Quantitative evaluation of high intensity signal on MIP images of carotid atherosclerotic plaques from routine TOF-MRA reveals elevated volumes of ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-12

AUTHORS

Kiyofumi Yamada, Yan Song, Daniel S Hippe, Jie Sun, Li Dong, Dongxiang Xu, Marina S Ferguson, Baocheng Chu, Thomas S Hatsukami, Min Chen, Cheng Zhou, Chun Yuan

ABSTRACT

BACKGROUND: Carotid intraplaque hemorrhage (IPH) and lipid rich necrotic core (LRNC) have been associated with accelerated plaque growth, luminal narrowing, future surface disruption and development of symptomatic events. The aim of this study was to evaluate the quantitative relationships between high intensity signals (HIS) in the plaque on TOF-MRA and IPH or LRNC volumes as measured by multicontrast weighted CMR. METHODS: Seventy six patients with a suspected carotid artery stenosis or carotid plaque by ultrasonography underwent multicontrast carotid CMR. HIS presence and volume were measured from TOF-MRA MIP images while IPH and LRNC volumes were separately measured from multicontrast CMR. RESULTS: For detecting IPH, HIS on MIP images overall had high specificity (100.0%, 95% CI: 93.0 - 100.0%) but relatively low sensitivity (32%, 95% CI: 20.8 - 47.9%). However, the sensitivity had a significant increasing relationship with underlying IPH volume (p = 0.033) and degree of stenosis (p = 0.022). Mean IPH volume was 2.7 times larger in those with presence of HIS than in those without (142.8 ± 97.7 mm(3) vs. 53.4 ± 56.3 mm(3), p = 0.014). Similarly, mean LRNC volume was 3.4 times larger in those with HIS present (379.8 ± 203.4 mm(3) vs. 111.3 ± 122.7 mm(3), p = 0.001). There was a strong correlation between the volume of the HIS region and the IPH volume measured from multicontrast CMR (r = 0.96, p < 0.001). CONCLUSION: MIP images are easily reformatted from three minute, routine, clinical TOF sequences. High intensity signals in carotid plaque on TOF-MRA MIP images are associated with increased intraplaque hemorrhage and lipid-rich necrotic core volumes. The technique is most sensitive in patients with moderate to severe stenosis. More... »

PAGES

81

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1186/1532-429x-14-81

DOI

http://dx.doi.org/10.1186/1532-429x-14-81

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000908942

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23194180


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Arteries", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carotid Stenosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gadolinium DTPA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hemorrhage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lipids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Necrosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plaque, Atherosclerotic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rupture, Spontaneous", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 815 Mercer St, 98109-4325, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamada", 
        "givenName": "Kiyofumi", 
        "id": "sg:person.01220701324.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220701324.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Hospital", 
          "id": "https://www.grid.ac/institutes/grid.414350.7", 
          "name": [
            "Department of Radiology, Beijing Hospital, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Yan", 
        "id": "sg:person.0630362250.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630362250.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 815 Mercer St, 98109-4325, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hippe", 
        "givenName": "Daniel S", 
        "id": "sg:person.0764104440.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764104440.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 815 Mercer St, 98109-4325, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Jie", 
        "id": "sg:person.0744610650.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744610650.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 815 Mercer St, 98109-4325, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Li", 
        "id": "sg:person.01161036206.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161036206.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 815 Mercer St, 98109-4325, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Dongxiang", 
        "id": "sg:person.01061037250.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061037250.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 815 Mercer St, 98109-4325, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferguson", 
        "givenName": "Marina S", 
        "id": "sg:person.01064030670.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064030670.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 815 Mercer St, 98109-4325, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chu", 
        "givenName": "Baocheng", 
        "id": "sg:person.01264250523.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264250523.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Vascular Surgery, University of Washington, Seattle, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hatsukami", 
        "givenName": "Thomas S", 
        "id": "sg:person.013351427457.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013351427457.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Hospital", 
          "id": "https://www.grid.ac/institutes/grid.414350.7", 
          "name": [
            "Department of Radiology, Beijing Hospital, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Min", 
        "id": "sg:person.01257362343.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257362343.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Hospital", 
          "id": "https://www.grid.ac/institutes/grid.414350.7", 
          "name": [
            "Department of Radiology, Beijing Hospital, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Cheng", 
        "id": "sg:person.01357627450.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357627450.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Radiology, University of Washington, 815 Mercer St, 98109-4325, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Chun", 
        "id": "sg:person.011712252247.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712252247.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/01.cir.102.9.959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002724346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000328231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007659678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000297962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008091999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rmr.0b013e3181598d9d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013328216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rmr.0b013e3181598d9d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013328216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.110.597328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013824637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.110.597328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013824637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.110.597328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013824637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hc4201.097839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015268610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-009-0623-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016445310", 
          "https://doi.org/10.1007/s00234-009-0623-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-009-0623-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016445310", 
          "https://doi.org/10.1007/s00234-009-0623-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-009-0623-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016445310", 
          "https://doi.org/10.1007/s00234-009-0623-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000138103.91187.e3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016615740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018166617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.104.504167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018658938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199108153250701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021945105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0741-5214(98)70321-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028178313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199811123392002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028911501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.111.615708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031485665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/strokeaha.111.615708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031485665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvs.2007.09.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031638057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.09090535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032991700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrcardio.2009.246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033209600", 
          "https://doi.org/10.1038/nrcardio.2009.246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrcardio.2009.246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033209600", 
          "https://doi.org/10.1038/nrcardio.2009.246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a1793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035510584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000149867.61851.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036106235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000149867.61851.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036106235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036140275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036140275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000125856.25309.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036260692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.0000125856.25309.86", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036260692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/mva.2001.109746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037062419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2011.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037116994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2009.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044831526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.163.5.7976902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069318967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2010.8.jns10423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071075999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2010.8.jns10423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071075999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/2010.8.jns10423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071075999"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "BACKGROUND: Carotid intraplaque hemorrhage (IPH) and lipid rich necrotic core (LRNC) have been associated with accelerated plaque growth, luminal narrowing, future surface disruption and development of symptomatic events. The aim of this study was to evaluate the quantitative relationships between high intensity signals (HIS) in the plaque on TOF-MRA and IPH or LRNC volumes as measured by multicontrast weighted CMR.\nMETHODS: Seventy six patients with a suspected carotid artery stenosis or carotid plaque by ultrasonography underwent multicontrast carotid CMR. HIS presence and volume were measured from TOF-MRA MIP images while IPH and LRNC volumes were separately measured from multicontrast CMR.\nRESULTS: For detecting IPH, HIS on MIP images overall had high specificity (100.0%, 95% CI: 93.0 - 100.0%) but relatively low sensitivity (32%, 95% CI: 20.8 - 47.9%). However, the sensitivity had a significant increasing relationship with underlying IPH volume (p\u2009=\u20090.033) and degree of stenosis (p\u2009=\u20090.022). Mean IPH volume was 2.7 times larger in those with presence of HIS than in those without (142.8\u2009\u00b1\u200997.7 mm(3) vs. 53.4\u2009\u00b1\u200956.3 mm(3), p\u2009=\u20090.014). Similarly, mean LRNC volume was 3.4 times larger in those with HIS present (379.8\u2009\u00b1\u2009203.4 mm(3) vs. 111.3\u2009\u00b1\u2009122.7 mm(3), p\u2009=\u20090.001). There was a strong correlation between the volume of the HIS region and the IPH volume measured from multicontrast CMR (r\u2009=\u20090.96, p\u2009<\u20090.001).\nCONCLUSION: MIP images are easily reformatted from three minute, routine, clinical TOF sequences. High intensity signals in carotid plaque on TOF-MRA MIP images are associated with increased intraplaque hemorrhage and lipid-rich necrotic core volumes. The technique is most sensitive in patients with moderate to severe stenosis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1186/1532-429x-14-81", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2617911", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1030439", 
        "issn": [
          "1548-7679", 
          "1879-2855"
        ], 
        "name": "Journal of Cardiovascular Magnetic Resonance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Quantitative evaluation of high intensity signal on MIP images of carotid atherosclerotic plaques from routine TOF-MRA reveals elevated volumes of intraplaque hemorrhage and lipid rich necrotic core", 
    "pagination": "81", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "04545e5ff0640dae5ccbd9533cd433874d65f2be66ae384d079328e36ac4487d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23194180"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815616"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1186/1532-429x-14-81"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000908942"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1186/1532-429x-14-81", 
      "https://app.dimensions.ai/details/publication/pub.1000908942"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000509.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1186%2F1532-429X-14-81"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-14-81'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-14-81'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-14-81'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1186/1532-429x-14-81'


 

This table displays all metadata directly associated to this object as RDF triples.

292 TRIPLES      21 PREDICATES      70 URIs      36 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1186/1532-429x-14-81 schema:about N0826f18bf37543e1814ea7d51af8929a
2 N13de7f81f01a42ae81ec6e835cd8914f
3 N19d25cf50b834ca7af51896b279792fe
4 N1a6ee5f516e848c4b70406009c76e650
5 N2c3d737082294b19b9f8f4d5af06de4d
6 N315a85e8b64d4162850652ed4beaf88b
7 N7b3f7d2b53624f869d50977e39013aa3
8 N7bd50d550b2a4eb1b0e328f639bcb8d2
9 N92dc1c91084142ef87bc37bad4b685ab
10 N9b578a00bd8b41dba0f7a553f397f438
11 Na19426a82f164f12898eb61fb88ffabb
12 Nc2f9e3240fe241da918f600f17e54d90
13 Nee717f126a8043a9b88614230601a9cb
14 Nfa2b10943716494696413a79656df208
15 Nfc6a059bb2e146269c6a694e385e0145
16 anzsrc-for:11
17 anzsrc-for:1102
18 schema:author N55fa6ab7bb244c1099d3ddb89411c2a9
19 schema:citation sg:pub.10.1007/s00234-009-0623-7
20 sg:pub.10.1038/nrcardio.2009.246
21 https://doi.org/10.1002/jmri.21284
22 https://doi.org/10.1002/mrm.22539
23 https://doi.org/10.1016/j.atherosclerosis.2009.06.024
24 https://doi.org/10.1016/j.atherosclerosis.2011.01.002
25 https://doi.org/10.1016/j.jvs.2007.09.064
26 https://doi.org/10.1016/s0741-5214(98)70321-0
27 https://doi.org/10.1056/nejm199108153250701
28 https://doi.org/10.1056/nejm199811123392002
29 https://doi.org/10.1067/mva.2001.109746
30 https://doi.org/10.1097/rmr.0b013e3181598d9d
31 https://doi.org/10.1148/radiol.09090535
32 https://doi.org/10.1159/000297962
33 https://doi.org/10.1159/000328231
34 https://doi.org/10.1161/01.atv.0000149867.61851.31
35 https://doi.org/10.1161/01.cir.0000138103.91187.e3
36 https://doi.org/10.1161/01.cir.102.9.959
37 https://doi.org/10.1161/01.str.0000125856.25309.86
38 https://doi.org/10.1161/circulationaha.104.504167
39 https://doi.org/10.1161/hc4201.097839
40 https://doi.org/10.1161/strokeaha.110.597328
41 https://doi.org/10.1161/strokeaha.111.615708
42 https://doi.org/10.2214/ajr.163.5.7976902
43 https://doi.org/10.3171/2010.8.jns10423
44 https://doi.org/10.3174/ajnr.a1793
45 schema:datePublished 2012-12
46 schema:datePublishedReg 2012-12-01
47 schema:description BACKGROUND: Carotid intraplaque hemorrhage (IPH) and lipid rich necrotic core (LRNC) have been associated with accelerated plaque growth, luminal narrowing, future surface disruption and development of symptomatic events. The aim of this study was to evaluate the quantitative relationships between high intensity signals (HIS) in the plaque on TOF-MRA and IPH or LRNC volumes as measured by multicontrast weighted CMR. METHODS: Seventy six patients with a suspected carotid artery stenosis or carotid plaque by ultrasonography underwent multicontrast carotid CMR. HIS presence and volume were measured from TOF-MRA MIP images while IPH and LRNC volumes were separately measured from multicontrast CMR. RESULTS: For detecting IPH, HIS on MIP images overall had high specificity (100.0%, 95% CI: 93.0 - 100.0%) but relatively low sensitivity (32%, 95% CI: 20.8 - 47.9%). However, the sensitivity had a significant increasing relationship with underlying IPH volume (p = 0.033) and degree of stenosis (p = 0.022). Mean IPH volume was 2.7 times larger in those with presence of HIS than in those without (142.8 ± 97.7 mm(3) vs. 53.4 ± 56.3 mm(3), p = 0.014). Similarly, mean LRNC volume was 3.4 times larger in those with HIS present (379.8 ± 203.4 mm(3) vs. 111.3 ± 122.7 mm(3), p = 0.001). There was a strong correlation between the volume of the HIS region and the IPH volume measured from multicontrast CMR (r = 0.96, p < 0.001). CONCLUSION: MIP images are easily reformatted from three minute, routine, clinical TOF sequences. High intensity signals in carotid plaque on TOF-MRA MIP images are associated with increased intraplaque hemorrhage and lipid-rich necrotic core volumes. The technique is most sensitive in patients with moderate to severe stenosis.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N305e158b653a4fc2a819e40c328a55e3
52 N331935e16ab749459ad0dc3823015ddd
53 sg:journal.1030439
54 schema:name Quantitative evaluation of high intensity signal on MIP images of carotid atherosclerotic plaques from routine TOF-MRA reveals elevated volumes of intraplaque hemorrhage and lipid rich necrotic core
55 schema:pagination 81
56 schema:productId N024039ac7f1f4c6e949a71d042257434
57 N87f94ccb72644151abe84d87e16bff8e
58 Nb92a9fb94640405f97f92de9fd11ba0b
59 Nc363b15092fd454695b362f84b8444f8
60 Ne6588ceff54f449bb2424bccb2af7e93
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000908942
62 https://doi.org/10.1186/1532-429x-14-81
63 schema:sdDatePublished 2019-04-10T19:56
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nb6635e4295b049ba8fb9f27ac3e2241a
66 schema:url http://link.springer.com/10.1186%2F1532-429X-14-81
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N024039ac7f1f4c6e949a71d042257434 schema:name readcube_id
71 schema:value 04545e5ff0640dae5ccbd9533cd433874d65f2be66ae384d079328e36ac4487d
72 rdf:type schema:PropertyValue
73 N0826f18bf37543e1814ea7d51af8929a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Lipids
75 rdf:type schema:DefinedTerm
76 N0f0461fe19ce4ac3b397a57bd380efb9 rdf:first sg:person.0764104440.34
77 rdf:rest N2a85c6709b0f4878b852fa2753326497
78 N0f1c29fd73744f208eb389fce431c664 rdf:first sg:person.01064030670.72
79 rdf:rest Nb0fb40ae3f7743d2b00aee0f1c7e6cee
80 N13de7f81f01a42ae81ec6e835cd8914f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Severity of Illness Index
82 rdf:type schema:DefinedTerm
83 N19d25cf50b834ca7af51896b279792fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Predictive Value of Tests
85 rdf:type schema:DefinedTerm
86 N1a6ee5f516e848c4b70406009c76e650 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Plaque, Atherosclerotic
88 rdf:type schema:DefinedTerm
89 N2a85c6709b0f4878b852fa2753326497 rdf:first sg:person.0744610650.37
90 rdf:rest Na55a3411882744bd8bb86a18e444879e
91 N2c3d737082294b19b9f8f4d5af06de4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Linear Models
93 rdf:type schema:DefinedTerm
94 N305e158b653a4fc2a819e40c328a55e3 schema:issueNumber 1
95 rdf:type schema:PublicationIssue
96 N315a85e8b64d4162850652ed4beaf88b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Necrosis
98 rdf:type schema:DefinedTerm
99 N331935e16ab749459ad0dc3823015ddd schema:volumeNumber 14
100 rdf:type schema:PublicationVolume
101 N55fa6ab7bb244c1099d3ddb89411c2a9 rdf:first sg:person.01220701324.46
102 rdf:rest Nec960162009e4855bafe16ac82178a1e
103 N634bab0e1ef64612ad5a14d5fa511a97 rdf:first sg:person.01257362343.12
104 rdf:rest Na940aaf822c145cca026cbaeabb7d0e5
105 N7b3f7d2b53624f869d50977e39013aa3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Magnetic Resonance Angiography
107 rdf:type schema:DefinedTerm
108 N7bd50d550b2a4eb1b0e328f639bcb8d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Hemorrhage
110 rdf:type schema:DefinedTerm
111 N87f94ccb72644151abe84d87e16bff8e schema:name doi
112 schema:value 10.1186/1532-429x-14-81
113 rdf:type schema:PropertyValue
114 N8ddd55ce8de64e7e861763bdbd568b01 rdf:first sg:person.011712252247.13
115 rdf:rest rdf:nil
116 N92dc1c91084142ef87bc37bad4b685ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Sensitivity and Specificity
118 rdf:type schema:DefinedTerm
119 N9b578a00bd8b41dba0f7a553f397f438 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Rupture, Spontaneous
121 rdf:type schema:DefinedTerm
122 Na19426a82f164f12898eb61fb88ffabb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Carotid Arteries
124 rdf:type schema:DefinedTerm
125 Na55a3411882744bd8bb86a18e444879e rdf:first sg:person.01161036206.83
126 rdf:rest Nb71655ecf4b44555992c70381ecb4704
127 Na940aaf822c145cca026cbaeabb7d0e5 rdf:first sg:person.01357627450.66
128 rdf:rest N8ddd55ce8de64e7e861763bdbd568b01
129 Nb0fb40ae3f7743d2b00aee0f1c7e6cee rdf:first sg:person.01264250523.91
130 rdf:rest Nb5d6d9ab1a4b46dc9c0ebf33deda5e0a
131 Nb5d6d9ab1a4b46dc9c0ebf33deda5e0a rdf:first sg:person.013351427457.97
132 rdf:rest N634bab0e1ef64612ad5a14d5fa511a97
133 Nb6635e4295b049ba8fb9f27ac3e2241a schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 Nb71655ecf4b44555992c70381ecb4704 rdf:first sg:person.01061037250.78
136 rdf:rest N0f1c29fd73744f208eb389fce431c664
137 Nb92a9fb94640405f97f92de9fd11ba0b schema:name dimensions_id
138 schema:value pub.1000908942
139 rdf:type schema:PropertyValue
140 Nc2f9e3240fe241da918f600f17e54d90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Gadolinium DTPA
142 rdf:type schema:DefinedTerm
143 Nc363b15092fd454695b362f84b8444f8 schema:name nlm_unique_id
144 schema:value 9815616
145 rdf:type schema:PropertyValue
146 Ne6588ceff54f449bb2424bccb2af7e93 schema:name pubmed_id
147 schema:value 23194180
148 rdf:type schema:PropertyValue
149 Nec960162009e4855bafe16ac82178a1e rdf:first sg:person.0630362250.28
150 rdf:rest N0f0461fe19ce4ac3b397a57bd380efb9
151 Nee717f126a8043a9b88614230601a9cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Carotid Stenosis
153 rdf:type schema:DefinedTerm
154 Nfa2b10943716494696413a79656df208 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Humans
156 rdf:type schema:DefinedTerm
157 Nfc6a059bb2e146269c6a694e385e0145 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Contrast Media
159 rdf:type schema:DefinedTerm
160 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
161 schema:name Medical and Health Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
164 schema:name Cardiorespiratory Medicine and Haematology
165 rdf:type schema:DefinedTerm
166 sg:grant.2617911 http://pending.schema.org/fundedItem sg:pub.10.1186/1532-429x-14-81
167 rdf:type schema:MonetaryGrant
168 sg:journal.1030439 schema:issn 1548-7679
169 1879-2855
170 schema:name Journal of Cardiovascular Magnetic Resonance
171 rdf:type schema:Periodical
172 sg:person.01061037250.78 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
173 schema:familyName Xu
174 schema:givenName Dongxiang
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061037250.78
176 rdf:type schema:Person
177 sg:person.01064030670.72 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
178 schema:familyName Ferguson
179 schema:givenName Marina S
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064030670.72
181 rdf:type schema:Person
182 sg:person.01161036206.83 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
183 schema:familyName Dong
184 schema:givenName Li
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161036206.83
186 rdf:type schema:Person
187 sg:person.011712252247.13 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
188 schema:familyName Yuan
189 schema:givenName Chun
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712252247.13
191 rdf:type schema:Person
192 sg:person.01220701324.46 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
193 schema:familyName Yamada
194 schema:givenName Kiyofumi
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220701324.46
196 rdf:type schema:Person
197 sg:person.01257362343.12 schema:affiliation https://www.grid.ac/institutes/grid.414350.7
198 schema:familyName Chen
199 schema:givenName Min
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257362343.12
201 rdf:type schema:Person
202 sg:person.01264250523.91 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
203 schema:familyName Chu
204 schema:givenName Baocheng
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264250523.91
206 rdf:type schema:Person
207 sg:person.013351427457.97 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
208 schema:familyName Hatsukami
209 schema:givenName Thomas S
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013351427457.97
211 rdf:type schema:Person
212 sg:person.01357627450.66 schema:affiliation https://www.grid.ac/institutes/grid.414350.7
213 schema:familyName Zhou
214 schema:givenName Cheng
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357627450.66
216 rdf:type schema:Person
217 sg:person.0630362250.28 schema:affiliation https://www.grid.ac/institutes/grid.414350.7
218 schema:familyName Song
219 schema:givenName Yan
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630362250.28
221 rdf:type schema:Person
222 sg:person.0744610650.37 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
223 schema:familyName Sun
224 schema:givenName Jie
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744610650.37
226 rdf:type schema:Person
227 sg:person.0764104440.34 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
228 schema:familyName Hippe
229 schema:givenName Daniel S
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764104440.34
231 rdf:type schema:Person
232 sg:pub.10.1007/s00234-009-0623-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016445310
233 https://doi.org/10.1007/s00234-009-0623-7
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/nrcardio.2009.246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033209600
236 https://doi.org/10.1038/nrcardio.2009.246
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1002/jmri.21284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018166617
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1002/mrm.22539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036140275
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.atherosclerosis.2009.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044831526
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.atherosclerosis.2011.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037116994
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.jvs.2007.09.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031638057
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/s0741-5214(98)70321-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028178313
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1056/nejm199108153250701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021945105
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1056/nejm199811123392002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028911501
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1067/mva.2001.109746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037062419
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1097/rmr.0b013e3181598d9d schema:sameAs https://app.dimensions.ai/details/publication/pub.1013328216
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1148/radiol.09090535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032991700
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1159/000297962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008091999
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1159/000328231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007659678
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1161/01.atv.0000149867.61851.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036106235
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1161/01.cir.0000138103.91187.e3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016615740
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1161/01.cir.102.9.959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002724346
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1161/01.str.0000125856.25309.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036260692
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1161/circulationaha.104.504167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018658938
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1161/hc4201.097839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015268610
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1161/strokeaha.110.597328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013824637
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1161/strokeaha.111.615708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031485665
279 rdf:type schema:CreativeWork
280 https://doi.org/10.2214/ajr.163.5.7976902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069318967
281 rdf:type schema:CreativeWork
282 https://doi.org/10.3171/2010.8.jns10423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071075999
283 rdf:type schema:CreativeWork
284 https://doi.org/10.3174/ajnr.a1793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035510584
285 rdf:type schema:CreativeWork
286 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
287 schema:name Department of Radiology, University of Washington, 815 Mercer St, 98109-4325, Seattle, WA, USA
288 Department of Vascular Surgery, University of Washington, Seattle, USA
289 rdf:type schema:Organization
290 https://www.grid.ac/institutes/grid.414350.7 schema:alternateName Beijing Hospital
291 schema:name Department of Radiology, Beijing Hospital, Beijing, China
292 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...