Mount Sinai
337 schema:name Department of Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 10029, New York, NY, USA
338 Translational and Molecular Imaging Institute, Imaging Science Laboratories, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, 10029, New York, NY, USA
339 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...